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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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XC4000E and XC4000X Series Field Programmable Gate Arrays
Product Obsolete or Under Obsolescence
* Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

Note: All functionality in low-voltage families is the same as
in the corresponding 5-Volt family, except where numerical
references are made to timing or power.

Description
XC4000 Series devices are implemented with a regular,
flexible, programmable architecture of Configurable Logic
Blocks (CLBs), interconnected by a powerful hierarchy of
versatile routing resources, and surrounded by a perimeter
of programmable Input/Output Blocks (IOBs). They have
generous routing resources to accommodate the most
complex interconnect patterns.

The devices are customized by loading configuration data
into internal memory cells. The FPGA can either actively
read its configuration data from an external serial or
byte-parallel PROM (master modes), or the configuration
data can be written into the FPGA from an external device
(slave and peripheral modes).

XC4000 Series FPGAs are supported by powerful and
sophisticated software, covering every aspect of design
from schematic or behavioral entry, floor planning, simula-
tion, automatic block placement and routing of intercon-
nects, to the creation, downloading, and readback of the
configuration bit stream.

Because Xilinx FPGAs can be reprogrammed an unlimited
number of times, they can be used in innovative designs

where hardware is changed dynamically, or where hard-
ware must be adapted to different user applications.
FPGAs are ideal for shortening design and development
cycles, and also offer a cost-effective solution for produc-
tion rates well beyond 5,000 systems per month.
n
’
.

Taking Advantage of Re-configuration
FPGA devices can be re-configured to change logic func-
tion while resident in the system. This capability gives the
system designer a new degree of freedom not available
with any other type of logic.

Hardware can be changed as easily as software. Design
updates or modifications are easy, and can be made to
products already in the field. An FPGA can even be re-con-
figured dynamically to perform different functions at differ-
ent times.

Re-configurable logic can be used to implement system
self-diagnostics, create systems capable of being re-con-
figured for different environments or operations, or imple-
ment multi-purpose hardware for a given application. As an
added benefit, using re-configurable FPGA devices simpli-
fies hardware design and debugging and shortens product
time-to-market.

Table 1: XC4000E and XC4000X Series Field Programmable Gate Arrays

Device
Logic
Cells

Max Logic
Gates

(No RAM)

Max. RAM
Bits

(No Logic)

Typical
Gate Range

(Logic and RAM)*
CLB

Matrix
Total
CLBs

Number
of

Flip-Flops
Max.

User I/O
XC4002XL 152 1,600 2,048 1,000 - 3,000 8 x 8 64 256 64
XC4003E 238 3,000 3,200 2,000 - 5,000 10 x 10 100 360 80
XC4005E/XL 466 5,000 6,272 3,000 - 9,000 14 x 14 196 616 112
XC4006E 608 6,000 8,192 4,000 - 12,000 16 x 16 256 768 128
XC4008E 770 8,000 10,368 6,000 - 15,000 18 x 18 324 936 144
XC4010E/XL 950 10,000 12,800 7,000 - 20,000 20 x 20 400 1,120 160
XC4013E/XL 1368 13,000 18,432 10,000 - 30,000 24 x 24 576 1,536 192
XC4020E/XL 1862 20,000 25,088 13,000 - 40,000 28 x 28 784 2,016 224
XC4025E 2432 25,000 32,768 15,000 - 45,000 32 x 32 1,024 2,560 256
XC4028EX/XL 2432 28,000 32,768 18,000 - 50,000 32 x 32 1,024 2,560 256
XC4036EX/XL 3078 36,000 41,472 22,000 - 65,000 36 x 36 1,296 3,168 288
XC4044XL 3800 44,000 51,200 27,000 - 80,000 40 x 40 1,600 3,840 320
XC4052XL 4598 52,000 61,952 33,000 - 100,000 44 x 44 1,936 4,576 352
XC4062XL 5472 62,000 73,728 40,000 - 130,000 48 x 48 2,304 5,376 384
XC4085XL 7448 85,000 100,352 55,000 - 180,000 56 x 56 3,136 7,168 448
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Supported CLB memory configurations and timing modes
for single- and dual-port modes are shown in Table 3.

XC4000 Series devices are the first programmable logic
devices with edge-triggered (synchronous) and dual-port
RAM accessible to the user. Edge-triggered RAM simpli-
fies system timing. Dual-port RAM doubles the effective
throughput of FIFO applications. These features can be
individually programmed in any XC4000 Series CLB.

Advantages of On-Chip and Edge-Triggered RAM

The on-chip RAM is extremely fast. The read access time is
the same as the logic delay. The write access time is
slightly slower. Both access times are much faster than
any off-chip solution, because they avoid I/O delays.

Edge-triggered RAM, also called synchronous RAM, is a
feature never before available in a Field Programmable
Gate Array. The simplicity of designing with edge-triggered
RAM, and the markedly higher achievable performance,
add up to a significant improvement over existing devices
with on-chip RAM.

Three application notes are available from Xilinx that dis-
cuss edge-triggered RAM: “XC4000E Edge-Triggered and
Dual-Port RAM Capability,” “Implementing FIFOs in
XC4000E RAM,” and “Synchronous and Asynchronous
FIFO Designs.” All three application notes apply to both
XC4000E and XC4000X RAM.

RAM Configuration Options

The function generators in any CLB can be configured as
RAM arrays in the following sizes:

• Two 16x1 RAMs: two data inputs and two data outputs
with identical or, if preferred, different addressing for
each RAM

• One 32x1 RAM: one data input and one data output.

One F or G function generator can be configured as a 16x1
RAM while the other function generators are used to imple-
ment any function of up to 5 inputs.

Additionally, the XC4000 Series RAM may have either of
two timing modes:

• Edge-Triggered (Synchronous): data written by the
designated edge of the CLB clock. WE acts as a true
clock enable.

• Level-Sensitive (Asynchronous): an external WE signal
acts as the write strobe.

The selected timing mode applies to both function genera-
tors within a CLB when both are configured as RAM.

The number of read ports is also programmable:

• Single Port: each function generator has a common
read and write port

• Dual Port: both function generators are configured
together as a single 16x1 dual-port RAM with one write
port and two read ports. Simultaneous read and write
operations to the same or different addresses are
supported.

RAM configuration options are selected by placing the
appropriate library symbol.

Choosing a RAM Configuration Mode

The appropriate choice of RAM mode for a given design
should be based on timing and resource requirements,
desired functionality, and the simplicity of the design pro-
cess. Recommended usage is shown in Table 4.

The difference between level-sensitive, edge-triggered,
and dual-port RAM is only in the write operation. Read
operation and timing is identical for all modes of operation.

RAM Inputs and Outputs

The F1-F4 and G1-G4 inputs to the function generators act
as address lines, selecting a particular memory cell in each
look-up table.

The functionality of the CLB control signals changes when
the function generators are configured as RAM. The
DIN/H2, H1, and SR/H0 lines become the two data inputs
(D0, D1) and the Write Enable (WE) input for the 16x2
memory. When the 32x1 configuration is selected, D1 acts
as the fifth address bit and D0 is the data input.

The contents of the memory cell(s) being addressed are
available at the F’ and G’ function-generator outputs. They
can exit the CLB through its X and Y outputs, or can be cap-
tured in the CLB flip-flop(s).

Configuring the CLB function generators as Read/Write
memory does not affect the functionality of the other por-

Table 3: Supported RAM Modes

16
x
1

16
x
2

32
x
1

Edge-
Triggered

Timing

Level-
Sensitive

Timing
Single-Port √ √ √ √ √
Dual-Port √ √

Table 4: RAM Mode Selection

Level-Sens
itive

Edge-Trigg
ered

Dual-Port
Edge-Trigg

ered
Use for New
Designs?

No Yes Yes

Size (16x1,
Registered)

1/2 CLB 1/2 CLB 1 CLB

Simultaneous
Read/Write

No No Yes

Relative
Performance

X 2X
2X (4X

effective)
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Figure 8 shows the write timing for level-sensitive, sin-
gle-port RAM.

The relationships between CLB pins and RAM inputs and
outputs for single-port level-sensitive mode are shown in
Table 7.

Figure 9 and Figure 10 show block diagrams of a CLB con-
figured as 16x2 and 32x1 level-sensitive, single-port RAM.

Initializing RAM at Configuration

Both RAM and ROM implementations of the XC4000
Series devices are initialized during configuration. The ini-
tial contents are defined via an INIT attribute or property

attached to the RAM or ROM symbol, as described in the
schematic library guide. If not defined, all RAM contents
are initialized to all zeros, by default.

RAM initialization occurs only during configuration. The
RAM content is not affected by Global Set/Reset.

Table 7: Single-Port Level-Sensitive RAM Signals
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Figure 7:   16x1 Edge-Triggered Dual-Port RAM

RAM Signal CLB Pin Function
D D0 or D1 Data In
A[3:0] F1-F4 or G1-G4 Address
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O F’ or G’ Data Out
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Figure 8:   Level-Sensitive RAM Write Timing
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Figure 9:   16x2 (or 16x1) Level-Sensitive Single-Port RAM
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Figure 10:   32x1 Level-Sensitive Single-Port RAM (F and G addresses are identical)
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Figure 13:   Fast Carry Logic in XC4000E CLB (shaded area not present in XC4000X)
May 14, 1999 (Version 1.6) 6-19



R

XC4000E and XC4000X Series Field Programmable Gate Arrays

6

Product Obsolete or Under Obsolescence
Q 

Flip-

Flop/

Latch

D

D 

CE

CE

Q
Out

T

Output

Clock

I

Input

Clock

Clock

Enable

Delay

Pad

Flip-Flop

Slew Rate

Control

Output

Buffer

Input

Buffer

Passive

Pull-Up/


Pull-Down

2

I1

X6704

Figure 15:   Simplified Block Diagram of XC4000E IOB
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Figure 16:   Simplified Block Diagram of XC4000X IOB (shaded areas indicate differences from XC4000E)
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XC4000XL 5-Volt Tolerant I/Os

The I/Os on the XC4000XL are fully 5-volt tolerant even
though the VCC is 3.3 volts. This allows 5 V signals to
directly connect to the XC4000XL inputs without damage,
as shown in Table 8. In addition, the 3.3 volt VCC can be
applied before or after 5 volt signals are applied to the I/Os.
This makes the XC4000XL immune to power supply
sequencing problems.

Registered Inputs

The I1 and I2 signals that exit the block can each carry
either the direct or registered input signal.

The input and output storage elements in each IOB have a
common clock enable input, which, through configuration,
can be activated individually for the input or output flip-flop,
or both. This clock enable operates exactly like the EC pin
on the XC4000 Series CLB. It cannot be inverted within the
IOB.

The storage element behavior is shown in Table 9.

Table 9: Input Register Functionality
(active rising edge is shown)

Optional Delay Guarantees Zero Hold Time

The data input to the register can optionally be delayed by
several nanoseconds. With the delay enabled, the setup
time of the input flip-flop is increased so that normal clock
routing does not result in a positive hold-time requirement.
A positive hold time requirement can lead to unreliable,
temperature- or processing-dependent operation.

The input flip-flop setup time is defined between the data
measured at the device I/O pin and the clock input at the
IOB (not at the clock pin). Any routing delay from the device
clock pin to the clock input of the IOB must, therefore, be
subtracted from this setup time to arrive at the real setup
time requirement relative to the device pins. A short speci-
fied setup time might, therefore, result in a negative setup
time at the device pins, i.e., a positive hold-time require-
ment.

When a delay is inserted on the data line, more clock delay
can be tolerated without causing a positive hold-time
requirement. Sufficient delay eliminates the possibility of a
data hold-time requirement at the external pin. The maxi-
mum delay is therefore inserted as the default.

The XC4000E IOB has a one-tap delay element: either the
delay is inserted (default), or it is not. The delay guarantees
a zero hold time with respect to clocks routed through any
of the XC4000E global clock buffers. (See “Global Nets and
Buffers (XC4000E only)” on page 35 for a description of the
global clock buffers in the XC4000E.) For a shorter input
register setup time, with non-zero hold, attach a NODELAY
attribute or property to the flip-flop.

The XC4000X IOB has a two-tap delay element, with
choices of a full delay, a partial delay, or no delay. The
attributes or properties used to select the desired delay are
shown in Table 10. The choices are no added attribute,
MEDDELAY, and NODELAY. The default setting, with no
added attribute, ensures no hold time with respect to any of
the XC4000X clock buffers, including the Global Low-Skew
buffers. MEDDELAY ensures no hold time with respect to
the Global Early buffers. Inputs with NODELAY may have a
positive hold time with respect to all clock buffers. For a
description of each of these buffers, see “Global Nets and
Buffers (XC4000X only)” on page 37.

Table 10: XC4000X IOB Input Delay Element

Table 8: Supported Sources for XC4000 Series Device
Inputs

Source

XC4000E/EX
Series Inputs

XC4000XL
Series Inputs

5 V,
TTL

5 V,
CMOS

3.3 V
CMOS

Any device, Vcc = 3.3 V,
CMOS outputs

√
Unreli
-able
Data

√

XC4000 Series, Vcc = 5 V,
TTL outputs

√ √

Any device, Vcc = 5 V,
TTL outputs (Voh ≤ 3.7 V)

√ √

Any device, Vcc = 5 V,
CMOS outputs

√ √ √

Mode Clock
Clock

Enable
D Q

Power-Up or
GSR

X X X SR

Flip-Flop __/ 1* D D
0 X X Q

Latch  1 1* X Q
 0 1* D D

Both X 0 X Q
Legend:

X
__/
SR
0*
1*

Don’t care
Rising edge
Set or Reset value. Reset is default.
Input is Low or unconnected (default value)
Input is High or unconnected (default value)

Value When to Use
full delay
(default, no
attribute added)

Zero Hold with respect to Global
Low-Skew Buffer, Global Early Buffer

MEDDELAY Zero Hold with respect to Global Early
Buffer

NODELAY Short Setup, positive Hold time
6-22 May 14, 1999 (Version 1.6)
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Output Multiplexer/2-Input Function Generator
(XC4000X only)

As shown in Figure 16 on page 21, the output path in the
XC4000X IOB contains an additional multiplexer not avail-
able in the XC4000E IOB. The multiplexer can also be con-
figured as a 2-input function generator, implementing a
pass-gate, AND-gate, OR-gate, or XOR-gate, with 0, 1, or 2
inverted inputs. The logic used to implement these func-
tions is shown in the upper gray area of Figure 16.

When configured as a multiplexer, this feature allows two
output signals to time-share the same output pad; effec-
tively doubling the number of device outputs without requir-
ing a larger, more expensive package.

When the MUX is configured as a 2-input function genera-
tor, logic can be implemented within the IOB itself. Com-
bined with a Global Early buffer, this arrangement allows
very high-speed gating of a single signal. For example, a
wide decoder can be implemented in CLBs, and its output
gated with a Read or Write Strobe Driven by a BUFGE
buffer, as shown in Figure 19. The critical-path pin-to-pin
delay of this circuit is less than 6 nanoseconds.

As shown in Figure 16, the IOB input pins Out, Output
Clock, and Clock Enable have different delays and different
flexibilities regarding polarity. Additionally, Output Clock
sources are more limited than the other inputs. Therefore,
the Xilinx software does not move logic into the IOB func-
tion generators unless explicitly directed to do so.

The user can specify that the IOB function generator be
used, by placing special library symbols beginning with the
letter “O.” For example, a 2-input AND-gate in the IOB func-
tion generator is called OAND2. Use the symbol input pin
labelled “F” for the signal on the critical path. This signal is
placed on the OK pin — the IOB input with the shortest
delay to the function generator. Two examples are shown in
Figure 20.

Other IOB Options

There are a number of other programmable options in the
XC4000 Series IOB.

Pull-up and Pull-down Resistors

Programmable pull-up and pull-down resistors are useful
for tying unused pins to Vcc or Ground to minimize power
consumption and reduce noise sensitivity. The configurable
pull-up resistor is a p-channel transistor that pulls to Vcc.
The configurable pull-down resistor is an n-channel transis-
tor that pulls to Ground.

The value of these resistors is 50 kΩ − 100 kΩ. This high
value makes them unsuitable as wired-AND pull-up resis-
tors.

The pull-up resistors for most user-programmable IOBs are
active during the configuration process. See Table 22 on
page 58 for a list of pins with pull-ups active before and dur-
ing configuration.

After configuration, voltage levels of unused pads, bonded
or un-bonded, must be valid logic levels, to reduce noise
sensitivity and avoid excess current. Therefore, by default,
unused pads are configured with the internal pull-up resis-
tor active. Alternatively, they can be individually configured
with the pull-down resistor, or as a driven output, or to be
driven by an external source. To activate the internal
pull-up, attach the PULLUP library component to the net
attached to the pad. To activate the internal pull-down,
attach the PULLDOWN library component to the net
attached to the pad.

Independent Clocks

Separate clock signals are provided for the input and output
flip-flops. The clock can be independently inverted for each
flip-flop within the IOB, generating either falling-edge or ris-
ing-edge triggered flip-flops. The clock inputs for each IOB
are independent, except that in the XC4000X, the Fast
Capture latch shares an IOB input with the output clock pin.

Early Clock for IOBs (XC4000X only)

Special early clocks are available for IOBs. These clocks
are sourced by the same sources as the Global Low-Skew
buffers, but are separately buffered. They have fewer loads
and therefore less delay. The early clock can drive either
the IOB output clock or the IOB input clock, or both. The
early clock allows fast capture of input data, and fast
clock-to-output on output data. The Global Early buffers
that drive these clocks are described in “Global Nets and
Buffers (XC4000X only)” on page 37.

Global Set/Reset

As with the CLB registers, the Global Set/Reset signal
(GSR) can be used to set or clear the input and output reg-
isters, depending on the value of the INIT attribute or prop-
erty. The two flip-flops can be individually configured to set

IPAD

F OPAD
FAST

BUFGE

OAND2
from

internal

logic

X9019

Figure 19:   Fast Pin-to-Pin Path in XC4000X
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Figure 20:   AND & MUX Symbols in XC4000X IOB
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Wide Edge Decoders
Dedicated decoder circuitry boosts the performance of
wide decoding functions. When the address or data field is
wider than the function generator inputs, FPGAs need
multi-level decoding and are thus slower than PALs.
XC4000 Series CLBs have nine inputs. Any decoder of up
to nine inputs is, therefore, compact and fast. However,
there is also a need for much wider decoders, especially for
address decoding in large microprocessor systems.

An XC4000 Series FPGA has four programmable decoders
located on each edge of the device. The inputs to each
decoder are any of the IOB I1 signals on that edge plus one
local interconnect per CLB row or column. Each row or col-
umn of CLBs provides up to three variables or their compli-
ments., as shown in Figure 23. Each decoder generates a
High output (resistor pull-up) when the AND condition of
the selected inputs, or their complements, is true. This is
analogous to a product term in typical PAL devices.

Each of these wired-AND gates is capable of accepting up
to 42 inputs on the XC4005E and 72 on the XC4013E.
There are up to 96 inputs for each decoder on the
XC4028X and 132 on the XC4052X. The decoders may
also be split in two when a larger number of narrower
decoders are required, for a maximum of 32 decoders per
device.

The decoder outputs can drive CLB inputs, so they can be
combined with other logic to form a PAL-like AND/OR struc-
ture. The decoder outputs can also be routed directly to the
chip outputs. For fastest speed, the output should be on the
same chip edge as the decoder. Very large PALs can be
emulated by ORing the decoder outputs in a CLB. This
decoding feature covers what has long been considered a
weakness of older FPGAs. Users often resorted to external
PALs for simple but fast decoding functions. Now, the dedi-
cated decoders in the XC4000 Series device can imple-
ment these functions fast and efficiently.

To use the wide edge decoders, place one or more of the
WAND library symbols (WAND1, WAND4, WAND8,
WAND16). Attach a DECODE attribute or property to each
WAND symbol. Tie the outputs together and attach a PUL-

LUP symbol. Location attributes or properties such as L
(left edge) or TR (right half of top edge) should also be used
to ensure the correct placement of the decoder inputs.

On-Chip Oscillator
XC4000 Series devices include an internal oscillator. This
oscillator is used to clock the power-on time-out, for config-
uration memory clearing, and as the source of CCLK in
Master configuration modes. The oscillator runs at a nomi-
nal 8 MHz frequency that varies with process, Vcc, and
temperature. The output frequency falls between 4 and 10
MHz.

DNDCDBDA

A B C N

Z = DA • A + DB • B + DC • C + DN • N
~100 kΩ

"Weak Keeper"

X6466

BUFT BUFT BUFT BUFT

Figure 22:   3-State Buffers Implement a Multiplexer
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(A • B • C) .....

.I1.I1

X2627

C

Figure 23:   XC4000 Series Edge Decoding Example
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Figure 24:   XC4000 Series Oscillator Symbol
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Double-Length Lines

The double-length lines consist of a grid of metal segments,
each twice as long as the single-length lines: they run past
two CLBs before entering a switch matrix. Double-length
lines are grouped in pairs with the switch matrices stag-
gered, so that each line goes through a switch matrix at
every other row or column of CLBs (see Figure 28).

There are four vertical and four horizontal double-length
lines associated with each CLB. These lines provide faster
signal routing over intermediate distances, while retaining
routing flexibility. Double-length lines are connected by way
of the programmable switch matrices. Routing connectivity
is shown in Figure 27.

Quad Lines (XC4000X only)

XC4000X devices also include twelve vertical and twelve
horizontal quad lines per CLB row and column. Quad lines
are four times as long as the single-length lines. They are
interconnected via buffered switch matrices (shown as dia-
monds in Figure 27 on page 30). Quad lines run past four
CLBs before entering a buffered switch matrix. They are
grouped in fours, with the buffered switch matrices stag-
gered, so that each line goes through a buffered switch
matrix at every fourth CLB location in that row or column.
(See Figure 29.)

The buffered switch matrixes have four pins, one on each
edge. All of the pins are bidirectional. Any pin can drive any
or all of the other pins.

Each buffered switch matrix contains one buffer and six
pass transistors. It resembles the programmable switch
matrix shown in Figure 26, with the addition of a program-
mable buffer. There can be up to two independent inputs

and up to two independent outputs. Only one of the inde-
pendent inputs can be buffered.

The place and route software automatically uses the timing
requirements of the design to determine whether or not a
quad line signal should be buffered. A heavily loaded signal
is typically buffered, while a lightly loaded one is not. One
scenario is to alternate buffers and pass transistors. This
allows both vertical and horizontal quad lines to be buffered
at alternating buffered switch matrices.

Due to the buffered switch matrices, quad lines are very
fast. They provide the fastest available method of routing
heavily loaded signals for long distances across the device.

Longlines

Longlines form a grid of metal interconnect segments that
run the entire length or width of the array. Longlines are
intended for high fan-out, time-critical signal nets, or nets
that are distributed over long distances. In XC4000X
devices, quad lines are preferred for critical nets, because
the buffered switch matrices make them faster for high
fan-out nets.

Two horizontal longlines per CLB can be driven by 3-state
or open-drain drivers (TBUFs). They can therefore imple-
ment unidirectional or bidirectional buses, wide multiplex-
ers, or wired-AND functions. (See “Three-State Buffers” on
page 26 for more details.)

Each horizontal longline driven by TBUFs has either two
(XC4000E) or eight (XC4000X) pull-up resistors. To acti-
vate these resistors, attach a PULLUP symbol to the
long-line net. The software automatically activates the
appropriate number of pull-ups. There is also a weak
keeper at each end of these two horizontal longlines. This

CLB

PSM PSM

PSMPSM

CLB CLB

CLB CLB CLB

CLB CLB CLB

Doubles

Singles

Doubles

X6601

Figure 28: Single- and Double-Length Lines, with
Programmable Switch Matrices (PSMs)
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Figure 29:   Quad Lines (XC4000X only)
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circuit prevents undefined floating levels. However, it is
overridden by any driver, even a pull-up resistor.

Each XC4000E longline has a programmable splitter switch
at its center, as does each XC4000X longline driven by
TBUFs. This switch can separate the line into two indepen-
dent routing channels, each running half the width or height
of the array.

Each XC4000X longline not driven by TBUFs has a buff-
ered programmable splitter switch at the 1/4, 1/2, and 3/4
points of the array. Due to the buffering, XC4000X longline
performance does not deteriorate with the larger array
sizes. If the longline is split, the resulting partial longlines
are independent.

Routing connectivity of the longlines is shown in Figure 27
on page 30.

Direct Interconnect (XC4000X only)

The XC4000X offers two direct, efficient and fast connec-
tions between adjacent CLBs. These nets facilitate a data
flow from the left to the right side of the device, or from the
top to the bottom, as shown in Figure 30. Signals routed on
the direct interconnect exhibit minimum interconnect prop-
agation delay and use no general routing resources.

The direct interconnect is also present between CLBs and
adjacent IOBs. Each IOB on the left and top device edges
has a direct path to the nearest CLB. Each CLB on the right
and bottom edges of the array has a direct path to the near-
est two IOBs, since there are two IOBs for each row or col-
umn of CLBs.

The place and route software uses direct interconnect
whenever possible, to maximize routing resources and min-
imize interconnect delays.

I/O Routing
XC4000 Series devices have additional routing around the
IOB ring. This routing is called a VersaRing. The VersaRing
facilitates pin-swapping and redesign without affecting
board layout. Included are eight double-length lines span-
ning two CLBs (four IOBs), and four longlines. Global lines
and Wide Edge Decoder lines are provided. XC4000X
devices also include eight octal lines.

A high-level diagram of the VersaRing is shown in
Figure 31. The shaded arrows represent routing present
only in XC4000X devices.

Figure 33 on page 34 is a detailed diagram of the XC4000E
and XC4000X VersaRing. The area shown includes two
IOBs. There are two IOBs per CLB row or column, there-
fore this diagram corresponds to the CLB routing diagram
shown in Figure 27 on page 30. The shaded areas repre-
sent routing and routing connections present only in
XC4000X devices.

Octal I/O Routing (XC4000X only)

Between the XC4000X CLB array and the pad ring, eight
interconnect tracks provide for versatility in pin assignment
and fixed pinout flexibility. (See Figure 32 on page 33.)

These routing tracks are called octals, because they can be
broken every eight CLBs (sixteen IOBs) by a programma-
ble buffer that also functions as a splitter switch. The buffers
are staggered, so each line goes through a buffer at every
eighth CLB location around the device edge.

The octal lines bend around the corners of the device. The
lines cross at the corners in such a way that the segment
most recently buffered before the turn has the farthest dis-
tance to travel before the next buffer, as shown in
Figure 32.

CLB
IOB

X6603

IOB

IOB

IOB

IOB

IOB

IOB

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IOB
CLB

CLB

CLB

CLB

CLB

~~
~~

~~
~~

~~~~ ~~~~ ~~~~

Figure 30:   XC4000X Direct Interconnect
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IOB inputs and outputs interface with the octal lines via the
single-length interconnect lines. Single-length lines are
also used for communication between the octals and dou-
ble-length lines, quads, and longlines within the CLB array.

Segmentation into buffered octals was found to be optimal
for distributing signals over long distances around the
device.

Global Nets and Buffers
Both the XC4000E and the XC4000X have dedicated glo-
bal networks. These networks are designed to distribute
clocks and other high fanout control signals throughout the
devices with minimal skew. The global buffers are
described in detail in the following sections. The text
descriptions and diagrams are summarized in Table 15.
The table shows which CLB and IOB clock pins can be
sourced by which global buffers.

In both XC4000E and XC4000X devices, placement of a
library symbol called BUFG results in the software choos-
ing the appropriate clock buffer, based on the timing
requirements of the design. The detailed information in
these sections is included only for reference.

Global Nets and Buffers (XC4000E only)

Four vertical longlines in each CLB column are driven
exclusively by special global buffers. These longlines are
in addition to the vertical longlines used for standard inter-
connect. The four global lines can be driven by either of two
types of global buffers. The clock pins of every CLB and
IOB can also be sourced from local interconnect.

Two different types of clock buffers are available in the
XC4000E:

• Primary Global Buffers (BUFGP)
• Secondary Global Buffers (BUFGS)

Four Primary Global buffers offer the shortest delay and
negligible skew. Four Secondary Global buffers have
slightly longer delay and slightly more skew due to poten-
tially heavier loading, but offer greater flexibility when used
to drive non-clock CLB inputs.

The Primary Global buffers must be driven by the
semi-dedicated pads. The Secondary Global buffers can
be sourced by either semi-dedicated pads or internal nets.

Each CLB column has four dedicated vertical Global lines.
Each of these lines can be accessed by one particular Pri-
mary Global buffer, or by any of the Secondary Global buff-
ers, as shown in Figure 34. Each corner of the device has
one Primary buffer and one Secondary buffer.

IOBs along the left and right edges have four vertical global
longlines. Top and bottom IOBs can be clocked from the
global lines in the adjacent CLB column.

A global buffer should be specified for all timing-sensitive
global signal distribution. To use a global buffer, place a
BUFGP (primary buffer), BUFGS (secondary buffer), or
BUFG (either primary or secondary buffer) element in a
schematic or in HDL code. If desired, attach a LOC
attribute or property to direct placement to the designated
location. For example, attach a LOC=L attribute or property
to a BUFGS symbol to direct that a buffer be placed in one
of the two Secondary Global buffers on the left edge of the
device, or a LOC=BL to indicate the Secondary Global
buffer on the bottom edge of the device, on the left.

L = Left, R = Right, T = Top, B = Bottom

Table 15: Clock Pin Access

XC4000E XC4000X Local
Inter-

connectBUFGP BUFGS BUFGLS
L & R

BUFGE
T & B

BUFGE
All CLBs in Quadrant √ √ √ √ √ √
All CLBs in Device √ √ √ √
IOBs on Adjacent Vertical
Half Edge

√ √ √ √ √ √

IOBs on Adjacent Vertical
Full Edge

√ √ √ √ √

IOBs on Adjacent Horizontal
Half Edge (Direct)

√ √

IOBs on Adjacent Horizontal
Half Edge (through CLB globals)

√ √ √ √ √ √

IOBs on Adjacent Horizontal
Full Edge (through CLB globals)

√ √ √ √
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Table 16: Pin Descriptions

Pin Name

I/O
During
Config.

I/O
After

Config. Pin Description
Permanently Dedicated Pins

VCC I I
Eight or more (depending on package) connections to the nominal +5 V supply voltage
(+3.3 V for low-voltage devices). All must be connected, and each must be decoupled
with a 0.01 - 0.1 µF capacitor to Ground.

GND I I
Eight or more (depending on package type) connections to Ground. All must be con-
nected.

CCLK I or O I

During configuration, Configuration Clock (CCLK) is an output in Master modes or Asyn-
chronous Peripheral mode, but is an input in Slave mode and Synchronous Peripheral
mode. After configuration, CCLK has a weak pull-up resistor and can be selected as the
Readback Clock. There is no CCLK High or Low time restriction on XC4000 Series de-
vices, except during Readback. See “Violating the Maximum High and Low Time Spec-
ification for the Readback Clock” on page 56 for an explanation of this exception.

DONE I/O O

DONE is a bidirectional signal with an optional internal pull-up resistor. As an output, it
indicates the completion of the configuration process. As an input, a Low level on DONE
can be configured to delay the global logic initialization and the enabling of outputs.
The optional pull-up resistor is selected as an option in the XACTstep program that cre-
ates the configuration bitstream. The resistor is included by default.

PROGRAM I I

PROGRAM is an active Low input that forces the FPGA to clear its configuration mem-
ory. It is used to initiate a configuration cycle. When PROGRAM goes High, the FPGA
finishes the current clear cycle and executes another complete clear cycle, before it
goes into a WAIT state and releases INIT.
The PROGRAM pin has a permanent weak pull-up, so it need not be externally pulled
up to Vcc.

User I/O Pins That Can Have Special Functions

RDY/BUSY O I/O

During Peripheral mode configuration, this pin indicates when it is appropriate to write
another byte of data into the FPGA. The same status is also available on D7 in Asyn-
chronous Peripheral mode, if a read operation is performed when the device is selected.
After configuration, RDY/BUSY is a user-programmable I/O pin.
RDY/BUSY is pulled High with a high-impedance pull-up prior to INIT going High.

RCLK O I/O

During Master Parallel configuration, each change on the A0-A17 outputs (A0 - A21 for
XC4000X) is preceded by a rising edge on RCLK, a redundant output signal. RCLK is
useful for clocked PROMs. It is rarely used during configuration. After configuration,
RCLK is a user-programmable I/O pin.

M0, M1, M2 I
I (M0),
O (M1),
I (M2)

As Mode inputs, these pins are sampled after INIT goes High to determine the configu-
ration mode to be used. After configuration, M0 and M2 can be used as inputs, and M1
can be used as a 3-state output. These three pins have no associated input or output
registers.
During configuration, these pins have weak pull-up resistors. For the most popular con-
figuration mode, Slave Serial, the mode pins can thus be left unconnected. The three
mode inputs can be individually configured with or without weak pull-up or pull-down re-
sistors. A pull-down resistor value of 4.7 kΩ is recommended.
These pins can only be used as inputs or outputs when called out by special schematic
definitions. To use these pins, place the library components MD0, MD1, and MD2 in-
stead of the usual pad symbols. Input or output buffers must still be used.

TDO O O

If boundary scan is used, this pin is the Test Data Output. If boundary scan is not used,
this pin is a 3-state output without a register, after configuration is completed.
This pin can be user output only when called out by special schematic definitions. To
use this pin, place the library component TDO instead of the usual pad symbol. An out-
put buffer must still be used.
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Boundary Scan
The ‘bed of nails’ has been the traditional method of testing
electronic assemblies. This approach has become less
appropriate, due to closer pin spacing and more sophisti-
cated assembly methods like surface-mount technology
and multi-layer boards. The IEEE Boundary Scan Standard
1149.1 was developed to facilitate board-level testing of
electronic assemblies. Design and test engineers can
imbed a standard test logic structure in their device to
achieve high fault coverage for I/O and internal logic. This
structure is easily implemented with a four-pin interface on
any boundary scan-compatible IC. IEEE 1149.1-compati-
ble devices may be serial daisy-chained together, con-
nected in parallel, or a combination of the two.

The XC4000 Series implements IEEE 1149.1-compatible
BYPASS, PRELOAD/SAMPLE and EXTEST boundary
scan instructions. When the boundary scan configuration
option is selected, three normal user I/O pins become ded-
icated inputs for these functions. Another user output pin
becomes the dedicated boundary scan output. The details

of how to enable this circuitry are covered later in this sec-
tion.

By exercising these input signals, the user can serially load
commands and data into these devices to control the driv-
ing of their outputs and to examine their inputs. This
method is an improvement over bed-of-nails testing. It
avoids the need to over-drive device outputs, and it reduces
the user interface to four pins. An optional fifth pin, a reset
for the control logic, is described in the standard but is not
implemented in Xilinx devices.

The dedicated on-chip logic implementing the IEEE 1149.1
functions includes a 16-state machine, an instruction regis-
ter and a number of data registers. The functional details
can be found in the IEEE 1149.1 specification and are also
discussed in the Xilinx application note XAPP 017: “Bound-
ary Scan in XC4000 Devices.”

Figure 40 on page 43 shows a simplified block diagram of
the XC4000E Input/Output Block with boundary scan
implemented. XC4000X boundary scan logic is identical.

CS0, CS1,
WS, RS

I I/O

These four inputs are used in Asynchronous Peripheral mode. The chip is selected
when CS0 is Low and CS1 is High. While the chip is selected, a Low on Write Strobe
(WS) loads the data present on the D0 - D7 inputs into the internal data buffer. A Low
on Read Strobe (RS) changes D7 into a status output — High if Ready, Low if Busy —
and drives D0 - D6 High.
In Express mode, CS1 is used as a serial-enable signal for daisy-chaining.
WS and RS should be mutually exclusive, but if both are Low simultaneously, the Write
Strobe overrides. After configuration, these are user-programmable I/O pins.

A0 - A17 O I/O
During Master Parallel configuration, these 18 output pins address the configuration
EPROM. After configuration, they are user-programmable I/O pins.

A18 - A21
(XC4003XL to

XC4085XL)
O I/O

During Master Parallel configuration with an XC4000X master, these 4 output pins add
4 more bits to address the configuration EPROM. After configuration, they are user-pro-
grammable I/O pins. (See Master Parallel Configuration section for additional details.)

D0 - D7 I I/O
During Master Parallel and Peripheral configuration, these eight input pins receive con-
figuration data. After configuration, they are user-programmable I/O pins.

DIN I I/O
During Slave Serial or Master Serial configuration, DIN is the serial configuration data
input receiving data on the rising edge of CCLK. During Parallel configuration, DIN is
the D0 input. After configuration, DIN is a user-programmable I/O pin.

DOUT O I/O

During configuration in any mode but Express mode, DOUT is the serial configuration
data output that can drive the DIN of daisy-chained slave FPGAs. DOUT data changes
on the falling edge of CCLK, one-and-a-half CCLK periods after it was received at the
DIN input.
In Express modefor XC4000E and XC4000X only, DOUT is the status output that can
drive the CS1 of daisy-chained FPGAs, to enable and disable downstream devices.
After configuration, DOUT is a user-programmable I/O pin.

Unrestricted User-Programmable I/O Pins

I/O
Weak
Pull-up

I/O
These pins can be configured to be input and/or output after configuration is completed.
Before configuration is completed, these pins have an internal high-value pull-up resis-
tor (25 kΩ - 100 kΩ) that defines the logic level as High.

Table 16: Pin Descriptions (Continued)

Pin Name

I/O
During
Config.

I/O
After

Config. Pin Description
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Figure 41 on page 44 is a diagram of the XC4000 Series
boundary scan logic. It includes three bits of Data Register
per IOB, the IEEE 1149.1 Test Access Port controller, and
the Instruction Register with decodes.

XC4000 Series devices can also be configured through the
boundary scan logic. See “Readback” on page 55.

Data Registers
The primary data register is the boundary scan register. For
each IOB pin in the FPGA, bonded or not, it includes three
bits for In, Out and 3-State Control. Non-IOB pins have
appropriate partial bit population for In or Out only. PRO-
GRAM, CCLK and DONE are not included in the boundary
scan register. Each EXTEST CAPTURE-DR state captures
all In, Out, and 3-state pins.

The data register also includes the following non-pin bits:
TDO.T, and TDO.O, which are always bits 0 and 1 of the

data register, respectively, and BSCANT.UPD, which is
always the last bit of the data register. These three bound-
ary scan bits are special-purpose Xilinx test signals.

The other standard data register is the single flip-flop
BYPASS register. It synchronizes data being passed
through the FPGA to the next downstream boundary scan
device.

The FPGA provides two additional data registers that can
be specified using the BSCAN macro. The FPGA provides
two user pins (BSCAN.SEL1 and BSCAN.SEL2) which are
the decodes of two user instructions. For these instructions,
two corresponding pins (BSCAN.TDO1 and
BSCAN.TDO2) allow user scan data to be shifted out on
TDO. The data register clock (BSCAN.DRCK) is available
for control of test logic which the user may wish to imple-
ment with CLBs. The NAND of TCK and RUN-TEST-IDLE
is also provided (BSCAN.IDLE).

Figure 40:   Block Diagram of XC4000E IOB with Boundary Scan (some details not shown).
XC4000X Boundary Scan Logic is Identical.
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Start-up from a User Clock (STARTUP.CLK)

When, instead of CCLK, a user-supplied start-up clock is
selected, Q1 is used to bridge the unknown phase relation-
ship between CCLK and the user clock. This arbitration
causes an unavoidable one-cycle uncertainty in the timing
of the rest of the start-up sequence.

DONE Goes High to Signal End of Configuration

XC4000 Series devices read the expected length count
from the bitstream and store it in an internal register. The
length count varies according to the number of devices and
the composition of the daisy chain. Each device also counts
the number of CCLKs during configuration.

Two conditions have to be met in order for the DONE pin to
go high:

• the chip's internal memory must be full, and
• the configuration length count must be met, exactly.

This is important because the counter that determines
when the length count is met begins with the very first
CCLK, not the first one after the preamble.

Therefore, if a stray bit is inserted before the preamble, or
the data source is not ready at the time of the first CCLK,
the internal counter that holds the number of CCLKs will be
one ahead of the actual number of data bits read. At the
end of configuration, the configuration memory will be full,
but the number of bits in the internal counter will not match
the expected length count.

As a consequence, a Master mode device will continue to
send out CCLKs until the internal counter turns over to
zero, and then reaches the correct length count a second
time. This will take several seconds [224 ∗ CCLK period] —
which is sometimes interpreted as the device not configur-
ing at all.

If it is not possible to have the data ready at the time of the
first CCLK, the problem can be avoided by increasing the
number in the length count by the appropriate value. The
XACT User Guide includes detailed information about man-
ually altering the length count.

Note that DONE is an open-drain output and does not go
High unless an internal pull-up is activated or an external
pull-up is attached. The internal pull-up is activated as the
default by the bitstream generation software.

Release of User I/O After DONE Goes High

By default, the user I/O are released one CCLK cycle after
the DONE pin goes High. If CCLK is not clocked after
DONE goes High, the outputs remain in their initial state —
3-stated, with a 50 kΩ - 100 kΩ pull-up. The delay from
DONE High to active user I/O is controlled by an option to
the bitstream generation software.

Release of Global Set/Reset After DONE Goes
High

By default, Global Set/Reset (GSR) is released two CCLK
cycles after the DONE pin goes High. If CCLK is not
clocked twice after DONE goes High, all flip-flops are held
in their initial set or reset state. The delay from DONE High
to GSR inactive is controlled by an option to the bitstream
generation software.

Configuration Complete After DONE Goes High

Three full CCLK cycles are required after the DONE pin
goes High, as shown in Figure 47 on page 53. If CCLK is
not clocked three times after DONE goes High, readback
cannot be initiated and most boundary scan instructions
cannot be used.

Configuration Through the Boundary Scan
Pins
XC4000 Series devices can be configured through the
boundary scan pins. The basic procedure is as follows:

• Power up the FPGA with INIT held Low (or drive the
PROGRAM pin Low for more than 300 ns followed by a
High while holding INIT Low). Holding INIT Low allows
enough time to issue the CONFIG command to the
FPGA. The pin can be used as I/O after configuration if
a resistor is used to hold INIT Low.

• Issue the CONFIG command to the TMS input
• Wait for INIT to go High
• Sequence the boundary scan Test Access Port to the

SHIFT-DR state
• Toggle TCK to clock data into TDI pin.

The user must account for all TCK clock cycles after INIT
goes High, as all of these cycles affect the Length Count
compare.

For more detailed information, refer to the Xilinx application
note XAPP017, “Boundary Scan in XC4000 Devices.” This
application note also applies to XC4000E and XC4000X
devices.
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Table 22: Pin Functions During Configuration

CONFIGURATION MODE <M2:M1:M0>
SLAVE
SERIAL
<1:1:1>

MASTER
SERIAL
<0:0:0>

SYNCH.
PERIPHERAL

<0:1:1>

ASYNCH.
PERIPHERAL

<1:0:1>

MASTER
PARALLEL DOWN

<1:1:0>

MASTER
PARALLEL UP

<1:0:0>

USER
OPERATION

M2(HIGH) (I) M2(LOW) (I) M2(LOW) (I) M2(HIGH) (I) M2(HIGH) (I) M2(HIGH) (I) (I)
M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) (O)
M0(HIGH) (I) M0(LOW) (I) M0(HIGH) (I) M0(HIGH) (I) M0(LOW) (I) M0(LOW) (I) (I)
HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) I/O
LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) I/O

INIT INIT INIT INIT INIT INIT I/O
DONE DONE DONE DONE DONE DONE DONE

PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM
CCLK (I) CCLK (O) CCLK (I) CCLK (O) CCLK (O) CCLK (O) CCLK (I)

RDY/BUSY (O) RDY/BUSY (O) RCLK (O) RCLK (O) I/O
RS (I) I/O

CS0 (I) I/O
DATA 7 (I) DATA 7 (I) DATA 7 (I) DATA 7 (I) I/O
DATA 6 (I) DATA 6 (I) DATA 6 (I) DATA 6 (I) I/O
DATA 5 (I) DATA 5 (I) DATA 5 (I) DATA 5 (I) I/O
DATA 4 (I) DATA 4 (I) DATA 4 (I) DATA 4 (I) I/O
DATA 3 (I) DATA 3 (I) DATA 3 (I) DATA 3 (I) I/O
DATA 2 (I) DATA 2 (I) DATA 2 (I) DATA 2 (I) I/O
DATA 1 (I) DATA 1 (I) DATA 1 (I) DATA 1 (I) I/O

DIN (I) DIN (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) I/O
DOUT DOUT DOUT DOUT DOUT DOUT SGCK4-GCK6-I/O

TDI TDI TDI TDI TDI TDI TDI-I/O
TCK TCK TCK TCK TCK TCK TCK-I/O
TMS TMS TMS TMS TMS TMS TMS-I/O
TDO TDO TDO TDO TDO TDO TDO-(O)

WS (I) A0 A0 I/O
A1 A1 PGCK4-GCK7-I/O

CS1 A2 A2 I/O
A3 A3 I/O
A4 A4 I/O
A5 A5 I/O
A6 A6 I/O
A7 A7 I/O
A8 A8 I/O
A9 A9 I/O

A10 A10 I/O
A11 A11 I/O
A12 A12 I/O
A13 A13 I/O
A14 A14 I/O
A15 A15 SGCK1-GCK8-I/O
A16 A16 PGCK1-GCK1-I/O
A17 A17 I/O
A18* A18* I/O
A19* A19* I/O
A20* A20* I/O
A21* A21* I/O

ALL OTHERS
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Table 23: Pin Functions During Configuration

CONFIGURATION MODE <M2:M1:M0>
SLAVE
SERIAL
<1:1:1>

MASTER
SERIAL
<0:0:0>

SYNCH.
PERIPHERAL

<0:1:1>

ASYNCH.
PERIPHERAL

<1:0:1>

MASTER
PARALLEL DOWN

<1:1:0>

MASTER
PARALLEL UP

<1:0:0>

USER
OPERATION

M2(HIGH) (I) M2(LOW) (I) M2(LOW) (I) M2(HIGH) (I) M2(HIGH) (I) M2(HIGH) (I) (I)
M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) (O)
M0(HIGH) (I) M0(LOW) (I) M0(HIGH) (I) M0(HIGH) (I) M0(LOW) (I) M0(LOW) (I) (I)
HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) I/O
LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) I/O

INIT INIT INIT INIT INIT INIT I/O
DONE DONE DONE DONE DONE DONE DONE

PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM
CCLK (I) CCLK (O) CCLK (I) CCLK (O) CCLK (O) CCLK (O) CCLK (I)

RDY/BUSY (O) RDY/BUSY (O) RCLK (O) RCLK (O) I/O
RS (I) I/O

CS0 (I) I/O
DATA 7 (I) DATA 7 (I) DATA 7 (I) DATA 7 (I) I/O
DATA 6 (I) DATA 6 (I) DATA 6 (I) DATA 6 (I) I/O
DATA 5 (I) DATA 5 (I) DATA 5 (I) DATA 5 (I) I/O
DATA 4 (I) DATA 4 (I) DATA 4 (I) DATA 4 (I) I/O
DATA 3 (I) DATA 3 (I) DATA 3 (I) DATA 3 (I) I/O
DATA 2 (I) DATA 2 (I) DATA 2 (I) DATA 2 (I) I/O
DATA 1 (I) DATA 1 (I) DATA 1 (I) DATA 1 (I) I/O

DIN (I) DIN (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) I/O
DOUT DOUT DOUT DOUT DOUT DOUT SGCK4-GCK6-I/O

TDI TDI TDI TDI TDI TDI TDI-I/O
TCK TCK TCK TCK TCK TCK TCK-I/O
TMS TMS TMS TMS TMS TMS TMS-I/O
TDO TDO TDO TDO TDO TDO TDO-(O)

WS (I) A0 A0 I/O
A1 A1 PGCK4-GCK7-I/O

CS1 A2 A2 I/O
A3 A3 I/O
A4 A4 I/O
A5 A5 I/O
A6 A6 I/O
A7 A7 I/O
A8 A8 I/O
A9 A9 I/O

A10 A10 I/O
A11 A11 I/O
A12 A12 I/O
A13 A13 I/O
A14 A14 I/O
A15 A15 SGCK1-GCK8-I/O
A16 A16 PGCK1-GCK1-I/O
A17 A17 I/O
A18* A18* I/O
A19* A19* I/O
A20* A20* I/O
A21* A21* I/O

ALL OTHERS
* XC4000X only
Notes 1. A shaded table cell represents a 50 kΩ - 100 kΩ pull-up before and during configuration.

2. (I) represents an input; (O) represents an output.
3. INIT is an open-drain output during configuration.
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Figure 59:   Asynchronous Peripheral Mode Programming Switching Characteristics

Previous Byte D6 D7 D0 D1 D2

1 TCA

2 TDC

4TWTRB

3 TCD

6 TBUSY

READY

BUSY

RS, CS0

WS, CS1 

D7 

WS/CS0

RS, CS1

D0-D7

CCLK

RDY/BUSY

DOUT

Write to LCA Read Status

X6097

7 4

Description Symbol Min Max Units

Write

Effective Write time
(CS0, WS=Low; RS, CS1=High)

1 TCA 100 ns

DIN setup time 2 TDC 60 ns
DIN hold time 3 TCD 0 ns

RDY

RDY/BUSY delay after end of
Write or Read

4 TWTRB 60 ns

RDY/BUSY active after beginning
of Read

7 60 ns

RDY/BUSY Low output (Note 4) 6 TBUSY 2 9 CCLK
periods

Notes: 1. Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High.
2. The time from the end of WS to CCLK cycle for the new byte of data depends on the completion of previous byte

processing and the phase of the internal timing generator for CCLK.
3. CCLK and DOUT timing is tested in slave mode.
4. TBUSY indicates that the double-buffered parallel-to-serial converter is not yet ready to receive new data. The shortest

TBUSY occurs when a byte is loaded into an empty parallel-to-serial converter. The longest TBUSY occurs when a new word
is loaded into the input register before the second-level buffer has started shifting out data

This timing diagram shows very relaxed requirements. Data need not be held beyond the rising edge of WS. RDY/BUSY will
go active within 60 ns after the end of WS. A new write may be asserted immediately after RDY/BUSY goes Low, but write
may not be terminated until RDY/BUSY has been High for one CCLK period.
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Configuration Switching Characteristics

Master Modes (XC4000E/EX)

Master Modes (XC4000XL)

Slave and Peripheral Modes (All)

Description Symbol Min Max Units

Power-On Reset
M0 = High TPOR 10 40 ms
M0 = Low TPOR 40 130 ms

Program Latency TPI 30 200 µs per
CLB column

CCLK (output) Delay TICCK 40 250 µs
CCLK (output) Period, slow TCCLK 640 2000 ns
CCLK (output) Period, fast TCCLK 80 250 ns

Description Symbol Min Max Units

Power-On Reset
M0 = High TPOR 10 40 ms
M0 = Low TPOR 40 130 ms

Program Latency TPI 30 200 µs per
CLB column

CCLK (output) Delay TICCK 40 250 µs
CCLK (output) Period, slow TCCLK 540 1600 ns
CCLK (output) Period, fast TCCLK 67 200 ns

Description Symbol Min Max Units
Power-On Reset TPOR 10 33 ms
Program Latency TPI 30 200 µs per

CLB column
CCLK (input) Delay (required) TICCK 4 µs
CCLK (input) Period (required) TCCLK 100 ns

VALID

PROGRAM

INIT

Vcc

PIT

PORT

ICCKT CCLKT

CCLK OUTPUT or INPUT

M0, M1, M2 DONE RESPONSE

<300 ns

<300 ns

>300 ns

RE-PROGRAM

X1532

(Required)

I /O
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