Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Active | | Core Processor | PIC | | Core Size | 8-Bit | | Speed | 4MHz | | Connectivity | I ² C, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, POR, PWM, WDT | | Number of I/O | 33 | | Program Memory Size | 14KB (8K x 14) | | Program Memory Type | OTP | | EEPROM Size | - | | RAM Size | 368 x 8 | | Voltage - Supply (Vcc/Vdd) | 2.5V ~ 6V | | Data Converters | - | | Oscillator Type | External | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 44-QFP | | Supplier Device Package | 44-MQFP (10x10) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic16lc67t-04i-pq | #### 3.0 ARCHITECTURAL OVERVIEW The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture where program and data may be fetched from the same memory using the same bus. Separating program and data busses further allows instructions to be sized differently than 8-bit wide data words. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions execute in a single cycle (200 ns @ 20 MHz) except for program branches. The PIC16C61 addresses 1K x 14 of program memory. The PIC16C62/62A/R62/64/64A/R64 address 2K x 14 of program memory, and the PIC16C63/R63/65/65A/R65 devices address 4K x 14 of program memory. The PIC16C66/67 address 8K x 14 program memory. All program memory is internal. The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers including the program counter are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of "special optimal situations" makes programming with the PIC16CXX simple yet efficient, thus significantly reducing the learning curve. The PIC16CXX device contains an 8-bit ALU and working register (W). The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file The ALU is 8-bits wide and capable of addition, subtraction, shift, and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register), the other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register. The W register is an 8-bit working register used for ALU operations. It is not an addressable register. Depending upon the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. Bits C and DC operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples. FIGURE 3-3: PIC16C63/R63/65/65A/R65 BLOCK DIAGRAM TABLE 4-2: SPECIAL FUNCTION REGISTERS FOR THE PIC16C62/62A/R62 (Cont.'d) | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:
POR,
BOR | Value on
all other
resets ⁽³⁾ | |----------------------|---------|--------------------|-------------------------------|---------------------------|----------------|--------------|-----------------|---------------|--------------------|--------------------------|--| | Bank 1 | | | | | | | | | | | | | 80h ⁽¹⁾ | INDF | Addressing | this location | uses conter | nts of FSR to | address data | a memory (n | ot a physical | register) | 0000 0000 | 0000 0000 | | 81h | OPTION | RBPU | INTEDG | T0CS | T0SE | PSA | PS2 | PS1 | PS0 | 1111 1111 | 1111 1111 | | 82h ⁽¹⁾ | PCL | Program Co | ounter's (PC) | Least Sigr | nificant Byte | | | | | 0000 0000 | 0000 0000 | | 83h ⁽¹⁾ | STATUS | IRP ⁽⁵⁾ | RP1 ⁽⁵⁾ | RP0 | TO | PD | Z | DC | С | 0001 1xxx | 000q quuu | | 84h ⁽¹⁾ | FSR | Indirect dat | a memory ac | Idress pointe | er | 1 | | | 1 | xxxx xxxx | uuuu uuuu | | 85h | TRISA | _ | _ | PORTA Dat | ta Direction R | egister | | | | 11 1111 | 11 1111 | | 86h | TRISB | PORTB Da | PORTB Data Direction Register | | | | | | | | 1111 1111 | | 87h | TRISC | PORTC Da | PORTC Data Direction Register | | | | | | | | 1111 1111 | | 88h | _ | Unimpleme | Unimplemented | | | | | | | | _ | | 89h | _ | Unimpleme | Unimplemented | | | | | | | _ | _ | | 8Ah ^(1,2) | PCLATH | _ | _ | _ | Write Buffer | for the uppe | r 5 bits of the | Program C | ounter | 0 0000 | 0 0000 | | 8Bh ⁽¹⁾ | INTCON | GIE | PEIE | TOIE | INTE | RBIE | TOIF | INTF | RBIF | 0000 000x | 0000 000u | | 8Ch | PIE1 | (6) | (6) | _ | _ | SSPIE | CCP1IE | TMR2IE | TMR1IE | 00 0000 | 00 0000 | | 8Dh | _ | Unimpleme | nted | | | | | | | _ | _ | | 8Eh | PCON | _ | _ | _ | _ | _ | _ | POR | BOR ⁽⁴⁾ | qq | uu | | 8Fh | _ | Unimpleme | nted | | | | • | | | _ | _ | | 90h | _ | Unimpleme | nted | | | | | | | _ | _ | | 91h | _ | Unimpleme | nted | | | | | | | _ | _ | | 92h | PR2 | Timer2 Peri | iod Register | | | | | | | 1111 1111 | 1111 1111 | | 93h | SSPADD | Synchronou | us Serial Port | t (I ² C mode) | Address Reg | jister | | | | 0000 0000 | 0000 0000 | | 94h | SSPSTAT | _ | _ | D/Ā | Р | S | R/W | UA | BF | 00 0000 | 00 0000 | | 95h-9Fh | _ | Unimpleme | nted | | | | | | | _ | _ | | | | | | | | | | | | | | $\begin{tabular}{ll} Legend: & $x=$ unknown, $u=$ unchanged, $q=$ value depends on condition, $-=$ unimplemented location read as '0'. \\ & Shaded locations are unimplemented, read as '0'. \\ \end{tabular}$ - Note 1: These registers can be addressed from either bank. - 2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC<12:8>) - 3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset. - 4: The BOR bit is reserved on the PIC16C62, always maintain this bit set. - 5: The IRP and RP1 bits are reserved on the PIC16C62/62A/R62, always maintain these bits clear. - 6: PIE1<7:6> and PIR1<7:6> are reserved on the PIC16C62/62A/R62, always maintain these bits clear. # 6.0 OVERVIEW OF TIMER MODULES #### Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67 All PIC16C6X devices have three timer modules except for the PIC16C61, which has one timer module. Each module can generate an interrupt to indicate that an event has occurred (i.e., timer overflow). Each of these modules are detailed in the following sections. The timer modules are: - Timer0 module (Section 7.0) - Timer1 module (Section 8.0) - Timer2 module (Section 9.0) #### 6.1 <u>Timer0 Overview</u> #### **Applicable Devices** 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67 The Timer0 module is a simple 8-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock. When the clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge. The Timer0 module also has a programmable prescaler option. This prescaler can be assigned to either the Timer0 module or the Watchdog Timer. Bit PSA (OPTION<3>) assigns the prescaler, and bits PS2:PS0 (OPTION<2:0>) determine the prescaler value. TMR0 can increment at the following rates: 1:1 when the prescaler is assigned to Watchdog Timer, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, and 1:256. Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock. #### 6.2 Timer1 Overview #### Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67 Timer1 is a 16-bit timer/counter. The clock source can be either the internal system clock (Fosc/4), an external clock, or an external crystal. Timer1 can operate as either a timer or a counter. When operating as a counter (external clock source), the counter can either operate synchronized to the device or asynchronously to the device. Asynchronous operation allows Timer1 to operate during sleep, which is useful for applications that require a real-time clock as well as the power savings of SLEEP mode. Timer1 also has a prescaler option which allows TMR1 to increment at the following rates: 1:1, 1:2, 1:4, and 1:8. TMR1 can be used in conjunction with the Capture/Compare/PWM module. When used with a CCP module, Timer1 is the time-base for 16-bit capture or 16-bit compare and must be synchronized to the device. #### 6.3 Timer2 Overview #### Applicable Devices 61
62 62A R62 63 R63 64 64A R64 65 65A R65 66 67 Timer2 is an 8-bit timer with a programmable prescaler and a programmable postscaler, as well as an 8-bit Period Register (PR2). Timer2 can be used with the CCP module (in PWM mode) as well as the Baud Rate Generator for the Synchronous Serial Port (SSP). The prescaler option allows Timer2 to increment at the following rates: 1:1, 1:4, and 1:16. The postscaler allows TMR2 register to match the period register (PR2) a programmable number of times before generating an interrupt. The postscaler can be programmed from 1:1 to 1:16 (inclusive). #### 6.4 CCP Overview #### Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67 The CCP module(s) can operate in one of three modes: 16-bit capture, 16-bit compare, or up to 10-bit Pulse Width Modulation (PWM). Capture mode captures the 16-bit value of TMR1 into the CCPRxH:CCPRxL register pair. The capture event can be programmed for either the falling edge, rising edge, fourth rising edge, or sixteenth rising edge of the CCPx pin. Compare mode compares the TMR1H:TMR1L register pair to the CCPRxH:CCPRxL register pair. When a match occurs, an interrupt can be generated and the output pin CCPx can be forced to a given state (High or Low) and Timer1 can be reset. This depends on control bits CCPxM3:CCPxM0. PWM mode compares the TMR2 register to a 10-bit duty cycle register (CCPRxH:CCPRxL<5:4>) as well as to an 8-bit period register (PR2). When the TMR2 register = Duty Cycle register, the CCPx pin will be forced low. When TMR2 = PR2, TMR2 is cleared to 00h, an interrupt can be generated, and the CCPx pin (if an output) will be forced high. #### 7.3.1 SWITCHING PRESCALER ASSIGNMENT The prescaler assignment is fully under software control, i.e., it can be changed "on the fly" during program execution. Note: To avoid an unintended device RESET, the following instruction sequence (shown in Example 7-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This precaution must #### **EXAMPLE 7-1: CHANGING PRESCALER (TIMER0→WDT)** be followed even if the WDT is disabled. Lines 2 and 3 do NOT have to be included if the final desired prescale value is other than 1:1. If 1:1 is final desired value, then a temporary prescale value is set in lines 2 and 3 and the final prescale value will be set in lines 10 and 11. ``` 1) BSF STATUS, RPO MOVLW b'xx0x0xxx' ;Select clock source and prescale value of 3) MOVWF OPTION REG ;other than 1:1 STATUS, RPO BCF ;Bank 0 5) ;Clear TMR0 and prescaler CLRF TMR0 BSF STATUS, RP1 ;Bank 1 7) MOVLW b'xxxx1xxx' ;Select WDT, do not change prescale value 8) MOVWF OPTION REG 9) CLRWDT ;Clears WDT and prescaler 10) MOVLW b'xxxx1xxx' ;Select new prescale value and WDT 11) MOVWF OPTION REG STATUS, RPO :Bank 0 12) BCF ``` To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 7-2. #### **EXAMPLE 7-2:** CHANGING PRESCALER (WDT→TIMER0) ``` CLRWDT ;Clear WDT and prescaler BSF STATUS, RPO ;Bank 1 MOVLW b'xxxx0xxx';Select TMRO, new prescale value and clock source MOVWF OPTION_REG ; BCF STATUS, RPO ;Bank 0 ``` #### TABLE 7-1: REGISTERS ASSOCIATED WITH TIMERO | Address | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on:
POR,
BOR | Value on all other resets | |-----------------------|--------|--------|---------------------|------------|-------------|---------|---------|-------|-------|--------------------------|---------------------------| | 01h, 101h | TMR0 | Timer0 | module's r | xxxx xxxx | uuuu uuuu | | | | | | | | 0Bh,8Bh,
10Bh,18Bh | INTCON | GIE | PEIE ⁽¹⁾ | TOIE | INTE | RBIE | TOIF | INTF | RBIF | 0000 000x | 0000 000u | | 81h, 181h | OPTION | RBPU | INTEDG | T0CS | T0SE | PSA | PS2 | PS1 | PS0 | 1111 1111 | 1111 1111 | | 85h | TRISA | _ | _ | PORTA Data | Direction F | 11 1111 | 11 1111 | | | | | Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0. Note 1: TRISA<5> and bit PEIE are not implemented on the PIC16C61, read as '0'. ### EXAMPLE 10-2: PWM PERIOD AND DUTY CYCLE CALCULATION Desired PWM frequency is 78.125 kHz, Fosc = 20 MHz TMR2 prescale = 1 $1/78.125 \text{ kHz} = [(PR2) + 1] \cdot 4 \cdot 1/20 \text{ MHz} \cdot 1$ $12.8 \text{ } \mu\text{s} = [(PR2) + 1] \cdot 4 \cdot 50 \text{ ns} \cdot 1$ PR2 = 63 Find the maximum resolution of the duty cycle that can be used with a 78.125 kHz frequency and 20 MHz oscillator: $1/78.125 \text{ kHz} = 2^{\text{PWM RESOLUTION}} \cdot 1/20 \text{ MHz} \cdot 1$ 12.8 μs = $2^{\text{PWM RESOLUTION}} \cdot 50 \text{ ns} \cdot 1$ $= 2^{\text{PWM RESOLUTION}}$ log(256) = (PWM Resolution) • log(2) 8.0 = PWM Resolution At most, an 8-bit resolution duty cycle can be obtained from a 78.125 kHz frequency and a 20 MHz oscillator, i.e., $0 \le \text{CCPR1L:CCP1CON} < 5:4 > \le 255$. Any value greater than 255 will result in a 100% duty cycle. In order to achieve higher resolution, the PWM frequency must be decreased. In order to achieve higher PWM frequency, the resolution must be decreased. Table 10-3 lists example PWM frequencies and resolutions for Fosc = 20 MHz. The TMR2 prescaler and PR2 values are also shown. #### 10.3.3 SET-UP FOR PWM OPERATION The following steps should be taken when configuring the CCP module for PWM operation: - Set the PWM period by writing to the PR2 register - Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits. - Make the CCP1 pin an output by clearing the TRISC<2> bit. - 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON. - 5. Configure the CCP1 module for PWM operation. TABLE 10-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz | PWM Frequency | 1.22 kHz | 4.88 kHz | 19.53 kHz | 78.12 kHz | 156.3 kHz | 208.3 kHz | |----------------------------|----------|----------|-----------|-----------|-----------|-----------| | Timer Prescaler (1, 4, 16) | 16 | 4 | 1 | 1 | 1 | 1 | | PR2 Value | 0xFF | 0xFF | 0xFF | 0x3F | 0x1F | 0x17 | | Maximum Resolution (bits) | 10 | 10 | 10 | 8 | 7 | 5.5 | TABLE 10-4: REGISTERS ASSOCIATED WITH TIMER1, CAPTURE AND COMPARE | Add | Name | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | PC | e on:
DR,
DR | all c | e on
other
sets | |----------------------|---------|----------------------------|-------------------------------|---------------------|---------------------|-------------|------------|-------------|--------|------|--------------------|-------|-----------------------| | 0Bh,8Bh
10Bh,18Bh | INTCON | GIE | PEIE | TOIE | INTE | RBIE | TOIF | INTF | RBIF | 0000 | 000x | 0000 | 000u | | 0Ch | PIR1 | PSPIF ⁽²⁾ | (3) | RCIF ⁽¹⁾ | TXIF ⁽¹⁾ | SSPIF | CCP1IF | TMR2IF | TMR1IF | 0000 | 0000 | 0000 | 0000 | | 0Dh ⁽⁴⁾ | PIR2 | _ | _ | _ | _ | _ | _ | _ | CCP2IF | | 0 | | 0 | | 8Ch | PIE1 | PSPIE ⁽²⁾ | (3) | RCIE ⁽¹⁾ | TXIE ⁽¹⁾ | SSPIE | CCP1IE | TMR2IE | TMR1IE | 0000 | 0000 | 0000 | 0000 | | 8Dh ⁽⁴⁾ | PIE2 | _ | _ | | | _ | _ | - | CCP2IE | | 0 | | 0 | | 87h | TRISC | PORTC D | PORTC Data Direction register | | | | | | | | | 1111 | 1111 | | 0Eh | TMR1L | Holding re | egister fo | r the Least | Significant | Byte of the | 16-bit TMI | R1 register | • | xxxx | xxxx | uuuu | uuuu | | 0Fh | TMR1H | Holding re | egister fo | r the Most S | Significant | Byte of the | 16-bit TMF | 11 register | | xxxx | xxxx | uuuu | uuuu | | 10h | T1CON | _ | _ | T1CKPS1 | T1CKPS0 | T10SCEN | T1SYNC | TMR1CS | TMR10N | 00 | 0000 | uu | uuuu | | 15h | CCPR1L | Capture/C | Compare/ | PWM1 (LS | B) | | | | | xxxx | xxxx | uuuu | uuuu | | 16h | CCPR1H | Capture/C | Compare/ | PWM1 (MS | SB) | | | | | xxxx | xxxx | uuuu | uuuu | | 17h | CCP1CON | _ | _ | CCP1X | CCP1Y | CCP1M3 | CCP1M2 | CCP1M1 | CCP1M0 | 00 | 0000 | 00 | 0000 | | 1Bh ⁽⁴⁾ | CCPR2L | Capture/C | Compare/ | PWM2 (LS | B) | | | | | xxxx | xxxx | uuuu | uuuu | | 1Ch ⁽⁴⁾ | CCPR2H | Capture/Compare/PWM2 (MSB) | | | | | | | | | xxxx | uuuu | uuuu | | 1Dh ⁽⁴⁾ | CCP2CON | _ | _ | CCP2X | CCP2Y | CCP2M3 | CCP2M2 | CCP2M1 | CCP2M0 | 00 | 0000 | 00 | 0000 | Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used in these modes. - Note 1: These bits are associated with the USART module, which is implemented on the PIC16C63/R63/65/65A/R65/66/67 only. - 2: Bits PSPIE and PSPIF are reserved on the PIC16C62/62A/R62/63/R63/66, always maintain these bits clear. - 3: The PIR1<6> and PIE1<6> bits are reserved, always maintain these bits clear. - 4: These registers are associated with the CCP2 module, which is only implemented on the PIC16C63/R63/65/65A/R65/66/67. #### FIGURE 11-8: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)(PIC16C66/67) | R/W-0 | |-------|-------|-------|-------|-------|-------|-------|-------|--| | WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 | R = Readable bit | | bit7 | | | | | | | bit0 | W = Writable bit U = Unimplemented bit, read as '0' - n = Value at POR reset | bit 7: WCOL: Write Collision Detect bit 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software) 0 = No collision bit 6: SSPOV: Receive Overflow Indicator bit #### In SPI mode 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In master mode the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register. 0 = No overflow #### In I²C mode 1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don't care" in transmit mode. SSPOV must be cleared in software in either mode. 0 = No overflow #### bit 5: SSPEN: Synchronous Serial Port Enable bit #### In SPI mode - 1 = Enables serial port
and configures SCK, SDO, and SDI as serial port pins - 0 = Disables serial port and configures these pins as I/O port pins #### In I²C mode - 1 = Enables the serial port and configures the SDA and SCL pins as serial port pins - 0 = Disables serial port and configures these pins as I/O port pins In both modes, when enabled, these pins must be properly configured as input or output. #### bit 4: CKP: Clock Polarity Select bit #### In SPI mode - 1 = Idle state for clock is a high level - 0 = Idle state for clock is a low level #### In I²C mode #### SCK release control - 1 = Enable clock - 0 = Holds clock low (clock stretch) (Used to ensure data setup time) #### bit 3-0: SSPM3:SSPM0: Synchronous Serial Port Mode Select bits - 0000 = SPI master mode, clock = Fosc/4 - 0001 = SPI master mode, clock = Fosc/16 - 0010 = SPI master mode, clock = Fosc/64 - 0011 = SPI master mode, clock = TMR2 output/2 - 0100 = SPI slave mode, clock = SCK pin. \overline{SS} pin control enabled. - 0101 = SPI slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin - $0110 = I^2C$ slave mode, 7-bit address - $0111 = I^2C$ slave mode. 10-bit address - $1011 = I^2C$ firmware controlled master mode (slave idle) - $1110 = I^2C$ slave mode, 7-bit address with start and stop bit interrupts enabled - $1111 = I^2C$ slave mode, 10-bit address with start and stop bit interrupts enabled ### FIGURE 12-14: SYNCHRONOUS RECEPTION (MASTER MODE, SREN) TABLE 13-1: CERAMIC RESONATORS PIC16C61 | Ranges Tested: | | | | | | | | | | |---|--------------------|--------------------------|--------------------------|--|--|--|--|--|--| | Mode | Freq | OSC1 | OSC2 | | | | | | | | XT | 455 kHz | 47 - 100 pF | 47 - 100 pF | | | | | | | | | 2.0 MHz
4.0 MHz | 15 - 68 pF
15 - 68 pF | 15 - 68 pF
15 - 68 pF | | | | | | | | HS | 8.0 MHz | 15 - 68 pF | 15 - 68 pF | | | | | | | | | 16.0 MHz | 10 - 47 pF | 10 - 47 pF | | | | | | | | These values are for design guidance only. See notes at bottom of page. | | | | | | | | | | | Resonator | s Used: | | | | | | | | | | 455 kHz | Panasonic EF | O-A455K04B | ± 0.3% | | | | | | | | 2.0 MHz | Murata Erie CS | SA2.00MG | ± 0.5% | | | | | | | | 4.0 MHz | Murata Erie CS | SA4.00MG | ± 0.5% | | | | | | | | 8.0 MHz | Murata Erie CS | SA8.00MT | ± 0.5% | | | | | | | | 16.0 MHz Murata Erie CSA16.00MX ± 0.5% | | | | | | | | | | | All reso | nators used did r | ot have built-in | capacitors. | | | | | | | TABLE 13-2: CERAMIC RESONATORS PIC16C62/62A/R62/63/R63/64/ 64A/R64/65/65A/R65/66/67 | Ranges Tested: | | | | | | | | | | |----------------|---|---|--------------------------|--|--|--|--|--|--| | Mode | Freq | OSC1 | OSC2 | | | | | | | | XT | 455 kHz
2.0 MHz
4.0 MHz | 68 - 100 pF
15 - 68 pF
15 - 68 pF | | | | | | | | | HS | 8.0 MHz
16.0 MHz | 10 - 68 pF
10 - 22 pF | 10 - 68 pF
10 - 22 pF | | | | | | | | | These values are for design guidance only. See notes at bottom of page. | | | | | | | | | | Resonator | rs Used: | | | | | | | | | | 455 kHz | Panasonic E | FO-A455K04B | ± 0.3% | | | | | | | | 2.0 MHz | Murata Erie | CSA2.00MG | \pm 0.5% | | | | | | | | 4.0 MHz | Murata Erie | CSA4.00MG | ± 0.5% | | | | | | | | 8.0 MHz | Murata Erie | CSA8.00MT | ± 0.5% | | | | | | | | 16.0 MHz | Murata Erie | CSA16.00MX | \pm 0.5% | | | | | | | | All reso | onators used did | d not have built-in | capacitors. | | | | | | | TABLE 13-3: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR FOR PIC16C61 | Mode | Freq | OSC1 | OSC2 | | | |------|----------------|-------------------|-----------------|--|--| | LP | 32 kHz | 33 - 68 pF | 33 - 68 pF | | | | | 200 kHz | 15 - 47 pF | 15 - 47 pF | | | | XT | 100 kHz | 47 - 100 pF | 47 - 100 pF | | | | | 500 kHz | 20 - 68 pF | 20 - 68 pF | | | | | 1 MHz | 15 - 68 pF | 15 - 68 pF | | | | | 2 MHz | 15 - 47 pF | 15 - 47 pF | | | | | 4 MHz | 15 - 33 pF | 15 - 33 pF | | | | HS | 8 MHz | 15 - 47 pF | 15 - 47 pF | | | | | 20 MHz | 15 - 47 pF | 15 - 47 pF | | | | Th | ese values are | e for design guid | lance only. See | | | These values are for design guidance only. See notes at bottom of page. TABLE 13-4: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR FOR PIC16C62/62A/R62/63/R63/64/64A/R64/65/65A/R65/66/67 | | 04A/N04/05/05A/N05/00/07 | | | | | | | | | | | |----------|---------------------------|------------------------------------|---------------------|--|--|--|--|--|--|--|--| | Osc Type | Crystal
Freq | Cap. Range
C1 | Cap.
Range
C2 | | | | | | | | | | LP | 32 kHz | 33 pF | 33 pF | | | | | | | | | | | 200 kHz | 15 pF | 15 pF | | | | | | | | | | XT | 200 kHz | 47-68 pF | 47-68 pF | | | | | | | | | | | 1 MHz | 15 pF | 15 pF | | | | | | | | | | | 4 MHz | 15 pF | 15 pF | | | | | | | | | | HS | 4 MHz | 15 pF | 15 pF | | | | | | | | | | | 8 MHz | 15-33 pF | 15-33 pF | | | | | | | | | | | 20 MHz | 15-33 pF | 15-33 pF | | | | | | | | | | | e values are at bottom of | for design guidanc
page. | e only. See | | | | | | | | | | | Crys | tals Used | | | | | | | | | | | 32 kHz | Epson C-00 | 01R32.768K-A | ± 20 PPM | | | | | | | | | | 200 kHz | STD XTL 2 | 00.000KHz | ± 20 PPM | | | | | | | | | ECS ECS-10-13-1 ECS ECS-40-20-1 EPSON CA-301 8.000M-C EPSON CA-301 20.000M-C - Note 1: Recommended values of C1 and C2 are identical to the ranges tested Table 13-1 and Table 13-2. - 2: Higher capacitance increases the stability of oscillator but also increases the start-up time. - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components. 1 MHz 4 MHz 8 MHz 20 MHz 4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. ± 50 PPM ± 50 PPM ± 30 PPM ± 30 PPM #### 13.8 Power-down Mode (SLEEP) **Applicable Devices** 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67 Power-down mode is entered by executing a SLEEP instruction. If enabled, the Watchdog Timer will be cleared but keeps running, status bit \overline{PD} (STATUS<3>) is cleared, status bit \overline{TO} (STATUS<4>) is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance). For lowest current consumption in this mode, place all I/O pins at either VDD, or Vss, ensure no external circuitry is drawing current from the I/O pin, and disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered The $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level (VIHMC). #### 13.8.1 WAKE-UP FROM SLEEP The device can wake from SLEEP through one of the following events: - External reset input on MCLR/VPP pin. - Watchdog Timer Wake-up (if WDT was enabled). - Interrupt from RB0/INT pin, RB port change, or some peripheral interrupts. External MCLR Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the STATUS register can be used to determine the cause of device reset. The PD bit, which is set on power-up is cleared when SLEEP is invoked. The TO bit is cleared if WDT time-out occurred (and caused wake-up). The following peripheral interrupts can wake the device from SLEEP: - TMR1 interrupt. Timer1 must be operating as an asynchronous counter. - 2. SSP (Start/Stop) bit detect interrupt. - 3. SSP transmit or receive in slave mode (SPI/I²C). - 4. CCP capture mode interrupt. - 5. Parallel Slave Port read or write. - 6. USART TX or RX (synchronous slave mode). Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present. When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction. #### 13.8.2 WAKE-UP USING INTERRUPTS When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur: - If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared. - If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared. Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction #### 14.0 INSTRUCTION SET SUMMARY Each PIC16CXX instruction is a 14-bit word divided into an OPCODE which
specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 14-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 14-1 shows the opcode field descriptions. For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction. For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located. For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value. TABLE 14-1: OPCODE FIELD DESCRIPTIONS | Field | Description | |---------------|--| | £ | Register file address (0x00 to 0x7F) | | W | Working register (accumulator) | | b | Bit address within an 8-bit file register | | k | Literal field, constant data or label | | x | Don't care location (= 0 or 1) The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools. | | d | Destination select; d = 0: store result in W,
d = 1: store result in file register f.
Default is d = 1 | | label | Label name | | TOS | Top of Stack | | PC | Program Counter | | PCLATH | Program Counter High Latch | | GIE | Global Interrupt Enable bit | | WDT | Watchdog Timer/Counter | | TO | Time-out bit | | PD | Power-down bit | | dest | Destination either the W register or the specified register file location | | [] | Options | | () | Contents | | \rightarrow | Assigned to | | <> | Register bit field | | € | In the set of | | italics | User defined term (font is courier) | The instruction set is highly orthogonal and is grouped into three basic categories: - · Byte-oriented operations - · Bit-oriented operations - · Literal and control operations All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μs . If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μs . Table 14-2 lists the instructions recognized by the MPASM assembler. Figure 14-1 shows the general formats that the instructions can have. Note: To maintain upward compatibility with future PIC16CXX products, do not use the OPTION and TRIS instructions. All examples use the following format to represent a hexadecimal number: **Ω**xhh where h signifies a hexadecimal digit. FIGURE 14-1: GENERAL FORMAT FOR INSTRUCTIONS # PIC16C6X | GOTO | Unconditional Branch | | INCF | | Increme | nt f | | | | | | | |-------------------|--|--|--------------------------------------|--------------------------|----------|---------------|--|---------------------|-----------------|----------------------|--|--| | Syntax: | [label] | GOTO | k | | Syntax: | | [label] | INCF 1 | f,d | | | | | Operands: | $0 \le k \le 20$ | 047 | | | Operan | ıds: | $0 \le f \le 12$ | $0 \leq f \leq 127$ | | | | | | Operation: | $k \rightarrow PC <$ | 10:0> | | | | | d ∈ [0,1] | d ∈ [0,1] | | | | | | | PCLATH- | <4:3> → l | PC<12:11 | > | Operati | on: | (f) + 1 → (destination) | | | | | | | Status Affected: | None | | | | Status / | Affected: | Z | | | | | | | Encoding: | 10 | 1kkk | kkkk | kkkk | Encodir | ng: | 0.0 | 1010 | dfff | ffff | | | | Description: | eleven bit
into PC bi
PC are loa | n unconditi
immediate
is <10:0>.
aded from
two cycle i | value is lo
The upper
PCLATH<4 | aded
bits of
1:3>. | Descrip | otion: | The contents of register 'f' are incremented. If 'd' is 0 the result is placed in the W register. If 'd' is 1 the result is placed back in register 'f'. | | | | | | | Words: | 1 | | | | Words: | | 1 | | | | | | | Cycles: | 2 | | | | Cycles: | | 1 | | | | | | | Q Cycle Activity: | Q1 | Q2 | Q3 | Q4 | Q Cycle | e Activity: | Q1 | Q2 | Q3 | Q4 | | | | 1st Cycle | Decode | Read
literal 'k' | Process
data | Write to PC | | | Decode | Read
register | Process
data | Write to destination | | | | 2nd Cycle | No-
Operation | No-
Operation | No-
Operation | No-
Operation | | | | | | | | | | | Орегалогі | Орегилогі | Орегалогі | Орегалогі | Exampl | le | INCF | CNT, | 1 | | | | | Example | GOTO T | HERE | | | | | Before Instruction | | | | | | | | After Inst | ruction | | | | | | CNT
7 | = 0xFl
= 0 | F | | | | | PC = Address THERE | | | | | After Instruc | | | | | | | CNT = 0x00 Z = 1 **DC CHARACTERISTICS** Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67 19.3 DC Characteristics: PIC16C65-04 (Commercial, Industrial) PIC16C65-10 (Commercial, Industrial) PIC16C65-20 (Commercial, Industrial) PIC16LC65-04 (Commercial, Industrial) Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for industrial and 0°C ≤ TA ≤ +70°C for commercial Operating voltage VDD range as described in DC spec Section 19.1 and | | | Section | | VDD | range as c | lescribe | ed in DC spec Section 19.1 and | |--------------|-----------------------------|---------|------------------|----------|------------|----------|--| | Param
No. | Characteristic | Sym | Min | Typ
† | Max | Units | Conditions | | NO. | Input Low Voltage | | | ı | | | | | | I/O ports | VIL | | | | | | | D030 | with TTL buffer | V | Vss | _ | 0.15Vpp | V | For entire VDD range | | D030A | | | Vss | - | 0.8V | V | 4.5V ≤ VDD ≤ 5.5V | | D031 | with Schmitt Trigger buffer | | Vss | - | 0.2VDD | V | | | D032 | MCLR, OSC1(in RC mode) | | Vss | - | 0.2VDD | V | | | D033 | OSC1 (in XT, HS and LP) | | Vss | - | 0.3VDD | V | Note1 | | | Input High Voltage | | | | | | | | | I/O ports | VIH | | - | | | | | D040 | with TTL buffer | | 2.0 | - | VDD | V | $4.5V \leq V_{DD} \leq 5.5V$ | | D040A | | | 0.25VDD+
0.8V | - | VDD | V | For entire VDD range | | D041 | with Schmitt Trigger buffer | | 0.8Vpp | _ | Vpp | | For entire VDD range | | D042 | MCLR | | 0.8VDD | _ | VDD | V | To on online vas range | | D042A | OSC1 (XT, HS and LP) | | 0.7 VDD | _ | VDD | v | Note1 | | D043 | OSC1 (in RC mode) | | 0.9VDD | _ | VDD | V | | | D070 | PORTB weak pull-up current | IPURB | 50 | 250 | 400 | μА | VDD = 5V, VPIN = VSS | | | Input Leakage Current | | | | | · | - | | | (Notes 2, 3) | | | | | | | | D060 | I/O ports | Iı∟ | - | - | ±1 | μА | Vss ≤ VPIN ≤ VDD, Pin at himpedance | | D061 | MCLR, RA4/T0CKI | | - | - | ±5 | μΑ | $Vss \le VPIN \le VDD$ | | D063 | OSC1 | | - | - | ±5 | μА | $Vss \leq VPIN \leq VDD, \ XT, \ HS, \ and \\ LP \ osc \ configuration$ | | | Output Low Voltage | | | | | | | | D080 | I/O ports | VOL | - | - | 0.6 | V | IOL = 8.5 mA , VDD = 4.5V , -40°C to $+85^{\circ}\text{C}$ | | D083 | OSC2/CLKOUT (RC osc config) | | - | - | 0.6 | V | IOL = 1.6 mA, VDD = 4.5V,
-40°C to +85°C | | | Output High Voltage | | | | | | | | D090 | I/O ports (Note 3) | Vон | VDD-0.7 | - | - | V | IOH = -3.0 mA, VDD = 4.5 V, -40 °C to $+85$ °C | | D092 | OSC2/CLKOUT (RC osc config) | | VDD-0.7 | - | - | V | IOH = -1.3 mA, VDD = $4.5V$, -40° C to $+85^{\circ}$ C | | D150* | Open-Drain High Voltage | VOD | - | - | 14 | V | RA4 pin | ^{*} These parameters are characterized but not tested. [†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C6X be driven with external clock in RC mode. The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. ^{3:} Negative current is defined as current sourced by the pin. ### PIC16C6X Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67 FIGURE 20-8: PARALLEL SLAVE PORT TIMING (PIC16C65A) TABLE 20-7: PARALLEL SLAVE PORT REQUIREMENTS (PIC16C65A) | Parameter No. | Sym | Characteristic | | Min | Typ† | Max | Units | Conditions | |---------------|----------|--|---------------------|-----|------|-----|-------|------------------------| | 62* | TdtV2wrH | Data in valid before WR↑ or CS↑ (setup time) | | 20 | - | _ | ns | | | | | | | 25 | _ | _ | ns | Extended
Range Only | | 63* | TwrH2dtl | WR↑ or CS↑ to data–in invalid (hold | PIC16 C 65A | 20 | _ | _ | ns | | | | | time) | PIC16 LC 65A | 35 | | _ | ns | | | 64 | TrdL2dtV | RD↓ and CS↓ to data–out valid | | _ | _ | 80 | ns | | | | | | | _ | _ | 90 | ns | Extended
Range Only | | 65* | TrdH2dtl | RD↑ or CS↑ to data–out invalid | | 10 | | 30 | ns | | ^{*} These parameters are
characterized but not tested. [†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. #### Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67 ### FIGURE 20-11: I²C BUS DATA TIMING #### TABLE 20-10: I²C BUS DATA REQUIREMENTS | Parameter | Sym | Characteristic | | Min | Max | Units | Conditions | |-----------|---------|------------------------|--------------|------------|------|-------|--| | No. | | | | | | | | | 100* | THIGH | Clock high time | 100 kHz mode | 4.0 | _ | μS | Device must operate at a mini-
mum of 1.5 MHz | | | | | 400 kHz mode | 0.6 | _ | μS | Device must operate at a mini-
mum of 10 MHz | | | | | SSP Module | 1.5TcY | _ | | | | 101* | TLOW | Clock low time | 100 kHz mode | 4.7 | _ | μS | Device must operate at a mini-
mum of 1.5 MHz | | | | | 400 kHz mode | 1.3 | _ | μs | Device must operate at a mini-
mum of 10 MHz | | | | | SSP Module | 1.5Tcy | _ | | | | 102* | TR | SDA and SCL rise | 100 kHz mode | _ | 1000 | ns | | | | | time | 400 kHz mode | 20 + 0.1Cb | 300 | ns | Cb is specified to be from 10-400 pF | | 103* | TF | SDA and SCL fall time | 100 kHz mode | _ | 300 | ns | | | | | | 400 kHz mode | 20 + 0.1Cb | 300 | ns | Cb is specified to be from 10-400 pF | | 90* | Tsu:sta | START condition | 100 kHz mode | 4.7 | _ | μS | Only relevant for repeated | | | | setup time | 400 kHz mode | 0.6 | _ | μS | START condition | | 91* | THD:STA | START condition hold | 100 kHz mode | 4.0 | _ | μS | After this period the first clock | | | | time | 400 kHz mode | 0.6 | _ | μS | pulse is generated | | 106* | THD:DAT | Data input hold time | 100 kHz mode | 0 | _ | ns | | | | | | 400 kHz mode | 0 | 0.9 | μS | | | 107* | TSU:DAT | Data input setup time | 100 kHz mode | 250 | _ | ns | Note 2 | | | | | 400 kHz mode | 100 | _ | ns | | | 92* | Tsu:sto | STOP condition setup | 100 kHz mode | 4.7 | _ | μS | | | | | time | 400 kHz mode | 0.6 | _ | μS | | | 109* | TAA | Output valid from | 100 kHz mode | _ | 3500 | ns | Note 1 | | | | clock | 400 kHz mode | | _ | ns | | | 110* | TBUF | Bus free time | 100 kHz mode | 4.7 | _ | μs | Time the bus must be free | | | | | 400 kHz mode | 1.3 | _ | μS | before a new transmission can start | | | Cb | Bus capacitive loading | | _ | 400 | pF | | These parameters are characterized but not tested. Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions. ^{2:} A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released. #### Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67 #### FIGURE 21-11: I²C BUS DATA TIMING TABLE 21-10: I²C BUS DATA REQUIREMENTS | Parameter No. | Sym | Characteristic | | Min | Max | Units | Conditions | |---------------|---------|------------------------|--------------|------------|------|-------|--| | 100* | THIGH | Clock high time | 100 kHz mode | 4.0 | _ | μS | Device must operate at a mini-
mum of 1.5 MHz | | | | | 400 kHz mode | 0.6 | _ | μS | Device must operate at a mini-
mum of 10 MHz | | | | | SSP Module | 1.5TcY | _ | | | | 101* | TLOW | Clock low time | 100 kHz mode | 4.7 | _ | μS | Device must operate at a mini-
mum of 1.5 MHz | | | | | 400 kHz mode | 1.3 | _ | μS | Device must operate at a mini-
mum of 10 MHz | | | | | SSP Module | 1.5Tcy | _ | | | | 102* | TR | SDA and SCL rise | 100 kHz mode | _ | 1000 | ns | | | | | time | 400 kHz mode | 20 + 0.1Cb | 300 | ns | Cb is specified to be from 10-400 pF | | 103* | TF | SDA and SCL fall time | 100 kHz mode | _ | 300 | ns | | | | | | 400 kHz mode | 20 + 0.1Cb | 300 | ns | Cb is specified to be from 10-400 pF | | 90* | Tsu:sta | START condition | 100 kHz mode | 4.7 | _ | μS | Only relevant for repeated | | | | setup time | 400 kHz mode | 0.6 | _ | μS | START condition | | 91* | THD:STA | START condition hold | 100 kHz mode | 4.0 | _ | μS | After this period the first clock | | | | time | 400 kHz mode | 0.6 | _ | μS | pulse is generated | | 106* | THD:DAT | Data input hold time | 100 kHz mode | 0 | _ | ns | | | | | | 400 kHz mode | 0 | 0.9 | μS | | | 107* | Tsu:dat | Data input setup time | 100 kHz mode | 250 | _ | ns | Note 2 | | | | | 400 kHz mode | 100 | _ | ns | 1 | | 92* | Tsu:sto | STOP condition setup | 100 kHz mode | 4.7 | _ | μS | | | | | time | 400 kHz mode | 0.6 | _ | μS | 1 | | 109* | TAA | Output valid from | 100 kHz mode | _ | 3500 | ns | Note 1 | | | | clock | 400 kHz mode | _ | _ | ns | | | 110* | TBUF | Bus free time | 100 kHz mode | 4.7 | _ | μS | Time the bus must be free | | | | | 400 kHz mode | 1.3 | _ | μS | before a new transmission can start | | | Cb | Bus capacitive loading | | _ | 400 | pF | | These parameters are characterized but not tested. Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions. ^{2:} A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released. #### 24.2 28-Lead Plastic Dual In-line (300 mil) (SP) Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | Package Group: Plastic Dual In-Line (PLA) | | | | | | | | |---|-------------|--------|-----------|--------|-------|-----------|--| | | Millimeters | | | Inches | | | | | Symbol | Min | Max | Notes | Min | Max | Notes | | | α | 0° | 10° | | 0° | 10° | | | | Α | 3.632 | 4.572 | | 0.143 | 0.180 | | | | A1 | 0.381 | _ | | 0.015 | _ | | | | A2 | 3.175 | 3.556 | | 0.125 | 0.140 | | | | В | 0.406 | 0.559 | | 0.016 | 0.022 | | | | B1 | 1.016 | 1.651 | Typical | 0.040 | 0.065 | Typical | | | B2 | 0.762 | 1.016 | 4 places | 0.030 | 0.040 | 4 places | | | B3 | 0.203 | 0.508 | 4 places | 0.008 | 0.020 | 4 places | | | С | 0.203 | 0.331 | Typical | 0.008 | 0.013 | Typical | | | D | 34.163 | 35.179 | | 1.385 | 1.395 | | | | D1 | 33.020 | 33.020 | Reference | 1.300 | 1.300 | Reference | | | Е | 7.874 | 8.382 | | 0.310 | 0.330 | | | | E1 | 7.112 | 7.493 | | 0.280 | 0.295 | | | | e1 | 2.540 | 2.540 | Typical | 0.100 | 0.100 | Typical | | | eA | 7.874 | 7.874 | Reference | 0.310 | 0.310 | Reference | | | eВ | 8.128 | 9.652 | | 0.320 | 0.380 | | | | L | 3.175 | 3.683 | | 0.125 | 0.145 | | | | N | 28 | 28 | | 28 | 28 | | | | S | 0.584 | 1.220 | | 0.023 | 0.048 | | | #### 24.3 40-Lead Plastic Dual In-line (600 mil) (P) Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Package Group: Plastic Dual In-Line (PLA) | | | | | | | | |--------|---|-------------|-----------|--------|-------|-----------|--|--| | | | Millimeters | | Inches | | | | | | Symbol | Min | Max | Notes | Min | Max | Notes | | | | α | 0° | 10° | | 0° | 10° | | | | | Α | _ | 5.080 | | _ | 0.200 | | | | | A1 | 0.381 | _ | | 0.015 | _ | | | | | A2 | 3.175 | 4.064 | | 0.125 | 0.160 | | | | | В | 0.355 | 0.559 | | 0.014 | 0.022 | | | | | B1 | 1.270 | 1.778 | Typical | 0.050 | 0.070 | Typical | | | | С | 0.203 | 0.381 | Typical | 0.008 | 0.015 | Typical | | | | D | 51.181 | 52.197 | | 2.015 | 2.055 | | | | | D1 | 48.260 | 48.260 | Reference | 1.900 | 1.900 | Reference | | | | E | 15.240 | 15.875 | | 0.600 | 0.625 | | | | | E1 | 13.462 | 13.970 | | 0.530 | 0.550 | | | | | e1 | 2.489 | 2.591 | Typical | 0.098 | 0.102 | Typical | | | | eA | 15.240 | 15.240 | Reference | 0.600 | 0.600 | Reference | | | | eB | 15.240 | 17.272 | | 0.600 | 0.680 | | | | | L | 2.921 | 3.683 | | 0.115 | 0.145 | | | | | N | 40 | 40 | | 40 | 40 | | | | | S | 1.270 | _ | | 0.050 | _ | | | | | S1 | 0.508 | _ | | 0.020 | _ | | | | #### SPI Master/Slave Connection...... 87 INDEX Numerics Timer0 65 9-bit Receive Enable bit, RX9......106 Timer1 72 9th bit of received data, RX9D.......106 Timer2 75 USART Receive 114 USART Transmit 112 Α Watchdog Timer 140 Absolute Maximum Ratings.......163, 183, 199, 215, 231, 247, 263 BOR 47. 131 ACK.......96, 100, 101 BRGH 105 ALU9 AN552 (Implementing Wake-up on Key Stroke) 53 Buffer Full Status bit, BF...... 84, 89 AN556 (Implementing a Table Read)48 AN594 (Using the CCP Modules)77 C Capture Baud Rate Formula......107 Block Diagram 78 **Baud Rates** Pin Configuration 78 Asynchronous Mode108 Prescaler 79 Error, Calculating107 RX Pin Sampling, Timing Diagrams...... 110, 111 Capture Interrupt 78 Sampling......110 Capture/Compare/PWM (CCP) Synchronous Mode......108 Capture Mode...... 78 Capture Mode Block Diagram 78 **Block Diagrams** CCP1......77 Capture Mode Operation78 CCP2......77 Compare Mode Block Diagram 79 Overview...... 63 External Parallel Resonant Crystal Circuit
127 PWM Block Diagram 80 External Series Resonant Crystal Circuit.......127 I²C Mode......99 PWM, Example Frequencies/Resolutions 81 In-circuit Programming Connections......142 Parallel Slave Port, PORTD-PORTE61 PIC16C62 11 PIC16C63 12 CCP1 Interrupt Flag bit, CCP1IF41 PIC16C6411 CCP1 Mode Select bits......78 PIC16C64A11 CCP1CON......24, 26, 28, 30, 32, 34 CCP1IE 38 CCP1IF.......41 PIC16C66 13 CCP1M3:CCM1M0......78 CCP1X:CCP1Y.......78 PIC16CR62......11 CCP2 Interrupt Enable bit, CCP2IE......45 PIC16CR63......12 CCP2 Interrupt Flag bit, CCP2IF.......46 PIC16CR64......11 PIC16CR65......12 CCP2CON 24, 26, 28, 30, 32, 34 CCP2IE......45 PORTD (I/O Mode)57 PORTE (I/O Mode)58 PWM 80 CCP2X:CCP2Y......78 RA3:RA0 pins51 CCPR1H......24, 26, 28, 30, 32, 34 RA4/T0CKI pin51 CCPR1L 24, 26, 28, 30, 32, 34 RA5 pin51 CCPR2L 24, 26, 28, 30, 32, 34 CKE 89 RC Oscillator Mode......127 CKP 85, 90 # PIC16C6X | Clearing Interrupts53 | 44-Lead Plastic Surface Mount (MQFP | |---|--| | Clock Polarity Select bit, CKP85, 90 | 10x10 mm Body 1.6/0.15 mm Lead Form) 302, 303 | | Clock Polarity, SPI Mode87 | Device Varieties | | Clock Source Select bit, CSRC105 | Digit Carry | | Clocking Scheme | Digit Carry bit39 | | Code Examples | Direct Addressing49 | | Changing Between Capture Prescalers79 | F | | Ensuring Interrupts are Globally Disabled136 | E | | Indirect Addressing49 | Electrical Characteristics 163, 183, 199, 215, 231, 247, 263 | | Initializing PORTA51 | External Clock Synchronization, TMR0 67 | | Initializing PORTB53 | F | | Initializing PORTC55 | F | | Loading the SSPBUF Register86 | Family of Devices | | Loading the SSPBUF register91 | PIC12CXXX309 | | Reading a 16-bit Free-running Timer73 | PIC14C000 | | Read-Modify-Write on an I/O Port60 | PIC16C15X310 | | Saving Status, W, and PCLATH Registers139 | PIC16C55X31 | | Subroutine Call, Page0 to Page149 | PIC16C5X310 | | Code Protection142 | PIC16C62X and PIC16C64X31 | | Compare | PIC16C6X | | Block Diagram79 | PIC16C7XX | | Mode79 | PIC16C8X313 | | Pin Configuration79 | PIC16C9XX | | Software Interrupt79 | PIC17CXX 314 | | Special Event Trigger79 | FERR | | Computed GOTO48 | Framing Error bit, FERR100 | | Configuration Bits123 | FSR24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 | | Configuration Word, Diagram124 | Fuzzy Logic Dev. System (fuzzyTECH®-MP) 159, 16 | | Connecting Two Microcontrollers87 | G | | Continuous Receive Enable bit, CREN106 | | | CREN106 | General Description | | CSRC105 | General Purpose Registers | | D | GIE | | | Global Interrupt Enable bit, GIE | | D/A | Graphs | | Data/Address bit, D/A84, 89 | PIC16C6X | | Data Memory | PIC16C61 173 | | Organization20 | Н | | Section | | | Data Sheet | High Baud Rate Select bit, BRGH109 | | Compatibility307 | I | | Modifications307 | I/O Ports, Section5 | | What's New308 | I ² C | | DC35 | Addressing100 | | DC CHARACTERISTICS 164, 184, 200, 216, 232, 248, 264 | Addressing I ² C Devices 96 | | Development Support | Arbitration | | Development Tools | Block Diagram | | Device Drawings | Clock Synchronization | | 18-Lead Ceramic CERDIP Dual In-line | Combined Format 9 | | with Window (300 mil)296 | I ² C Operation | | 18-Lead Plastic Dual In-line (300 mil)291 | I ² C Overview | | 18-Lead Plastic Surface Mount | Initiating and Terminating Data Transfer | | (SOIC - Wide, 300 mil Body)294 | Master Mode | | 28-Lead Ceramic CERDIP Dual In-line with | Master-Receiver Sequence | | Window (300 mil))297 | Master-Transmitter Sequence 9 | | 28-Lead Ceramic Side Brazed Dual In-Line | Mode | | with Window (300 mil)299 | Mode Selection 99 | | 28-Lead Plastic Dual In-line (300 mil)292 | WIOGO OCIOCIOIT | | 28-Lead Plastic Surface Mount | Multi-master 00 | | | Multi-master Mode 100 | | (SOIC - Wide, 300 mil Body)295 | Multi-Master Mode103 | | 28-Lead Plastic Surface Mount | Multi-Master Mode | | 28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm)300 | Multi-Master Mode 100 Reception 10 Reception Timing Diagram 10 | | 28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm)300 40-Lead Ceramic CERDIP Dual In-line | Multi-Master Mode 100 Reception 100 Reception Timing Diagram 100 SCL and SDA pins 100 | | 28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm)300 40-Lead Ceramic CERDIP Dual In-line with Window (600 mil)298 | Multi-Master Mode 100 Reception 100 Reception Timing Diagram 100 SCL and SDA pins 100 Slave Mode 100 | | 28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm)300 40-Lead Ceramic CERDIP Dual In-line | Multi-Master Mode 100 Reception 100 Reception Timing Diagram 100 SCL and SDA pins 100 |