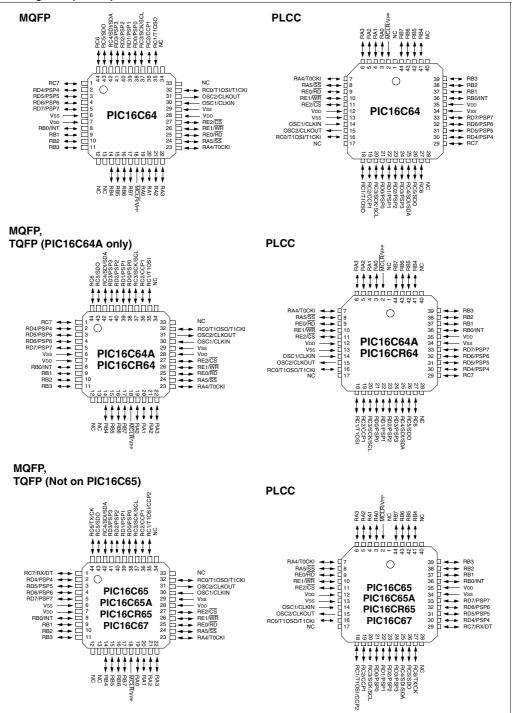


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc67t-04i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Cont.'d)

2.0 PIC16C6X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C6X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number.

For the PIC16C6X family of devices, there are four device "types" as indicated in the device number:

- 1. **C**, as in PIC16**C**64. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC16LC64. These devices have EPROM type memory and operate over an extended voltage range.
- 3. **CR**, as in PIC16**CR**64. These devices have ROM program memory and operate over the standard voltage range.
- 4. LCR, as in PIC16LCR64. These devices have ROM program memory and operate over an extended voltage range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.

Microchip's PICSTART[®] Plus and PRO MATE[®] II programmers both support programming of the PIC16C6X.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number.

ROM devices do not allow serialization information in the program memory space. The user may have this information programmed in the data memory space.

For information on submitting ROM code, please contact your regional sales office.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, thus giving customers a low cost option for high volume, mature products.

For information on submitting ROM code, please contact your regional sales office.

FIGURE 4-8: PIC16C66/67 DATA MEMORY MAP

ndirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	181
PCL	02h	PCL	82h	PCL	102h	PCL	182
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183
FSR	04h	FSR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h		105h	1011	185
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
PORTC	07h	TRISC	87h		107h		187
PORTD (1)	08h	TRISD (1)	88h		108h		188
PORTE (1)	09h	TRISE (1)	89h		109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	184
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18E
PIR1	0Ch	PIE1	8Ch		10Ch		180
PIR2	0Dh	PIE2	8Dh		10Dh		180
TMR1L	0Eh	PCON	8Eh		10Eh		18
TMR1H	0Fh	TOON	8Fh		10Fh		18F
T1CON	10h		90h		110h		190
TMR2	11h		91h		111h		191
T2CON	12h	PR2	92h		112h		192
SSPBUF	13h	SSPADD	93h		113h		193
SSPCON	14h	SSPSTAT	94h		114h		194
CCPR1L	15h	30F 5TAT	95h		115h		195
CCPR1H	16h		96h		116h		196
CCP1CON	17h		97h	General	117h	General	197
RCSTA	18h	TXSTA	98h	Purpose	118h	Purpose	198
TXREG	19h	SPBRG	99h	Register 16 Bytes	119h	Register 16 Bytes	199
RCREG	1Ah	SEDITO	9Ah	TO Bytes	11Ah	TO Dytes	194
CCPR2L	1Bh		9Bh		11Bh		19E
CCPR2H	1Ch		9Ch		11Ch		190
CCP2CON	1Dh		9Dh		11Dh		190
0012001	1Eh		9Eh		11Eh		19E
	1Fh		9Fh		11Fh		19F
	20h		-		120h		-
	2011		A0h		12011		1A0
General Purpose Register 96 Bytes		General Purpose Register 80 Bytes	EFh	General Purpose Register 80 Bytes	16Fh	General Purpose Register 80 Bytes	1EF
	7Fh	accesses 70h-7Fh in Bank 0	F0h FFh	accesses 70h-7Fh in Bank 0	170h 17Fh	accesses 70h-7Fh in Bank 0	1FC
Bank 0		Bank 1		Bank 2		Bank 3	
Not a physical	register.	mory locations, read					
		ytes of data memo		nks 1, 2, and 3 are			

IADLE	4-2:	SPECIA		ION RE	GISTER			5002/02/	4/H02 ((Jont.a)	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 1											
80h ⁽¹⁾	INDF	Addressing	this location	uses conter	nts of FSR to	address data	a memory (n	ot a physical	register)	0000 0000	0000 0000
81h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Sigr	nificant Byte					0000 0000	0000 0000
83h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h ⁽¹⁾	FSR	Indirect data	a memory ac	Idress pointe	er					xxxx xxxx	uuuu uuuu
85h	TRISA	—	_	PORTA Da	ta Direction R	legister				11 1111	11 1111
86h	TRISB	PORTB Dat	ta Direction F	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction F	Register						1111 1111	1111 1111
88h	—	Unimpleme	nted							—	-
89h	_	Unimpleme	nted							—	—
8Ah ^(1,2)	PCLATH	—	-	—	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
8Bh ⁽¹⁾	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	(6)	(6)	-	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	00 0000	00 0000
8Dh	-	Unimpleme	nted							_	_
8Eh	PCON	—	-	—	—	—	—	POR	BOR ⁽⁴⁾	qq	uu
8Fh	-	Unimpleme	nted					•		—	-
90h	-	Unimpleme	nted							-	-
91h	-	Unimpleme	nted							-	-
92h	PR2	Timer2 Peri	iod Register							1111 1111	1111 1111
93h	SSPADD	Synchronou	us Serial Port	t (I ² C mode)) Address Reg	gister				0000 0000	0000 0000
94h	SSPSTAT	_	_	D/A	Р	S	R/W	UA	BF	00 0000	00 0000
95h-9Fh	-	Unimpleme	nted							-	_

TABLE 4-2:	SPECIAL FUNCTION REGISTERS FOR THE PIC16C62/62A/R62	(Cont.'d)

Note 1: These registers can be addressed from either bank.

2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C62, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C62/62A/R62, always maintain these bits clear.

6: PIE1<7:6> and PIR1<7:6> are reserved on the PIC16C62/62A/R62, always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets ⁽³⁾
Bank 0											·
00h ⁽¹⁾	INDF	Addressing	this location	uses conter	ts of FSR to	address data	a memory (n	ot a physica	register)	0000 0000	0000 0000
01h	TMR0	Timer0 mod	lule's registe	r						xxxx xxxx	uuuu uuuu
02h ⁽¹⁾	PCL	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	0000 0000
03h ⁽¹⁾	STATUS	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h ⁽¹⁾	FSR	Indirect data	a memory ad	dress pointe	r					xxxx xxxx	uuuu uuuu
05h	PORTA	-	_	PORTA Dat	a Latch wher	n written: PO	RTA pins wh	en read		xx xxxx	uu uuuu
06h	PORTB	PORTB Dat	ta Latch whe	n written: PC	ORTB pins wi	nen read				xxxx xxxx	uuuu uuuu
07h	PORTC	PORTC Da	ta Latch whe	n written: PC	ORTC pins w	hen read				xxxx xxxx	uuuu uuuu
08h	PORTD	PORTD Dat	ta Latch whe	n written: PC	ORTD pins w	hen read				xxxx xxxx	uuuu uuuu
09h	PORTE		—	_	_	—	RE2	RE1	RE0	xxx	uuu
0Ah ^(1,2)	PCLATH		_	_	Write Buffer	for the uppe	r 5 bits of the	e Program C	ounter	0 0000	0 0000
0Bh ⁽¹⁾	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF	(6)	_	1	SSPIF	CCP1IF	TMR2IF	TMR1IF	00 0000	00 0000
0Dh	_	Unimpleme	nted							—	_
0Eh	TMR1L	Holding reg	ister for the L	east Signific	ant Byte of t	he 16-bit TM	R1 register			xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	ister for the M	/lost Signific	ant Byte of th	ne 16-bit TMF	R1 register			xxxx xxxx	uuuu uuuu
10h	T1CON	-	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
11h	TMR2	Timer2 mod	lule's registe	r						0000 0000	0000 0000
12h	T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchronou	us Serial Port	Receive Bu	ffer/Transmit	Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWM	1 (LSB)						xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	mpare/PWM	1 (MSB)						xxxx xxxx	uuuu uuuu
17h	CCP1CON	—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Fh	_	Unimpleme	nted							_	

TABLE 4-4: SPECIAL FUNCTION REGISTERS FOR THE PIC16C64/64A/R64

Note 1: These registers can be addressed from either bank.

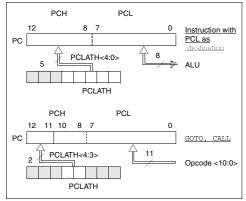
2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>)

3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.

4: The BOR bit is reserved on the PIC16C64, always maintain this bit set.

5: The IRP and RP1 bits are reserved on the PIC16C64/64A/R64, always maintain these bits clear.

6: PIE1<6> and PIR1<6> are reserved on the PIC16C64/64A/R64, always maintain these bits clear.


4.3 PCL and PCLATH

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable, but are indirectly writable through the PCLATH register. On any reset, the upper bits of the PC will be cleared. Figure 4-24 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure in shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-24: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 word block). Refer to the application note "Implementing a Table Read" (AN556).

4.3.2 STACK

The PIC16CXX family has an 8 deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or a POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no status bits to indicate stack overflows or stack underflow conditions.
- Note 2: There are no instructions mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address

4.4 Program Memory Paging

Applicable Devices

61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

PIC16C6X devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction the upper two bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is pushed onto the stack. Therefore, manipulation of the PCLATH<4:3> bits are not required for the return instructions (which POPs the address from the stack).

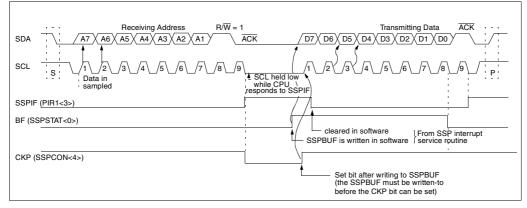
Note: PIC16C6X devices with 4K or less of program memory ignore paging bit PCLATH<4>. The use of PCLATH<4> as a general purpose read/write bit is not recommended since this may affect upward compatibility with future products.

TABLE 5-11: PORTE FUNCTIONS

Name	Bit#	Buffer Type	Function
RE0/RD	bit0	ST/TTL ⁽¹⁾	Input/output port pin or Read control input in parallel slave port mode. RD 1 = Not a read operation 0 = Read operation. The system reads the PORTD register (if chip selected)
RE1/WR	bit1	ST/TTL ⁽¹⁾	Input/output port pin or Write control input in parallel slave port mode. WR 1 = Not a write operation 0 = Write operation. The system writes to the PORTD register (if chip selected)
RE2/CS	bit2	ST/TTL ⁽¹⁾	Input/output port pin or Chip select control input in parallel slave port mode. CS 1 = Device is not selected 0 = Device is selected

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Buffer is a Schmitt Trigger when in I/O mode, and a TTL buffer when in Parallel Slave Port (PSP) mode.


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
09h	PORTE		—	_	—		RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	ta Direction	Bits	0000 -111	0000 -111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells not used by PORTE.

11.5.1.3 TRANSMISSION

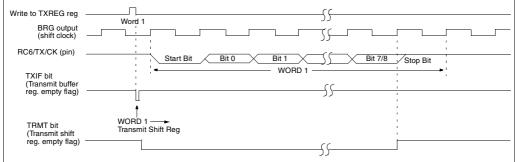
When the $R\overline{W}$ bit of the incoming address byte is set and an address match occurs, the $R\overline{W}$ bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The \overline{ACK} pulse will be sent on the ninth bit, and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSP-BUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 11-26). An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

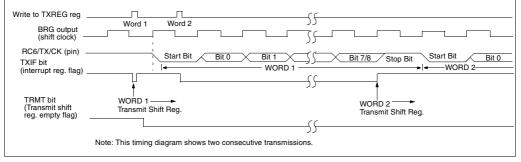
FIGURE 11-26: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

Г

FIGURE 12-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)


R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R-0	R-x		
SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	R	= Readable bit
bit7							bitO	W U - n x	 Writable bit Unimplemented bit, read as '0' Value at POR rese unknown
bit 7:	SPEN: Ser (Configures 1 = Serial p 0 = Serial p	s RC7/RX/l	DT and RC d	6/TX/CK	pins as seri	al port pins	s when bits	TRIS	C<7:6> are set)
bit 6:	RX9 : 9-bit I 1 = Selects 0 = Selects	9-bit rece	otion						
bit 5:	SREN: Sing	gle Receiv	e Enable bi	t					
	Asynchrone Don't care	ous mode							
	$\frac{Synchronof}{1 = Enables}$ $0 = Disables$ This bit is c	s single ree s single re	ceive ceive	is comple	ete.				
	Synchrono Unused in t		<u>slave</u>						
bit 4:	CREN: Cor	ntinuous R	eceive Ena	ble bit					
	$\frac{\text{Asynchrono}}{1 = \text{Enables}}$ $0 = \text{Disables}$	s continuo							
	$\frac{\text{Synchronor}}{1 = \text{Enables}}$ $0 = \text{Disables}$	s continuo		until enabl	le bit CREN	l is cleared	(CREN ov	erride	s SREN)
bit 3:	Unimplem	ented: Rea	ad as '0'						
bit 2:	FERR: Fran 1 = Framing 0 = No fran	g error (Ca		ed by rea	ding RCRE	G register	and receive	e next	valid byte)
bit 1:	OERR : Ove 1 = Overrun 0 = No ove	n error (Ca		d by clea	ring bit CRI	EN)			
bit 0:	RX9D : 9th								

Steps to follow when setting up an Asynchronous Transmission:


- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, then set bit BRGH. (Section 12.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.

- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).

FIGURE 12-8: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 12-9: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Ch	PIR1	PSPIF ⁽¹⁾	(2)	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tra	ansmit R	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	(2)	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	General	or Registe	er					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Transmission.

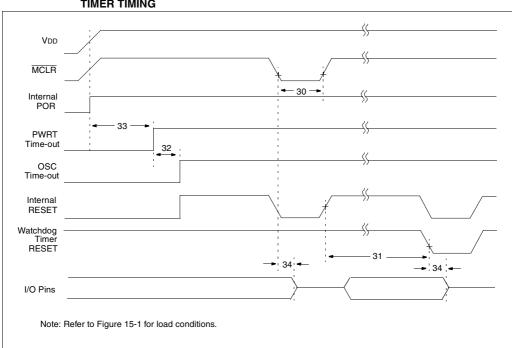
Note 1: PSPIF and PSPIE are reserved on the PIC16C63/R63/66, always maintain these bits clear.

2: PIR1<6> and PIE1<6> are reserved, always maintain these bits clear.

NOP	No Oper	ation		
Syntax:	[label]	NOP		
Operands:	None			
Operation:	No opera	ition		
Status Affected:	None			
Encoding:	00	0000	0xx0	0000
Description:	No operat	ion.		
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	No- Operation	No- Operation	No- Operation
Example	NOP			

RETFIE	Return fi	rom Inter	rupt	
Syntax:	[label]	RETFIE		
Operands:	None			
Operation:	$\begin{array}{l} TOS \rightarrow F \\ 1 \rightarrow GIE \end{array}$	PC,		
Status Affected:	None			
Encoding:	00	0000	0000	1001
	PC. Interru	inte ara ar	ablad by a	otting
	Global Inte (INTCON< instruction	, errupt Ena <7>). This	ble bit, ĠIE	Ē
Words:	Global Inte (INTCON<	, errupt Ena <7>). This	ble bit, ĠIE	Ē
Words: Cycles:	Global Inte (INTCON< instruction	, errupt Ena <7>). This	ble bit, ĠIE	Ē
	Global Inte (INTCON< instruction	, errupt Ena <7>). This	ble bit, ĠIE	Ē
Cycles:	Global Inte (INTCON< instruction 1 2	errupt Ena (7>). This	ble bit, GIE is a two cy	E cle
Cycles: Q Cycle Activity:	Global Inte (INTCON- instruction 1 2 Q1	Q2 No-	ble bit, GIE is a two cy Q3 Set the	cle Q4 Pop from

After Interrupt PC = TOS GIE = 1


OPTION	Load Option Register
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \rightarrow OPTION$
Status Affected:	None
Encoding:	00 0000 0110 0010
Description: Words: Cycles:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code com- patibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it. 1
Example	To maintain upward compatibility with future PIC16CXX products, do not use this instruction.

SLEEP

Syntax:	[label]	SLEEP		
Operands:	None			
Operation:	$\begin{array}{c} 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$	VDT, T presca	ler,	
Status Affected:	TO, PD			
Encoding:	0.0	0000	0110	0011
Description:	cleared. T set. Watc caler are The proce mode with	Time-out si hdog Time cleared. essor is pu	atus bit, Pi tatus bit, T er and its p at into SLE ator stopp re details.	O is ores- EP
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	No- Operation	No- Operation	Go to Sleep
Example:	SLEEP			

SUBLW	Subtract	W from	_iteral	
Syntax:	[label]	SUBLW	k	
Operands:	$0 \le k \le 25$	5		
Operation:	k - (W) \rightarrow	(W)		
Status Affected:	C, DC, Z			
Encoding:	11	110x	kkkk	kkkk
Description:	ment meth	od) from th	otracted (2's ne eight bit n the W reg	literal 'k'.
Words:	1			
Cycles:	1			
Q Cycle Activity:	Q1	Q2	Q3	Q4
	Decode	Read literal 'k'	Process data	Write to W
Example 1:	SUBLW	0x02		
	Before Ins	struction		
		W = C = Z =	1 ? ?	
	After Instr	ruction		
		W = C = Z =	1 1; result is 0	positive
Example 2:	Before Ins	struction		
		W = C = Z =	2 ? ?	
	After Instr	ruction		
		W = C = Z =	0 1; result i 1	s zero
Example 3:	Before Ins	struction		
		W = C = Z =	3 ? ?	
	After Inst	ruction		
		W = C = Z =	0xFF 0; result is 0	negative

-

FIGURE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30*	TmcL	MCLR Pulse Width (low)	200	—	—	ns	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillation Start-up Timer Period		1024Tosc	—		TOSC = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +125°C
34*	Tioz	I/O Hi-impedance from MCLR Low		—	100	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

18.0 ELECTRICAL CHARACTERISTICS FOR PIC16C62A/R62/64A/R64

Absolute Maximum Ratings †

Ambient temperature under bias	55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +14V
Voltage on RA4 with respect to Vss	0V to +14V
Total power dissipation (Note 1)	1.0W
Maximum current out of VSS pin	
Maximum current into VDD pin	250 mA
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > Voo)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined)	200 mA
Maximum current sunk by PORTC and PORTD (combined)	200 mA
Maximum current sourced by PORTC and PORTD (combined)	200 mA
Note 1. Power dissipation is calculated as follows: $Pdis = Vpp \times (Ipp - \sum Ipu) + \sum (Vpp - \sum Ipu)$	$(V_{OU}) \times (OU) + \Sigma(V_{OU} \times (OU))$

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOI x IOL)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 18-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC16C62A-04 PIC16CR62-04 PIC16C64A-04 PIC16CR64-04	PIC16C62A-10 PIC16CR62-10 PIC16C64A-10 PIC16CR64-10	PIC16C62A-20 PIC16CR62-20 PIC16C64A-20 PIC16CR64-20	PIC16LC62A-04 PIC16LCR62-04 PIC16LC64A-04 PIC16LCR64-04	JW Devices
RC	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq:4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5 μA max. at 3V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq:4 MHz max.
ХТ	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 4.5V to 5.5V IDD: 2.0 mA typ. at 5.5V IPD: 1.5 μA typ. at 4V Freq: 4 MHz max.	VDD: 2.5V to 6.0V IDD: 3.8 mA max. at 3.0V IPD: 5 µA max. at 3.0V Freq: 4 MHz max.	VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 16 μA max. at 4V Freq: 4 MHz max.
HS	VpD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 4 MHz max.		VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.	Not recommended for use in HS mode	VDD: 4.5V to 5.5V IDD: 20 mA max. at 5.5V IPD: 1.5 μA typ. at 4.5V Freq: 20 MHz max.
LP	VDD: 4.0V to 6.0V IDD: 52.5 μA typ. at 32 kHz, 4.0V IPD: 0.9 μA typ. at 4.0V Freq: 200 kHz max.	Not recommended for use in LP mode	Not recommended for use in LP mode	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.	VDD: 2.5V to 6.0V IDD: 48 μA max. at 32 kHz, 3.0V IPD: 5 μA max. at 3.0V Freq: 200 kHz max.

The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.

^{© 1997-2013} Microchip Technology Inc.

18.2 DC Characteristics: PIC16LC62A/R62/64A/R64-04 (Commercial, Industrial)

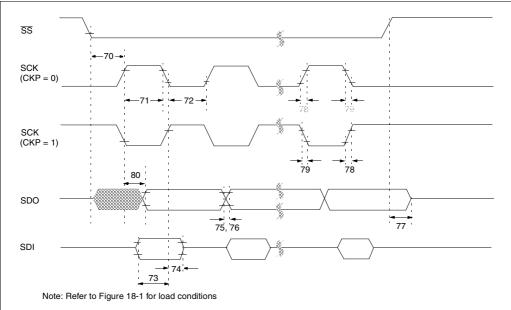
		Standa	rd Ope	rating	Condi	tions (u	Inless otherwise stated)
DC CHA	RACTERISTICS	Operatir	ng temp	perature			$TA \leq +85^{\circ}C$ for industrial and
	1				0°C		$TA \le +70^{\circ}C$ for commercial
Param No.	Characteristic	Sym	Min	Тур†	Мах	Units	Conditions
D001	Supply Voltage	Vdd	2.5	-	6.0	V	LP, XT, RC osc configuration (DC - 4 MHz)
D002*	RAM Data Retention Volt- age (Note 1)	Vdr	-	1.5	-	V	
D003	VDD start voltage to ensure internal Power-on Reset signal	VPOR	-	Vss	-	V	See section on Power-on Reset for details
D004*	VDD rise rate to ensure internal Power-on Reset signal	SVDD	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	Brown-out Reset Voltage	Bvdd	3.7	4.0	4.3	V	BODEN bit in configuration word enabled
D010	Supply Current (Note 2, 5)	IDD	-	2.0	3.8	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D015*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V
D020	Power-down Current	IPD	-	7.5	30	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C
D021	(Note 3, 5)		-	0.9	5	μA	VDD = 3.0V, WDT disabled, 0°C to +70°C
D021A			-	0.9	5	μA	$V_{DD} = 3.0V$, WDT disabled, -40°C to +85°C
D023*	Brown-out Reset Current (Note 6)	Δ IBOR	-	350	425	μA	BOR enabled, VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

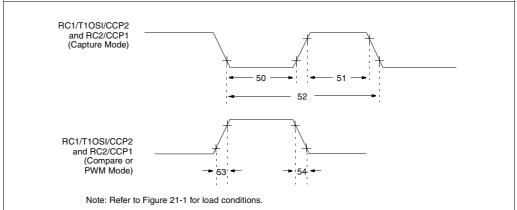
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.


The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

- $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.
- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67


TABLE 18-8: SPI MODE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	—	—	ns	
71*	TscH	SCK input high time (slave mode)	TCY + 20	—		ns	
72*	TscL	SCK input low time (slave mode)	TCY + 20	—		ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge	50	_	_	ns	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	50	_	_	ns	
75*	TdoR	SDO data output rise time	_	10	25	ns	
76*	TdoF	SDO data output fall time		10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impedance	10	—	50	ns	
78*	TscR	SCK output rise time (master mode)	_	10	25	ns	
79*	TscF	SCK output fall time (master mode)		10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	_	_	50	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

FIGURE 21-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 21-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5TCY + 20	—	_	ns	
		input low time	With Prescaler	PIC16CR63/R65	10	—	—	ns	
				PIC16LCR63/R65	20	-	_	ns	
51*	TccH	CCP1 and CCP2	No Prescaler		0.5TCY + 20	—	—	ns	
		input high time	With Prescaler	PIC16CR63/R65	10	_	_	ns	
				PIC16LCR63/R65	20	-	_	ns	
52*	TccP	CCP1 and CCP2 ir	put period		<u>3Tcy + 40</u> N	-	—	ns	N = prescale value (1,4, or 16)
53*	TccR	CCP1 and CCP2 o	utput rise time	PIC16CR63/R65	_	10	25	ns	
				PIC16LCR63/R65	_	25	45	ns	
54*	TccF	CCP1 and CCP2 o	utput fall time	PIC16 CR 63/R65	—	10	25	ns	
				PIC16LCR63/R65	—	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67

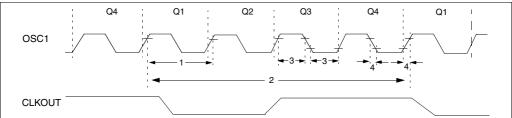
22.3 DC Characteristics: PIC16C66/67-04 (Commercial, Industrial, Extended) PIC16C66/67-10 (Commercial, Industrial, Extended) PIC16C66/67-20 (Commercial, Industrial, Extended) PIC16LC66/67-04 (Commercial, Industrial)

							ss otherwise stated)
		Operati	ng temper	ature			$A \le +125^{\circ}C$ for extended,
DC CHA	RACTERISTICS				-40°0		$A \le +85^{\circ}C$ for industrial and
50 01.		_			0°C		$A \le +70^{\circ}C$ for commercial
			ng voltage ction 22.2	VDD	range as	describ	bed in DC spec Section 22.1
Davama				Trees	Max	Linite	Conditions
Param No.	Characteristic	Sym	Min	Тур †	Max	Units	Conditions
	Input Low Voltage						
	I/O ports	VIL					
D030	with TTL buffer		Vss	-	0.15VDD	v	For entire VDD range
D030A			Vss	-	0.8V	V	$4.5V \le VDD \le 5.5V$
D031	with Schmitt Trigger buffer		Vss	-	0.2VDD	V	
D032	MCLR, OSC1 (in RC mode)		Vss	-	0.2VDD	V	
D033	OSC1 (in XT, HS and LP)		Vss	-	0.3Vdd	V	Note1
	Input High Voltage						
	I/O ports	Vін		-			
D040	with TTL buffer		2.0	-	Vdd	V	$4.5V \le V$ DD $\le 5.5V$
D040A			0.25VDD	-	Vdd	V	For entire VDD range
			+ 0.8V				Ũ
D041	with Schmitt Trigger buffer		0.8VDD	-	Vdd	V	For entire VDD range
D042	MCLR		0.8VDD	-	Vdd	V	
D042A	OSC1 (XT, HS and LP)		0.7VDD	-	Vdd	V	Note1
D043	OSC1 (in RC mode)		0.9Vdd	-	Vdd	V	
D070	PORTB weak pull-up current	IPURB	50	250	400	μΑ	VDD = 5V, VPIN = VSS
	Input Leakage Current (Notes 2, 3)						
D060	I/O ports	lı∟	-	-	±1	μA	$Vss \le VPIN \le VDD$, Pin at hi-
							impedance
D061	MCLR, RA4/T0CKI		-	-	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
D063	OSC1		-	-	±5	μA	$Vss \le VPIN \le VDD, XT, HS and$
							LP osc configuration
	Output Low Voltage						
D080	I/O ports	Vol	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5 V,
							-40°C to +85°C
D080A			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5 V,
							-40°C to +125°C
D083	OSC2/CLKOUT (RC osc config)		-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5 V,
Dooot							-40°C to +85°C
D083A			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5 V,
							-40°C to +125°C

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode.


 The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

*

22.5 <u>Timing Diagrams and Specifications</u>

FIGURE 22-2: EXTERNAL CLOCK TIMING

TABLE 22-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC		4	MHz	XT and RC osc mode
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	10	MHz	HS osc mode (-10)
			DC	_	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC	-	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250		—	ns	XT and RC osc mode
		(Note 1)	250	_	_	ns	HS osc mode (-04)
			100	_	_	ns	HS osc mode (-10)
			50	_	_	ns	HS osc mode (-20)
			5	_	_	μs	LP osc mode
		Oscillator Period	250		_	ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			100	_	250	ns	HS osc mode (-10)
			50	—	250	ns	HS osc mode (-20)
			5	—	—	μs	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High or	100	_	_	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			15	—	—	ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise or	—		25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Figure 11-2:	SSPCON: Sync Serial Port
	Control Register (Address 14h) 85
Figure 11-3:	SSP Block Diagram (SPI Mode) 86
Figure 11-4:	SPI Master/Slave Connection
Figure 11-5:	SPI Mode Timing, Master Mode or
	Slave Mode w/o SS Control 88
Figure 11-6:	SPI Mode Timing, Slave Mode with
	SS Control 88
Figure 11-7:	SSPSTAT: Sync Serial Port Status
	Register (Address 94h)(PIC16C66/67) 89
Figure 11-8:	SSPCON: Sync Serial Port Control
	Register (Address 14h)(PIC16C66/67)90
Figure 11-9:	SSP Block Diagram (SPI Mode)
	(PIC16C66/67)
Figure 11-10:	SPI Master/Slave Connection
-	(PIC16C66/67)
Figure 11-11:	SPI Mode Timing, Master Mode
E ' 11 10	(PIC16C66/67)
Figure 11-12:	SPI Mode Timing (Slave Mode With
Figure 11 10.	CKE = 0) (PIC16C66/67)
Figure 11-13:	SPI Mode Timing (Slave Mode With
Figure 11 14:	CKE = 1) (PIC16C66/67)94 Start and Stop Conditions95
Figure 11-14: Figure 11-15:	7-bit Address Format
Figure 11-16:	I ² C 10-bit Address Format
Figure 11-17:	Slave-receiver Acknowledge
Figure 11-18:	Data Transfer Wait State
Figure 11-19:	Master-transmitter Sequence
Figure 11-20:	Master-receiver Sequence
Figure 11-21:	Combined Format
Figure 11-22:	Multi-master Arbitration
	(Two Masters)
Figure 11-23:	Clock Synchronization
Figure 11-24:	SSP Block Diagram (I ² C Mode)
Figure 11-25:	I ² C Waveforms for Reception
•	(7-bit Address)101
Figure 11-26:	I ² C Waveforms for Transmission
	(7-bit Address) 102
Figure 11-27:	Operation of the I ² C Module in
	IDLE MODE DOV MODE at
	IDLE_MODE, RCV_MODE or
	XMIT_MODE 104
Figure 12-1:	XMIT_MODE104 TXSTA: Transmit Status and
Figure 12-1:	XMIT_MODE104 TXSTA: Transmit Status and Control Register (Address 98h)105
Figure 12-1: Figure 12-2:	XMIT_MODE104 TXSTA: Transmit Status and Control Register (Address 98h)105 RCSTA: Receive Status and
Figure 12-2:	XMIT_MODE 104 TXSTA: Transmit Status and 0 Control Register (Address 98h) 105 RCSTA: Receive Status and 0 Control Register (Address 18h) 106
-	XMIT_MODE 104 TXSTA: Transmit Status and 0 Control Register (Address 98h) 105 RCSTA: Receive Status and 0 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 0
Figure 12-2: Figure 12-3:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110
Figure 12-2:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 10
Figure 12-2: Figure 12-3: Figure 12-4:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) 110
Figure 12-2: Figure 12-3:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 110 RX Pin Sampling Scheme (BRGH = 1) 110 RX Pin Sampling Scheme (BRGH = 1) 110
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5:	XMIT_MODE 104 TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 110 PIC16C63/R63/65/65A/R65) 110
Figure 12-2: Figure 12-3: Figure 12-4:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 101 (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 101 RX Pin Sampling Scheme (BRGH = 0 or = 1) 110
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6:	XMIT_MODE 104 TXSTA: Transmit Status and Control Register (Address 98h) 105 RCSTA: Receive Status and Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67)
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/R63/65/65A/R65) (PIC16C66/R63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/R63/MCB) 111 USART Transmit Block Diagram 112
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) PIC16C66/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 Asynchronous Master Transmission 113
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 102 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 102 (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 102 (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) 102 (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 (Back to Back) 113
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 113
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-6: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 113 USART Receive Block Diagram 114
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12:	XMIT_MODE104TXSTA: Transmit Status andControl Register (Address 98h)105RCSTA: Receive Status andControl Register (Address 18h)106RX Pin Sampling Scheme (BRGH = 0)PIC16C63/R63/65/65A/R65)110RX Pin Sampling Scheme (BRGH = 1)(PIC16C63/R63/65/65A/R65)110RX Pin Sampling Scheme (BRGH = 1)(PIC16C63/R63/65/65A/R65)110RX Pin Sampling Scheme (BRGH = 0 or = 1)(PIC16C63/R63/65/65A/R65)110RX Pin Sampling Scheme (BRGH = 0 or = 1)(PIC16C66/67)111USART Transmit Block Diagram112Asynchronous Master Transmission113USART Receive Block Diagram114Asynchronous Transmission114
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-6: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 102 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 110 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117
Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13:	XMIT_MODE 104 TXSTA: Transmit Status and 105 Control Register (Address 98h) 105 RCSTA: Receive Status and 106 Control Register (Address 18h) 106 RX Pin Sampling Scheme (BRGH = 0) 101 PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 1) (PIC16C63/R63/65/65A/R65) (PIC16C63/R63/65/65A/R65) 110 RX Pin Sampling Scheme (BRGH = 0 or = 1) (PIC16C66/67) (PIC16C66/67) 111 USART Transmit Block Diagram 112 Asynchronous Master Transmission 113 USART Receive Block Diagram 114 Asynchronous Reception 114 Synchronous Transmission 117 Synchronous Transmission 117 Synchronous Reception 117

Figure 13-2:	Configuration Word for
	PIC16C62/64/65 124
Figure 13-3:	Configuration Word for
	PIC16C62A/R62/63/R63/64A/R64/
	65A/R65/66/67 124
Figure 13-4:	Crystal/Ceramic Resonator Operation
	(HS, XT or LP OSC Configuration)
Figure 13-5:	External Clock Input Operation
rigule 15-5.	(HS, XT or LP OSC Configuration)
Einung 10.0	
Figure 13-6:	External Parallel Resonant
	Crystal Oscillator Circuit 127
Figure 13-7:	External Series Resonant
	Crystal Oscillator Circuit 127
Figure 13-8:	RC Oscillator Mode 127
Figure 13-9:	Simplified Block Diagram of
	On-chip Reset Circuit 128
Figure 13-10:	Brown-out Situations 129
Figure 13-11:	Time-out Sequence on Power-up
•	(MCLR not Tied to VDD): Case 1
Figure 13-12:	Time-out Sequence on Power-up
. iguio 10 12.	(MCLR Not Tied To VDD): Case 2
Figure 13-13:	Time-out Sequence on Power-up
rigule 15-15.	(MCLR Tied to VDD)
Einung 10 14.	
Figure 13-14:	External Power-on Reset Circuit
	(For Slow VDD Power-up) 135
Figure 13-15:	External Brown-out
	Protection Circuit 1 135
Figure 13-16:	External Brown-out
	Protection Circuit 2 135
Figure 13-17:	Interrupt Logic for PIC16C61 137
Figure 13-18:	Interrupt Logic for PIC16C6X 137
Figure 13-19:	INT Pin Interrupt Timing 138
Figure 13-20:	Watchdog Timer Block Diagram 140
Figure 13-21:	Summary of Watchdog
riguie to 21.	Timer Registers 140
Figure 12 00	
Figure 13-22:	Wake-up from Sleep Through Interrupt142
Einung 10.00	
Figure 13-23:	Typical In-circuit Serial
	Programming Connection 142
Figure 14-1:	General Format for Instructions 143
Figure 16-1:	Load Conditions for Device Timing
	Specifications 168
Figure 16-2:	External Clock Timing 169
Figure 16-3:	CLKOUT and I/O Timing 170
Figure 16-4:	Reset, Watchdog Timer, Oscillator
-	Start-up Timer and Power-up Timer
	Timing 171
Figure 16-5:	Timer0 External Clock Timings 172
Figure 17-1:	Typical RC Oscillator
rigato tr ti	Frequency vs. Temperature
Eiguro 17 0	Typical RC Oscillator
Figure 17-2:	
E' 47.0	Frequency vs. VDD
Figure 17-3:	Typical RC Oscillator
	Frequency vs. VDD 174
Figure 17-4:	Typical RC Oscillator
	Frequency vs. VDD 174
Figure 17-5:	Typical IPD vs. VDD Watchdog Timer
	Disabled 25°C 174
Figure 17-6:	
	Typical IPD vs. VDD Watchdog Timer
0	Typical IPD vs. VDD Watchdog Timer Enabled 25°C 175
Ū.	Enabled 25°C 175
Figure 17-7:	Enabled 25°C 175 Maximum IPD vs. VDD Watchdog
Figure 17-7:	Enabled 25°C 175 Maximum IPD vs. VDD Watchdog Disabled
Ū.	Enabled 25°C
Figure 17-7: Figure 17-8:	Enabled 25°C
Figure 17-7:	Enabled 25°С 175 Maximum IPD vs. VDD Watchdog 175 Disabled 175 Maximum IPD vs. VDD Watchdog 175 Enabled* 176 VTH (Input Threshold Voltage) of 176
Figure 17-7: Figure 17-8:	Enabled 25°C