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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Obsolete

Number of LABs/CLBs 100

Number of Logic Elements/Cells 238

Total RAM Bits 3200

Number of I/O 77

Number of Gates 3000

Voltage - Supply 4.75V ~ 5.25V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 85°C (TJ)

Package / Case 100-TQFP

Supplier Device Package 100-VQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/xilinx/xc4003e-2vq100c

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/xc4003e-2vq100c-4489284
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array


R

XC4000E and XC4000X Series Field Programmable Gate Arrays
Product Obsolete or Under Obsolescence
* Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

Note: All functionality in low-voltage families is the same as
in the corresponding 5-Volt family, except where numerical
references are made to timing or power.

Description
XC4000 Series devices are implemented with a regular,
flexible, programmable architecture of Configurable Logic
Blocks (CLBs), interconnected by a powerful hierarchy of
versatile routing resources, and surrounded by a perimeter
of programmable Input/Output Blocks (IOBs). They have
generous routing resources to accommodate the most
complex interconnect patterns.

The devices are customized by loading configuration data
into internal memory cells. The FPGA can either actively
read its configuration data from an external serial or
byte-parallel PROM (master modes), or the configuration
data can be written into the FPGA from an external device
(slave and peripheral modes).

XC4000 Series FPGAs are supported by powerful and
sophisticated software, covering every aspect of design
from schematic or behavioral entry, floor planning, simula-
tion, automatic block placement and routing of intercon-
nects, to the creation, downloading, and readback of the
configuration bit stream.

Because Xilinx FPGAs can be reprogrammed an unlimited
number of times, they can be used in innovative designs

where hardware is changed dynamically, or where hard-
ware must be adapted to different user applications.
FPGAs are ideal for shortening design and development
cycles, and also offer a cost-effective solution for produc-
tion rates well beyond 5,000 systems per month.
n
’
.

Taking Advantage of Re-configuration
FPGA devices can be re-configured to change logic func-
tion while resident in the system. This capability gives the
system designer a new degree of freedom not available
with any other type of logic.

Hardware can be changed as easily as software. Design
updates or modifications are easy, and can be made to
products already in the field. An FPGA can even be re-con-
figured dynamically to perform different functions at differ-
ent times.

Re-configurable logic can be used to implement system
self-diagnostics, create systems capable of being re-con-
figured for different environments or operations, or imple-
ment multi-purpose hardware for a given application. As an
added benefit, using re-configurable FPGA devices simpli-
fies hardware design and debugging and shortens product
time-to-market.

Table 1: XC4000E and XC4000X Series Field Programmable Gate Arrays

Device
Logic
Cells

Max Logic
Gates

(No RAM)

Max. RAM
Bits

(No Logic)

Typical
Gate Range

(Logic and RAM)*
CLB

Matrix
Total
CLBs

Number
of

Flip-Flops
Max.

User I/O
XC4002XL 152 1,600 2,048 1,000 - 3,000 8 x 8 64 256 64
XC4003E 238 3,000 3,200 2,000 - 5,000 10 x 10 100 360 80
XC4005E/XL 466 5,000 6,272 3,000 - 9,000 14 x 14 196 616 112
XC4006E 608 6,000 8,192 4,000 - 12,000 16 x 16 256 768 128
XC4008E 770 8,000 10,368 6,000 - 15,000 18 x 18 324 936 144
XC4010E/XL 950 10,000 12,800 7,000 - 20,000 20 x 20 400 1,120 160
XC4013E/XL 1368 13,000 18,432 10,000 - 30,000 24 x 24 576 1,536 192
XC4020E/XL 1862 20,000 25,088 13,000 - 40,000 28 x 28 784 2,016 224
XC4025E 2432 25,000 32,768 15,000 - 45,000 32 x 32 1,024 2,560 256
XC4028EX/XL 2432 28,000 32,768 18,000 - 50,000 32 x 32 1,024 2,560 256
XC4036EX/XL 3078 36,000 41,472 22,000 - 65,000 36 x 36 1,296 3,168 288
XC4044XL 3800 44,000 51,200 27,000 - 80,000 40 x 40 1,600 3,840 320
XC4052XL 4598 52,000 61,952 33,000 - 100,000 44 x 44 1,936 4,576 352
XC4062XL 5472 62,000 73,728 40,000 - 130,000 48 x 48 2,304 5,376 384
XC4085XL 7448 85,000 100,352 55,000 - 180,000 56 x 56 3,136 7,168 448
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Detailed Functional Description
XC4000 Series devices achieve high speed through
advanced semiconductor technology and improved archi-
tecture. The XC4000E and XC4000X support system clock
rates of up to 80 MHz and internal performance in excess
of 150 MHz. Compared to older Xilinx FPGA families,
XC4000 Series devices are more powerful. They offer
on-chip edge-triggered and dual-port RAM, clock enables
on I/O flip-flops, and wide-input decoders. They are more
versatile in many applications, especially those involving
RAM. Design cycles are faster due to a combination of
increased routing resources and more sophisticated soft-
ware.

Basic Building Blocks
Xilinx user-programmable gate arrays include two major
configurable elements: configurable logic blocks (CLBs)
and input/output blocks (IOBs).

• CLBs provide the functional elements for constructing
the user’s logic.

• IOBs provide the interface between the package pins
and internal signal lines.

Three other types of circuits are also available:

• 3-State buffers (TBUFs) driving horizontal longlines are
associated with each CLB.

• Wide edge decoders are available around the periphery
of each device.

• An on-chip oscillator is provided.

Programmable interconnect resources provide routing
paths to connect the inputs and outputs of these config-
urable elements to the appropriate networks.

The functionality of each circuit block is customized during
configuration by programming internal static memory cells.
The values stored in these memory cells determine the
logic functions and interconnections implemented in the
FPGA. Each of these available circuits is described in this
section.

Configurable Logic Blocks (CLBs)
Configurable Logic Blocks implement most of the logic in
an FPGA. The principal CLB elements are shown in
Figure 1. Two 4-input function generators (F and G) offer
unrestricted versatility. Most combinatorial logic functions
need four or fewer inputs. However, a third function gener-
ator (H) is provided. The H function generator has three
inputs. Either zero, one, or two of these inputs can be the
outputs of F and G; the other input(s) are from outside the
CLB. The CLB can, therefore, implement certain functions
of up to nine variables, like parity check or expand-
able-identity comparison of two sets of four inputs.

Each CLB contains two storage elements that can be used
to store the function generator outputs. However, the stor-
age elements and function generators can also be used
independently. These storage elements can be configured
as flip-flops in both XC4000E and XC4000X devices; in the
XC4000X they can optionally be configured as latches. DIN
can be used as a direct input to either of the two storage
elements. H1 can drive the other through the H function
generator. Function generator outputs can also drive two
outputs independent of the storage element outputs. This
versatility increases logic capacity and simplifies routing.

Thirteen CLB inputs and four CLB outputs provide access
to the function generators and storage elements. These
inputs and outputs connect to the programmable intercon-
nect resources outside the block.

Function Generators

Four independent inputs are provided to each of two func-
tion generators (F1 - F4 and G1 - G4). These function gen-
erators, with outputs labeled F’ and G’, are each capable of
implementing any arbitrarily defined Boolean function of
four inputs. The function generators are implemented as
memory look-up tables. The propagation delay is therefore
independent of the function implemented.

A third function generator, labeled H’, can implement any
Boolean function of its three inputs. Two of these inputs can
optionally be the F’ and G’ functional generator outputs.
Alternatively, one or both of these inputs can come from
outside the CLB (H2, H0). The third input must come from
outside the block (H1).

Signals from the function generators can exit the CLB on
two outputs. F’ or H’ can be connected to the X output. G’ or
H’ can be connected to the Y output.

A CLB can be used to implement any of the following func-
tions:

• any function of up to four variables, plus any second
function of up to four unrelated variables, plus any third

function of up to three unrelated variables1

• any single function of five variables
• any function of four variables together with some

functions of six variables
• some functions of up to nine variables.

Implementing wide functions in a single block reduces both
the number of blocks required and the delay in the signal
path, achieving both increased capacity and speed.

The versatility of the CLB function generators significantly
improves system speed. In addition, the design-software
tools can deal with each function generator independently.
This flexibility improves cell usage.

1.  When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two
unregistered function generator outputs are available from the CLB.
May 14, 1999 (Version 1.6) 6-9
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tions of the CLB, with the exception of the redefinition of the
control signals. In 16x2 and 16x1 modes, the H’ function
generator can be used to implement Boolean functions of
F’, G’, and D1, and the D flip-flops can latch the F’, G’, H’, or
D0 signals.

Single-Port Edge-Triggered Mode

Edge-triggered (synchronous) RAM simplifies timing
requirements. XC4000 Series edge-triggered RAM timing
operates like writing to a data register. Data and address
are presented. The register is enabled for writing by a logic
High on the write enable input, WE. Then a rising or falling
clock edge loads the data into the register, as shown in
Figure 3.

Complex timing relationships between address, data, and
write enable signals are not required, and the external write
enable pulse becomes a simple clock enable. The active
edge of WCLK latches the address, input data, and WE sig-

nals. An internal write pulse is generated that performs the
write. See Figure 4 and Figure 5 for block diagrams of a
CLB configured as 16x2 and 32x1 edge-triggered, sin-
gle-port RAM.

The relationships between CLB pins and RAM inputs and
outputs for single-port, edge-triggered mode are shown in
Table 5.

The Write Clock input (WCLK) can be configured as active
on either the rising edge (default) or the falling edge. It uses
the same CLB pin (K) used to clock the CLB flip-flops, but it
can be independently inverted. Consequently, the RAM
output can optionally be registered within the same CLB
either by the same clock edge as the RAM, or by the oppo-
site edge of this clock. The sense of WCLK applies to both
function generators in the CLB when both are configured
as RAM.

The WE pin is active-High and is not invertible within the
CLB.

Note: The pulse following the active edge of WCLK (TWPS
in Figure 3) must be less than one millisecond wide. For
most applications, this requirement is not overly restrictive;
however, it must not be forgotten. Stopping WCLK at this
point in the write cycle could result in excessive current and
even damage to the larger devices if many CLBs are con-
figured as edge-triggered RAM.

X6461

WCLK (K)

WE

ADDRESS

DATA IN

DATA OUT OLD NEW

TDSS
TDHS

TASS TAHS

TWSS

TWPS

TWHS

TWOS

TILOTILO

Figure 3:    Edge-Triggered RAM Write Timing

Table 5: Single-Port Edge-Triggered RAM Signals

RAM Signal CLB Pin Function
D D0 or D1 (16x2,

16x1), D0 (32x1)
Data In

A[3:0] F1-F4 or G1-G4 Address
A[4] D1 (32x1) Address
WE WE Write Enable
WCLK K Clock
SPO
(Data Out)

F’ or G’ Single Port Out
(Data Out)
May 14, 1999 (Version 1.6) 6-13
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Dual-Port Edge-Triggered Mode

In dual-port mode, both the F and G function generators
are used to create a single 16x1 RAM array with one write
port and two read ports. The resulting RAM array can be
read and written simultaneously at two independent
addresses. Simultaneous read and write operations at the
same address are also supported.

Dual-port mode always has edge-triggered write timing, as
shown in Figure 3.

Figure 6 shows a simple model of an XC4000 Series CLB
configured as dual-port RAM. One address port, labeled
A[3:0], supplies both the read and write address for the F
function generator. This function generator behaves the
same as a 16x1 single-port edge-triggered RAM array. The
RAM output, Single Port Out (SPO), appears at the F func-
tion generator output. SPO, therefore, reflects the data at
address A[3:0].

The other address port, labeled DPRA[3:0] for Dual Port
Read Address, supplies the read address for the G function
generator. The write address for the G function generator,
however, comes from the address A[3:0]. The output from
this 16x1 RAM array, Dual Port Out (DPO), appears at the
G function generator output. DPO, therefore, reflects the
data at address DPRA[3:0].

Therefore, by using A[3:0] for the write address and
DPRA[3:0] for the read address, and reading only the DPO
output, a FIFO that can read and write simultaneously is
easily generated. Simultaneous access doubles the effec-
tive throughput of the FIFO.

The relationships between CLB pins and RAM inputs and
outputs for dual-port, edge-triggered mode are shown in
Table 6. See Figure 7 on page 16 for a block diagram of a
CLB configured in this mode.

Table 6: Dual-Port Edge-Triggered RAM Signals

Note: The pulse following the active edge of WCLK (TWPS
in Figure 3) must be less than one millisecond wide. For
most applications, this requirement is not overly restrictive;
however, it must not be forgotten. Stopping WCLK at this
point in the write cycle could result in excessive current and
even damage to the larger devices if many CLBs are con-
figured as edge-triggered RAM.

Single-Port Level-Sensitive Timing Mode

Note: Edge-triggered mode is recommended for all new
designs. Level-sensitive mode, also called asynchronous
mode, is still supported for XC4000 Series backward-com-
patibility with the XC4000 family.

Level-sensitive RAM timing is simple in concept but can be
complicated in execution. Data and address signals are
presented, then a positive pulse on the write enable pin
(WE) performs a write into the RAM at the designated
address. As indicated by the “level-sensitive” label, this
RAM acts like a latch. During the WE High pulse, changing
the data lines results in new data written to the old address.
Changing the address lines while WE is High results in spu-
rious data written to the new address—and possibly at
other addresses as well, as the address lines inevitably do
not all change simultaneously.

The user must generate a carefully timed WE signal. The
delay on the WE signal and the address lines must be care-
fully verified to ensure that WE does not become active
until after the address lines have settled, and that WE goes
inactive before the address lines change again. The data
must be stable before and after the falling edge of WE.

In practical terms, WE is usually generated by a 2X clock. If
a 2X clock is not available, the falling edge of the system
clock can be used. However, there are inherent risks in this
approach, since the WE pulse must be guaranteed inactive
before the next rising edge of the system clock. Several
older application notes are available from Xilinx that dis-
cuss the design of level-sensitive RAMs.

However, the edge-triggered RAM available in the XC4000
Series is superior to level-sensitive RAM for almost every
application.

WE WE

D D Q

D Q

D

DPRA[3:0]

A[3:0]

AR[3:0]

AW[3:0]

WE

D

AR[3:0]

AW[3:0]

RAM16X1D Primitive

F Function Generator

G Function Generator

DPO (Dual Port Out)

Registered DPO

SPO (Single Port Out)

Registered SPO

WCLK

X6755

Figure 6:   XC4000 Series Dual-Port RAM, Simple
Model

RAM Signal CLB Pin Function
D D0 Data In
A[3:0] F1-F4 Read Address for F,

Write Address for F and G
DPRA[3:0] G1-G4 Read Address for G
WE WE Write Enable
WCLK K Clock
SPO F’ Single Port Out

(addressed by A[3:0])
DPO G’ Dual Port Out

(addressed by DPRA[3:0])
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Input/Output Blocks (IOBs)
User-configurable input/output blocks (IOBs) provide the
interface between external package pins and the internal
logic. Each IOB controls one package pin and can be con-
figured for input, output, or bidirectional signals.

Figure 15 shows a simplified block diagram of the
XC4000E IOB. A more complete diagram which includes
the boundary scan logic of the XC4000E IOB can be found
in Figure 40 on page 43, in the “Boundary Scan” section.

The XC4000X IOB contains some special features not
included in the XC4000E IOB. These features are high-
lighted in a simplified block diagram found in Figure 16, and
discussed throughout this section. When XC4000X special
features are discussed, they are clearly identified in the
text. Any feature not so identified is present in both
XC4000E and XC4000X devices.

IOB Input Signals

Two paths, labeled I1 and I2 in Figure 15 and Figure 16,
bring input signals into the array. Inputs also connect to an
input register that can be programmed as either an
edge-triggered flip-flop or a level-sensitive latch.

The choice is made by placing the appropriate library sym-
bol. For example, IFD is the basic input flip-flop (rising edge
triggered), and ILD is the basic input latch (transpar-
ent-High). Variations with inverted clocks are available, and
some combinations of latches and flip-flops can be imple-
mented in a single IOB, as described in the XACT Libraries
Guide.

The XC4000E inputs can be globally configured for either
TTL (1.2V) or 5.0 volt CMOS thresholds, using an option in
the bitstream generation software. There is a slight input
hysteresis of about 300mV. The XC4000E output levels are
also configurable; the two global adjustments of input
threshold and output level are independent.

Inputs on the XC4000XL are TTL compatible and 3.3V
CMOS compatible. Outputs on the XC4000XL are pulled to
the 3.3V positive supply.

The inputs of XC4000 Series 5-Volt devices can be driven
by the outputs of any 3.3-Volt device, if the 5-Volt inputs are
in TTL mode.

Supported sources for XC4000 Series device inputs are
shown in Table 8.
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Figure 14:   Detail of XC4000E Dedicated Carry Logic
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Figure 15:   Simplified Block Diagram of XC4000E IOB
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Figure 16:   Simplified Block Diagram of XC4000X IOB (shaded areas indicate differences from XC4000E)
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XC4000XL 5-Volt Tolerant I/Os

The I/Os on the XC4000XL are fully 5-volt tolerant even
though the VCC is 3.3 volts. This allows 5 V signals to
directly connect to the XC4000XL inputs without damage,
as shown in Table 8. In addition, the 3.3 volt VCC can be
applied before or after 5 volt signals are applied to the I/Os.
This makes the XC4000XL immune to power supply
sequencing problems.

Registered Inputs

The I1 and I2 signals that exit the block can each carry
either the direct or registered input signal.

The input and output storage elements in each IOB have a
common clock enable input, which, through configuration,
can be activated individually for the input or output flip-flop,
or both. This clock enable operates exactly like the EC pin
on the XC4000 Series CLB. It cannot be inverted within the
IOB.

The storage element behavior is shown in Table 9.

Table 9: Input Register Functionality
(active rising edge is shown)

Optional Delay Guarantees Zero Hold Time

The data input to the register can optionally be delayed by
several nanoseconds. With the delay enabled, the setup
time of the input flip-flop is increased so that normal clock
routing does not result in a positive hold-time requirement.
A positive hold time requirement can lead to unreliable,
temperature- or processing-dependent operation.

The input flip-flop setup time is defined between the data
measured at the device I/O pin and the clock input at the
IOB (not at the clock pin). Any routing delay from the device
clock pin to the clock input of the IOB must, therefore, be
subtracted from this setup time to arrive at the real setup
time requirement relative to the device pins. A short speci-
fied setup time might, therefore, result in a negative setup
time at the device pins, i.e., a positive hold-time require-
ment.

When a delay is inserted on the data line, more clock delay
can be tolerated without causing a positive hold-time
requirement. Sufficient delay eliminates the possibility of a
data hold-time requirement at the external pin. The maxi-
mum delay is therefore inserted as the default.

The XC4000E IOB has a one-tap delay element: either the
delay is inserted (default), or it is not. The delay guarantees
a zero hold time with respect to clocks routed through any
of the XC4000E global clock buffers. (See “Global Nets and
Buffers (XC4000E only)” on page 35 for a description of the
global clock buffers in the XC4000E.) For a shorter input
register setup time, with non-zero hold, attach a NODELAY
attribute or property to the flip-flop.

The XC4000X IOB has a two-tap delay element, with
choices of a full delay, a partial delay, or no delay. The
attributes or properties used to select the desired delay are
shown in Table 10. The choices are no added attribute,
MEDDELAY, and NODELAY. The default setting, with no
added attribute, ensures no hold time with respect to any of
the XC4000X clock buffers, including the Global Low-Skew
buffers. MEDDELAY ensures no hold time with respect to
the Global Early buffers. Inputs with NODELAY may have a
positive hold time with respect to all clock buffers. For a
description of each of these buffers, see “Global Nets and
Buffers (XC4000X only)” on page 37.

Table 10: XC4000X IOB Input Delay Element

Table 8: Supported Sources for XC4000 Series Device
Inputs

Source

XC4000E/EX
Series Inputs

XC4000XL
Series Inputs

5 V,
TTL

5 V,
CMOS

3.3 V
CMOS

Any device, Vcc = 3.3 V,
CMOS outputs

√
Unreli
-able
Data

√

XC4000 Series, Vcc = 5 V,
TTL outputs

√ √

Any device, Vcc = 5 V,
TTL outputs (Voh ≤ 3.7 V)

√ √

Any device, Vcc = 5 V,
CMOS outputs

√ √ √

Mode Clock
Clock

Enable
D Q

Power-Up or
GSR

X X X SR

Flip-Flop __/ 1* D D
0 X X Q

Latch  1 1* X Q
 0 1* D D

Both X 0 X Q
Legend:

X
__/
SR
0*
1*

Don’t care
Rising edge
Set or Reset value. Reset is default.
Input is Low or unconnected (default value)
Input is High or unconnected (default value)

Value When to Use
full delay
(default, no
attribute added)

Zero Hold with respect to Global
Low-Skew Buffer, Global Early Buffer

MEDDELAY Zero Hold with respect to Global Early
Buffer

NODELAY Short Setup, positive Hold time
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Output Multiplexer/2-Input Function Generator
(XC4000X only)

As shown in Figure 16 on page 21, the output path in the
XC4000X IOB contains an additional multiplexer not avail-
able in the XC4000E IOB. The multiplexer can also be con-
figured as a 2-input function generator, implementing a
pass-gate, AND-gate, OR-gate, or XOR-gate, with 0, 1, or 2
inverted inputs. The logic used to implement these func-
tions is shown in the upper gray area of Figure 16.

When configured as a multiplexer, this feature allows two
output signals to time-share the same output pad; effec-
tively doubling the number of device outputs without requir-
ing a larger, more expensive package.

When the MUX is configured as a 2-input function genera-
tor, logic can be implemented within the IOB itself. Com-
bined with a Global Early buffer, this arrangement allows
very high-speed gating of a single signal. For example, a
wide decoder can be implemented in CLBs, and its output
gated with a Read or Write Strobe Driven by a BUFGE
buffer, as shown in Figure 19. The critical-path pin-to-pin
delay of this circuit is less than 6 nanoseconds.

As shown in Figure 16, the IOB input pins Out, Output
Clock, and Clock Enable have different delays and different
flexibilities regarding polarity. Additionally, Output Clock
sources are more limited than the other inputs. Therefore,
the Xilinx software does not move logic into the IOB func-
tion generators unless explicitly directed to do so.

The user can specify that the IOB function generator be
used, by placing special library symbols beginning with the
letter “O.” For example, a 2-input AND-gate in the IOB func-
tion generator is called OAND2. Use the symbol input pin
labelled “F” for the signal on the critical path. This signal is
placed on the OK pin — the IOB input with the shortest
delay to the function generator. Two examples are shown in
Figure 20.

Other IOB Options

There are a number of other programmable options in the
XC4000 Series IOB.

Pull-up and Pull-down Resistors

Programmable pull-up and pull-down resistors are useful
for tying unused pins to Vcc or Ground to minimize power
consumption and reduce noise sensitivity. The configurable
pull-up resistor is a p-channel transistor that pulls to Vcc.
The configurable pull-down resistor is an n-channel transis-
tor that pulls to Ground.

The value of these resistors is 50 kΩ − 100 kΩ. This high
value makes them unsuitable as wired-AND pull-up resis-
tors.

The pull-up resistors for most user-programmable IOBs are
active during the configuration process. See Table 22 on
page 58 for a list of pins with pull-ups active before and dur-
ing configuration.

After configuration, voltage levels of unused pads, bonded
or un-bonded, must be valid logic levels, to reduce noise
sensitivity and avoid excess current. Therefore, by default,
unused pads are configured with the internal pull-up resis-
tor active. Alternatively, they can be individually configured
with the pull-down resistor, or as a driven output, or to be
driven by an external source. To activate the internal
pull-up, attach the PULLUP library component to the net
attached to the pad. To activate the internal pull-down,
attach the PULLDOWN library component to the net
attached to the pad.

Independent Clocks

Separate clock signals are provided for the input and output
flip-flops. The clock can be independently inverted for each
flip-flop within the IOB, generating either falling-edge or ris-
ing-edge triggered flip-flops. The clock inputs for each IOB
are independent, except that in the XC4000X, the Fast
Capture latch shares an IOB input with the output clock pin.

Early Clock for IOBs (XC4000X only)

Special early clocks are available for IOBs. These clocks
are sourced by the same sources as the Global Low-Skew
buffers, but are separately buffered. They have fewer loads
and therefore less delay. The early clock can drive either
the IOB output clock or the IOB input clock, or both. The
early clock allows fast capture of input data, and fast
clock-to-output on output data. The Global Early buffers
that drive these clocks are described in “Global Nets and
Buffers (XC4000X only)” on page 37.

Global Set/Reset

As with the CLB registers, the Global Set/Reset signal
(GSR) can be used to set or clear the input and output reg-
isters, depending on the value of the INIT attribute or prop-
erty. The two flip-flops can be individually configured to set

IPAD

F OPAD
FAST

BUFGE

OAND2
from
internal
logic

X9019

Figure 19:   Fast Pin-to-Pin Path in XC4000X
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Figure 20:   AND & MUX Symbols in XC4000X IOB
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or clear on reset and after configuration. Other than the glo-
bal GSR net, no user-controlled set/reset signal is available
to the I/O flip-flops. The choice of set or clear applies to
both the initial state of the flip-flop and the response to the
Global Set/Reset pulse. See “Global Set/Reset” on
page 11 for a description of how to use GSR.

JTAG Support

Embedded logic attached to the IOBs contains test struc-
tures compatible with IEEE Standard 1149.1 for boundary
scan testing, permitting easy chip and board-level testing.
More information is provided in “Boundary Scan” on
page 42.

Three-State Buffers
A pair of 3-state buffers is associated with each CLB in the
array. (See Figure 27 on page 30.) These 3-state buffers
can be used to drive signals onto the nearest horizontal
longlines above and below the CLB. They can therefore be
used to implement multiplexed or bidirectional buses on the
horizontal longlines, saving logic resources. Programmable
pull-up resistors attached to these longlines help to imple-
ment a wide wired-AND function.

The buffer enable is an active-High 3-state (i.e. an
active-Low enable), as shown in Table 13.

Another 3-state buffer with similar access is located near
each I/O block along the right and left edges of the array.
(See Figure 33 on page 34.)

The horizontal longlines driven by the 3-state buffers have
a weak keeper at each end. This circuit prevents undefined
floating levels. However, it is overridden by any driver, even
a pull-up resistor.

Special longlines running along the perimeter of the array
can be used to wire-AND signals coming from nearby IOBs
or from internal longlines. These longlines form the wide
edge decoders discussed in “Wide Edge Decoders” on
page 27.

Three-State Buffer Modes

The 3-state buffers can be configured in three modes:

• Standard 3-state buffer
• Wired-AND with input on the I pin
• Wired OR-AND

Standard 3-State Buffer

All three pins are used. Place the library element BUFT.
Connect the input to the I pin and the output to the O pin.
The T pin is an active-High 3-state (i.e. an active-Low
enable). Tie the T pin to Ground to implement a standard
buffer.

Wired-AND with Input on the I Pin

The buffer can be used as a Wired-AND. Use the WAND1
library symbol, which is essentially an open-drain buffer.
WAND4, WAND8, and WAND16 are also available. See the
XACT Libraries Guide for further information.

The T pin is internally tied to the I pin. Connect the input to
the I pin and the output to the O pin. Connect the outputs of
all the WAND1s together and attach a PULLUP symbol.

Wired OR-AND

The buffer can be configured as a Wired OR-AND. A High
level on either input turns off the output. Use the
WOR2AND library symbol, which is essentially an
open-drain 2-input OR gate. The two input pins are func-
tionally equivalent. Attach the two inputs to the I0 and I1
pins and tie the output to the O pin. Tie the outputs of all the
WOR2ANDs together and attach a PULLUP symbol.

Three-State Buffer Examples

Figure 21 shows how to use the 3-state buffers to imple-
ment a wired-AND function. When all the buffer inputs are
High, the pull-up resistor(s) provide the High output.

Figure 22 shows how to use the 3-state buffers to imple-
ment a multiplexer. The selection is accomplished by the
buffer 3-state signal.

Pay particular attention to the polarity of the T pin when
using these buffers in a design. Active-High 3-state (T) is
identical to an active-Low output enable, as shown in
Table 13.

Table 13: Three-State Buffer Functionality

IN T OUT
X 1 Z
IN 0 IN
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F
)

D
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D
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D
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D
D

D
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D
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WAND1 WAND1
WOR2AND WOR2AND

X6465

Figure 21:   Open-Drain Buffers Implement a Wired-AND Function
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Figure 33:   Detail of Programmable Interconnect Associated with XC4000 Series IOB (Left Edge)
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Global Early Buffers

Each corner of the XC4000X device has two Global Early
buffers. The primary purpose of the Global Early buffers is
to provide an earlier clock access than the potentially
heavily-loaded Global Low-Skew buffers. A clock source
applied to both buffers will result in the Global Early clock
edge occurring several nanoseconds earlier than the Glo-
bal Low-Skew buffer clock edge, due to the lighter loading.

Global Early buffers also facilitate the fast capture of device
inputs, using the Fast Capture latches described in “IOB
Input Signals” on page 20. For Fast Capture, take a single
clock signal, and route it through both a Global Early buffer
and a Global Low-Skew buffer. (The two buffers share an
input pad.) Use the Global Early buffer to clock the Fast
Capture latch, and the Global Low-Skew buffer to clock the
normal input flip-flop or latch, as shown in Figure 17 on
page 23.

The Global Early buffers can also be used to provide a fast
Clock-to-Out on device output pins. However, an early clock
in the output flip-flop IOB must be taken into consideration
when calculating the internal clock speed for the design.

The Global Early buffers at the left and right edges of the
chip have slightly different capabilities than the ones at the
top and bottom. Refer to Figure 37, Figure 38, and
Figure 35 on page 36 while reading the following explana-
tion.

Each Global Early buffer can access the eight vertical Glo-
bal lines for all CLBs in the quadrant. Therefore, only
one-fourth of the CLB clock pins can be accessed. This
restriction is in large part responsible for the faster speed of
the buffers, relative to the Global Low-Skew buffers.

The left-side Global Early buffers can each drive two of the
four vertical lines accessing the IOBs on the entire left edge
of the device. The right-side Global Early buffers can each
drive two of the eight vertical lines accessing the IOBs on
the entire right edge of the device. (See Figure 37.)

Each left and right Global Early buffer can also drive half of
the IOBs along either the top or bottom edge of the device,
using a dedicated line that can only be accessed through
the Global Early buffers.

The top and bottom Global Early buffers can drive half of
the IOBs along either the left or right edge of the device, as
shown in Figure 38. They can only access the top and bot-
tom IOBs via the CLB global lines.
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Figure 36:   Any BUFGLS (GCK1 - GCK8) Can
Drive Any or All Clock Inputs on the Device
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Figure 37: Left and Right BUFGEs Can Drive Any or
All Clock Inputs in Same Quadrant or Edge (GCK1 is
shown. GCK2, GCK5 and GCK6 are similar.)

1 6

2 5

3

8

4

7

CLB CLB

CLBCLB

I
O
B

I
O
B

I
O
B

I
O
B

IOB IOB

IOBIOB

X6747

Figure 38:   Top and Bottom BUFGEs Can Drive Any
or All Clock Inputs in Same Quadrant (GCK8 is
shown. GCK3, GCK4 and GCK7 are similar.)
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The top and bottom Global Early buffers are about 1 ns
slower clock to out than the left and right Global Early buff-
ers.

The Global Early buffers can be driven by either semi-ded-
icated pads or internal logic. They share pads with the Glo-
bal Low-Skew buffers, so a single net can drive both global
buffers, as described above.

To use a Global Early buffer, place a BUFGE element in a
schematic or in HDL code. If desired, attach a LOC
attribute or property to direct placement to the designated
location. For example, attach a LOC=T attribute or property
to direct that a BUFGE be placed in one of the two Global
Early buffers on the top edge of the device, or a LOC=TR to
indicate the Global Early buffer on the top edge of the
device, on the right.

Power Distribution
Power for the FPGA is distributed through a grid to achieve
high noise immunity and isolation between logic and I/O.
Inside the FPGA, a dedicated Vcc and Ground ring sur-
rounding the logic array provides power to the I/O drivers,
as shown in Figure 39. An independent matrix of Vcc and
Ground lines supplies the interior logic of the device.

This power distribution grid provides a stable supply and
ground for all internal logic, providing the external package
power pins are all connected and appropriately de-coupled.
Typically, a 0.1 µF capacitor connected between each Vcc
pin and the board’s Ground plane will provide adequate
de-coupling.

Output buffers capable of driving/sinking the specified 12
mA loads under specified worst-case conditions may be
capable of driving/sinking up to 10 times as much current
under best case conditions.

Noise can be reduced by minimizing external load capaci-
tance and reducing simultaneous output transitions in the
same direction. It may also be beneficial to locate heavily
loaded output buffers near the Ground pads. The I/O Block
output buffers have a slew-rate limited mode (default) which
should be used where output rise and fall times are not
speed-critical.

Pin Descriptions
There are three types of pins in the XC4000 Series
devices:

• Permanently dedicated pins
• User I/O pins that can have special functions
• Unrestricted user-programmable I/O pins.

Before and during configuration, all outputs not used for the
configuration process are 3-stated with a 50 kΩ - 100 kΩ
pull-up resistor.

After configuration, if an IOB is unused it is configured as
an input with a 50 kΩ - 100 kΩ pull-up resistor.

XC4000 Series devices have no dedicated Reset input.
Any user I/O can be configured to drive the Global
Set/Reset net, GSR. See “Global Set/Reset” on page 11
for more information on GSR.

XC4000 Series devices have no Powerdown control input,
as the XC3000 and XC2000 families do. The
XC3000/XC2000 Powerdown control also 3-stated all of the
device
I/O pins. For XC4000 Series devices, use the global 3-state
net, GTS, instead. This net 3-states all outputs, but does
not place the device in low-power mode. See “IOB Output
Signals” on page 23 for more information on GTS.

Device pins for XC4000 Series devices are described in
Table 16. Pin functions during configuration for each of the
seven configuration modes are summarized in Table 22 on
page 58, in the “Configuration Timing” section.

GND

Ground and
Vcc Ring for
I/O Drivers

Vcc

GND

Vcc

Logic
Power Grid 

X5422

Figure 39:   XC4000 Series Power Distribution
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Boundary Scan
The ‘bed of nails’ has been the traditional method of testing
electronic assemblies. This approach has become less
appropriate, due to closer pin spacing and more sophisti-
cated assembly methods like surface-mount technology
and multi-layer boards. The IEEE Boundary Scan Standard
1149.1 was developed to facilitate board-level testing of
electronic assemblies. Design and test engineers can
imbed a standard test logic structure in their device to
achieve high fault coverage for I/O and internal logic. This
structure is easily implemented with a four-pin interface on
any boundary scan-compatible IC. IEEE 1149.1-compati-
ble devices may be serial daisy-chained together, con-
nected in parallel, or a combination of the two.

The XC4000 Series implements IEEE 1149.1-compatible
BYPASS, PRELOAD/SAMPLE and EXTEST boundary
scan instructions. When the boundary scan configuration
option is selected, three normal user I/O pins become ded-
icated inputs for these functions. Another user output pin
becomes the dedicated boundary scan output. The details

of how to enable this circuitry are covered later in this sec-
tion.

By exercising these input signals, the user can serially load
commands and data into these devices to control the driv-
ing of their outputs and to examine their inputs. This
method is an improvement over bed-of-nails testing. It
avoids the need to over-drive device outputs, and it reduces
the user interface to four pins. An optional fifth pin, a reset
for the control logic, is described in the standard but is not
implemented in Xilinx devices.

The dedicated on-chip logic implementing the IEEE 1149.1
functions includes a 16-state machine, an instruction regis-
ter and a number of data registers. The functional details
can be found in the IEEE 1149.1 specification and are also
discussed in the Xilinx application note XAPP 017: “Bound-
ary Scan in XC4000 Devices.”

Figure 40 on page 43 shows a simplified block diagram of
the XC4000E Input/Output Block with boundary scan
implemented. XC4000X boundary scan logic is identical.

CS0, CS1,
WS, RS

I I/O

These four inputs are used in Asynchronous Peripheral mode. The chip is selected
when CS0 is Low and CS1 is High. While the chip is selected, a Low on Write Strobe
(WS) loads the data present on the D0 - D7 inputs into the internal data buffer. A Low
on Read Strobe (RS) changes D7 into a status output — High if Ready, Low if Busy —
and drives D0 - D6 High.
In Express mode, CS1 is used as a serial-enable signal for daisy-chaining.
WS and RS should be mutually exclusive, but if both are Low simultaneously, the Write
Strobe overrides. After configuration, these are user-programmable I/O pins.

A0 - A17 O I/O
During Master Parallel configuration, these 18 output pins address the configuration
EPROM. After configuration, they are user-programmable I/O pins.

A18 - A21
(XC4003XL to

XC4085XL)
O I/O

During Master Parallel configuration with an XC4000X master, these 4 output pins add
4 more bits to address the configuration EPROM. After configuration, they are user-pro-
grammable I/O pins. (See Master Parallel Configuration section for additional details.)

D0 - D7 I I/O
During Master Parallel and Peripheral configuration, these eight input pins receive con-
figuration data. After configuration, they are user-programmable I/O pins.

DIN I I/O
During Slave Serial or Master Serial configuration, DIN is the serial configuration data
input receiving data on the rising edge of CCLK. During Parallel configuration, DIN is
the D0 input. After configuration, DIN is a user-programmable I/O pin.

DOUT O I/O

During configuration in any mode but Express mode, DOUT is the serial configuration
data output that can drive the DIN of daisy-chained slave FPGAs. DOUT data changes
on the falling edge of CCLK, one-and-a-half CCLK periods after it was received at the
DIN input.
In Express modefor XC4000E and XC4000X only, DOUT is the status output that can
drive the CS1 of daisy-chained FPGAs, to enable and disable downstream devices.
After configuration, DOUT is a user-programmable I/O pin.

Unrestricted User-Programmable I/O Pins

I/O
Weak
Pull-up

I/O
These pins can be configured to be input and/or output after configuration is completed.
Before configuration is completed, these pins have an internal high-value pull-up resis-
tor (25 kΩ - 100 kΩ) that defines the logic level as High.

Table 16: Pin Descriptions (Continued)

Pin Name

I/O
During
Config.

I/O
After

Config. Pin Description
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Figure 41 on page 44 is a diagram of the XC4000 Series
boundary scan logic. It includes three bits of Data Register
per IOB, the IEEE 1149.1 Test Access Port controller, and
the Instruction Register with decodes.

XC4000 Series devices can also be configured through the
boundary scan logic. See “Readback” on page 55.

Data Registers
The primary data register is the boundary scan register. For
each IOB pin in the FPGA, bonded or not, it includes three
bits for In, Out and 3-State Control. Non-IOB pins have
appropriate partial bit population for In or Out only. PRO-
GRAM, CCLK and DONE are not included in the boundary
scan register. Each EXTEST CAPTURE-DR state captures
all In, Out, and 3-state pins.

The data register also includes the following non-pin bits:
TDO.T, and TDO.O, which are always bits 0 and 1 of the

data register, respectively, and BSCANT.UPD, which is
always the last bit of the data register. These three bound-
ary scan bits are special-purpose Xilinx test signals.

The other standard data register is the single flip-flop
BYPASS register. It synchronizes data being passed
through the FPGA to the next downstream boundary scan
device.

The FPGA provides two additional data registers that can
be specified using the BSCAN macro. The FPGA provides
two user pins (BSCAN.SEL1 and BSCAN.SEL2) which are
the decodes of two user instructions. For these instructions,
two corresponding pins (BSCAN.TDO1 and
BSCAN.TDO2) allow user scan data to be shifted out on
TDO. The data register clock (BSCAN.DRCK) is available
for control of test logic which the user may wish to imple-
ment with CLBs. The NAND of TCK and RUN-TEST-IDLE
is also provided (BSCAN.IDLE).

Figure 40:   Block Diagram of XC4000E IOB with Boundary Scan (some details not shown).
XC4000X Boundary Scan Logic is Identical.
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Instruction Set
The XC4000 Series boundary scan instruction set also
includes instructions to configure the device and read back
the configuration data. The instruction set is coded as
shown in Table 17.

Bit Sequence
The bit sequence within each IOB is: In, Out, 3-State. The
input-only M0 and M2 mode pins contribute only the In bit
to the boundary scan I/O data register, while the out-
put-only M1 pin contributes all three bits.

The first two bits in the I/O data register are TDO.T and
TDO.O, which can be used for the capture of internal sig-
nals. The final bit is BSCANT.UPD, which can be used to
drive an internal net. These locations are primarily used by
Xilinx for internal testing.

From a cavity-up view of the chip (as shown in XDE or
Epic), starting in the upper right chip corner, the boundary
scan data-register bits are ordered as shown in Figure 42.
The device-specific pinout tables for the XC4000 Series
include the boundary scan locations for each IOB pin.

BSDL (Boundary Scan Description Language) files for
XC4000 Series devices are available on the Xilinx FTP site.

Including Boundary Scan in a Schematic
If boundary scan is only to be used during configuration, no
special schematic elements need be included in the sche-
matic or HDL code. In this case, the special boundary scan
pins TDI, TMS, TCK and TDO can be used for user func-
tions after configuration.

To indicate that boundary scan remain enabled after config-
uration, place the BSCAN library symbol and connect the
TDI, TMS, TCK and TDO pad symbols to the appropriate
pins, as shown in Figure 43.

Even if the boundary scan symbol is used in a schematic,
the input pins TMS, TCK, and TDI can still be used as
inputs to be routed to internal logic. Care must be taken not
to force the chip into an undesired boundary scan state by
inadvertently applying boundary scan input patterns to
these pins. The simplest way to prevent this is to keep TMS
High, and then apply whatever signal is desired to TDI and
TCK.
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Figure 41:   XC4000 Series Boundary Scan Logic
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Setting CCLK Frequency
For Master modes, CCLK can be generated in either of two
frequencies. In the default slow mode, the frequency
ranges from 0.5 MHz to 1.25 MHz for XC4000E and
XC4000EX devices and from 0.6 MHz to 1.8 MHz for
XC4000XL devices. In fast CCLK mode, the frequency
ranges from 4 MHz to 10 MHz for XC4000E/EX devices and
from 5 MHz to 15 MHz for XC4000XL devices. The fre-
quency is selected by an option when running the bitstream
generation software. If an XC4000 Series Master is driving
an XC3000- or XC2000-family slave, slow CCLK mode
must be used. In addition, an XC4000XL device driving a
XC4000E or XC4000EX should use slow mode. Slow mode
is the default.

Table 19: XC4000 Series Data Stream Formats

Data Stream Format
The data stream (“bitstream”) format is identical for all con-
figuration modes.

The data stream formats are shown in Table 19. Bit-serial
data is read from left to right, and byte-parallel data is effec-
tively assembled from this serial bitstream, with the first bit
in each byte assigned to D0.

The configuration data stream begins with a string of eight
ones, a preamble code, followed by a 24-bit length count
and a separator field of ones. This header is followed by the
actual configuration data in frames. The length and number
of frames depends on the device type (see Table 20 and
Table 21). Each frame begins with a start field and ends
with an error check. A postamble code is required to signal
the end of data for a single device. In all cases, additional
start-up bytes of data are required to provide four clocks for
the startup sequence at the end of configuration. Long
daisy chains require additional startup bytes to shift the last
data through the chain. All startup bytes are don’t-cares;
these bytes are not included in bitstreams created by the
Xilinx software.

A selection of CRC or non-CRC error checking is allowed
by the bitstream generation software. The non-CRC error
checking tests for a designated end-of-frame field for each
frame. For CRC error checking, the software calculates a
running CRC and inserts a unique four-bit partial check at
the end of each frame. The 11-bit CRC check of the last
frame of an FPGA includes the last seven data bits.

Detection of an error results in the suspension of data load-
ing and the pulling down of the INIT pin. In Master modes,
CCLK and address signals continue to operate externally.
The user must detect INIT and initialize a new configuration
by pulsing the PROGRAM pin Low or cycling Vcc.

Data Type
All Other

Modes (D0...)
Fill Byte 11111111b
Preamble Code 0010b
Length Count COUNT(23:0)
Fill Bits 1111b
Start Field 0b
Data Frame DATA(n-1:0)
CRC or Constant
Field Check

xxxx (CRC)
or 0110b

Extend Write Cycle —
Postamble 01111111b
Start-Up Bytes xxh
Legend:
Not shaded Once per bitstream
Light Once per data frame
Dark Once per device
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Table 22: Pin Functions During Configuration

CONFIGURATION MODE <M2:M1:M0>
SLAVE
SERIAL
<1:1:1>

MASTER
SERIAL
<0:0:0>

SYNCH.
PERIPHERAL

<0:1:1>

ASYNCH.
PERIPHERAL

<1:0:1>

MASTER
PARALLEL DOWN

<1:1:0>

MASTER
PARALLEL UP

<1:0:0>

USER
OPERATION

M2(HIGH) (I) M2(LOW) (I) M2(LOW) (I) M2(HIGH) (I) M2(HIGH) (I) M2(HIGH) (I) (I)
M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) (O)
M0(HIGH) (I) M0(LOW) (I) M0(HIGH) (I) M0(HIGH) (I) M0(LOW) (I) M0(LOW) (I) (I)
HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) I/O
LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) I/O

INIT INIT INIT INIT INIT INIT I/O
DONE DONE DONE DONE DONE DONE DONE

PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM
CCLK (I) CCLK (O) CCLK (I) CCLK (O) CCLK (O) CCLK (O) CCLK (I)

RDY/BUSY (O) RDY/BUSY (O) RCLK (O) RCLK (O) I/O
RS (I) I/O

CS0 (I) I/O
DATA 7 (I) DATA 7 (I) DATA 7 (I) DATA 7 (I) I/O
DATA 6 (I) DATA 6 (I) DATA 6 (I) DATA 6 (I) I/O
DATA 5 (I) DATA 5 (I) DATA 5 (I) DATA 5 (I) I/O
DATA 4 (I) DATA 4 (I) DATA 4 (I) DATA 4 (I) I/O
DATA 3 (I) DATA 3 (I) DATA 3 (I) DATA 3 (I) I/O
DATA 2 (I) DATA 2 (I) DATA 2 (I) DATA 2 (I) I/O
DATA 1 (I) DATA 1 (I) DATA 1 (I) DATA 1 (I) I/O

DIN (I) DIN (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) I/O
DOUT DOUT DOUT DOUT DOUT DOUT SGCK4-GCK6-I/O

TDI TDI TDI TDI TDI TDI TDI-I/O
TCK TCK TCK TCK TCK TCK TCK-I/O
TMS TMS TMS TMS TMS TMS TMS-I/O
TDO TDO TDO TDO TDO TDO TDO-(O)

WS (I) A0 A0 I/O
A1 A1 PGCK4-GCK7-I/O

CS1 A2 A2 I/O
A3 A3 I/O
A4 A4 I/O
A5 A5 I/O
A6 A6 I/O
A7 A7 I/O
A8 A8 I/O
A9 A9 I/O

A10 A10 I/O
A11 A11 I/O
A12 A12 I/O
A13 A13 I/O
A14 A14 I/O
A15 A15 SGCK1-GCK8-I/O
A16 A16 PGCK1-GCK1-I/O
A17 A17 I/O
A18* A18* I/O
A19* A19* I/O
A20* A20* I/O
A21* A21* I/O

ALL OTHERS
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Configuration Timing
The seven configuration modes are discussed in detail in
this section. Timing specifications are included.

Slave Serial Mode
In Slave Serial mode, an external signal drives the CCLK
input of the FPGA. The serial configuration bitstream must
be available at the DIN input of the lead FPGA a short
setup time before each rising CCLK edge.

The lead FPGA then presents the preamble data—and all
data that overflows the lead device—on its DOUT pin.

There is an internal delay of 0.5 CCLK periods, which
means that DOUT changes on the falling CCLK edge, and
the next FPGA in the daisy chain accepts data on the sub-
sequent rising CCLK edge.

Figure 51 shows a full master/slave system. An XC4000
Series device in Slave Serial mode should be connected as
shown in the third device from the left.

Slave Serial mode is selected by a <111> on the mode pins
(M2, M1, M0). Slave Serial is the default mode if the mode
pins are left unconnected, as they have weak pull-up resis-
tors during configuration.

Figure 52:   Slave Serial Mode Programming Switching Characteristics

XC4000E/X
MASTER
SERIAL

XC4000E/X,
XC5200
SLAVE

XC3100A
SLAVE

XC1700D

PROGRAM

NOTE:
M2, M1, M0 can be shorted
to Ground if not used as I/O

NOTE:
M2, M1, M0 can be shorted
to VCC if not used as I/O

M2

M0 M1

DOUT

CCLK CLK

VCC

+5 V

DATA

CE CEO

VPP

RESET/OE DONE

DIN

LDC

INIT INITDONE

PROGRAM PROGRAM

D/P INIT

RESET

CCLK

DIN

CCLK

DINDOUT DOUT

M2
M0 M1 M1 PWRDNM0

M2

(Low Reset Option Used)

4.7 KΩ

4.7 KΩ
4.7 KΩ4.7 KΩ 4.7 KΩ4.7 KΩ4.7 KΩ

VCC

X9025

N/C

N/C

Figure 51:   Master/Slave Serial Mode Circuit Diagram

4 TCCH

Bit n Bit n + 1

Bit nBit n - 1

3 TCCO

5 TCCL2 TCCD1 TDCC

DIN

CCLK

DOUT
(Output)

X5379

Description Symbol Min Max Units

CCLK

DIN setup 1 TDCC 20 ns
DIN hold 2 TCCD 0 ns
DIN to DOUT 3 TCCO 30 ns
High time 4 TCCH 45 ns
Low time 5 TCCL 45 ns
Frequency FCC 10 MHz

Note: Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High.
6-60 May 14, 1999 (Version 1.6)



R

XC4000E and XC4000X Series Field Programmable Gate Arrays

6

Product Obsolete or Under Obsolescence
Master Serial Mode
In Master Serial mode, the CCLK output of the lead FPGA
drives a Xilinx Serial PROM that feeds the FPGA DIN input.
Each rising edge of the CCLK output increments the Serial
PROM internal address counter. The next data bit is put on
the SPROM data output, connected to the FPGA DIN pin.
The lead FPGA accepts this data on the subsequent rising
CCLK edge.

The lead FPGA then presents the preamble data—and all
data that overflows the lead device—on its DOUT pin.
There is an internal pipeline delay of 1.5 CCLK periods,
which means that DOUT changes on the falling CCLK
edge, and the next FPGA in the daisy chain accepts data
on the subsequent rising CCLK edge.

In the bitstream generation software, the user can specify
Fast ConfigRate, which, starting several bits into the first
frame, increases the CCLK frequency by a factor of eight.

For actual timing values please refer to “Configuration
Switching Characteristics” on page 68. Be sure that the
serial PROM and slaves are fast enough to support this
data rate. XC2000, XC3000/A, and XC3100A devices do
not support the Fast ConfigRate option.

The SPROM CE input can be driven from either LDC or
DONE. Using LDC avoids potential contention on the DIN
pin, if this pin is configured as user-I/O, but LDC is then
restricted to be a permanently High user output after con-
figuration. Using DONE can also avoid contention on DIN,
provided the early DONE option is invoked.

Figure 51 on page 60 shows a full master/slave system.
The leftmost device is in Master Serial mode.

Master Serial mode is selected by a <000> on the mode
pins (M2, M1, M0).

Figure 53:   Master Serial Mode Programming Switching Characteristics

Description Symbol Min Max Units

CCLK
DIN setup 1 TDSCK 20 ns
DIN hold 2 TCKDS 0 ns

Notes: 1. At power-up, Vcc must rise from 2.0 V to Vcc min in less than 25 ms, otherwise delay configuration by pulling PROGRAM
Low until Vcc is valid.

2. Master Serial mode timing is based on testing in slave mode.

Serial Data In

CCLK
(Output)

Serial DOUT
(Output)

1 TDSCK

2 TCKDS

n n + 1 n + 2

n – 3 n – 2 n – 1 n 

X3223
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Figure 55:   Master Parallel Mode Programming Switching Characteristics

Address for Byte n

Byte 

2 TDRC

Address for Byte n + 1

D7D6

A0-A17
(output)

D0-D7

RCLK
(output)

CCLK
(output)

DOUT
(output)

1 TRAC

7 CCLKs CCLK

3 TRCD

Byte n - 1 X6078

Description Symbol Min Max Units

RCLK
Delay to Address valid 1 TRAC 0 200 ns
Data setup time 2 TDRC 60 ns
Data hold time 3 TRCD 0 ns

Notes: 1. At power-up, Vcc must rise from 2.0 V to Vcc min in less than 25 ms, otherwise delay configuration by pulling PROGRAM
Low until Vcc is valid.

2. The first Data byte is loaded and CCLK starts at the end of the first RCLK active cycle (rising edge).

This timing diagram shows that the EPROM requirements are extremely relaxed. EPROM access time can be longer than
500 ns. EPROM data output has no hold-time requirements.
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