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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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XC4000E and XC4000X Series
Compared to the XC4000
For readers already familiar with the XC4000 family of Xil-
inx Field Programmable Gate Arrays, the major new fea-
tures in the XC4000 Series devices are listed in this
section. The biggest advantages of XC4000E and
XC4000X devices are significantly increased system
speed, greater capacity, and new architectural features,
particularly Select-RAM memory. The XC4000X devices
also offer many new routing features, including special
high-speed clock buffers that can be used to capture input
data with minimal delay.

Any XC4000E device is pinout- and bitstream-compatible
with the corresponding XC4000 device. An existing
XC4000 bitstream can be used to program an XC4000E
device. However, since the XC4000E includes many new
features, an XC4000E bitstream cannot be loaded into an
XC4000 device.

XC4000X Series devices are not bitstream-compatible with
equivalent array size devices in the XC4000 or XC4000E
families. However, equivalent array size devices, such as
the XC4025, XC4025E, XC4028EX, and XC4028XL, are
pinout-compatible.

Improvements in XC4000E and XC4000X

Increased System Speed

XC4000E and XC4000X devices can run at synchronous
system clock rates of up to 80 MHz, and internal perfor-
mance can exceed 150 MHz. This increase in performance
over the previous families stems from improvements in both
device processing and system architecture. XC4000
Series devices use a sub-micron multi-layer metal process.
In addition, many architectural improvements have been
made, as described below.

The XC4000XL family is a high performance 3.3V family
based on 0.35µ SRAM technology and supports system
speeds to 80 MHz.

PCI Compliance

XC4000 Series -2 and faster speed grades are fully PCI
compliant. XC4000E and XC4000X devices can be used to
implement a one-chip PCI solution.

Carry Logic

The speed of the carry logic chain has increased dramati-
cally. Some parameters, such as the delay on the carry
chain through a single CLB (TBYP), have improved by as

much as 50% from XC4000 values. See “Fast Carry Logic”
on page 18 for more information.

Select-RAM Memory: Edge-Triggered, Synchro-
nous RAM Modes

The RAM in any CLB can be configured for synchronous,
edge-triggered, write operation. The read operation is not
affected by this change to an edge-triggered write.

Dual-Port RAM

A separate option converts the 16x2 RAM in any CLB into a
16x1 dual-port RAM with simultaneous Read/Write.

The function generators in each CLB can be configured as
either level-sensitive (asynchronous) single-port RAM,
edge-triggered (synchronous) single-port RAM, edge-trig-
gered (synchronous) dual-port RAM, or as combinatorial
logic.

Configurable RAM Content

The RAM content can now be loaded at configuration time,
so that the RAM starts up with user-defined data.

H Function Generator

In current XC4000 Series devices, the H function generator
is more versatile than in the original XC4000. Its inputs can
come not only from the F and G function generators but
also from up to three of the four control input lines. The H
function generator can thus be totally or partially indepen-
dent of the other two function generators, increasing the
maximum capacity of the device.

IOB Clock Enable

The two flip-flops in each IOB have a common clock enable
input, which through configuration can be activated individ-
ually for the input or output flip-flop or both. This clock
enable operates exactly like the EC pin on the XC4000
CLB. This new feature makes the IOBs more versatile, and
avoids the need for clock gating.

Output Drivers

The output pull-up structure defaults to a TTL-like
totem-pole. This driver is an n-channel pull-up transistor,
pulling to a voltage one transistor threshold below Vcc, just
like the XC4000 family outputs. Alternatively, XC4000
Series devices can be globally configured with CMOS out-
puts, with p-channel pull-up transistors pulling to Vcc. Also,
the configurable pull-up resistor in the XC4000 Series is a
p-channel transistor that pulls to Vcc, whereas in the origi-
nal XC4000 family it is an n-channel transistor that pulls to
a voltage one transistor threshold below Vcc.
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* Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

Note: All functionality in low-voltage families is the same as
in the corresponding 5-Volt family, except where numerical
references are made to timing or power.

Description
XC4000 Series devices are implemented with a regular,
flexible, programmable architecture of Configurable Logic
Blocks (CLBs), interconnected by a powerful hierarchy of
versatile routing resources, and surrounded by a perimeter
of programmable Input/Output Blocks (IOBs). They have
generous routing resources to accommodate the most
complex interconnect patterns.

The devices are customized by loading configuration data
into internal memory cells. The FPGA can either actively
read its configuration data from an external serial or
byte-parallel PROM (master modes), or the configuration
data can be written into the FPGA from an external device
(slave and peripheral modes).

XC4000 Series FPGAs are supported by powerful and
sophisticated software, covering every aspect of design
from schematic or behavioral entry, floor planning, simula-
tion, automatic block placement and routing of intercon-
nects, to the creation, downloading, and readback of the
configuration bit stream.

Because Xilinx FPGAs can be reprogrammed an unlimited
number of times, they can be used in innovative designs

where hardware is changed dynamically, or where hard-
ware must be adapted to different user applications.
FPGAs are ideal for shortening design and development
cycles, and also offer a cost-effective solution for produc-
tion rates well beyond 5,000 systems per month.
n
’
.

Taking Advantage of Re-configuration
FPGA devices can be re-configured to change logic func-
tion while resident in the system. This capability gives the
system designer a new degree of freedom not available
with any other type of logic.

Hardware can be changed as easily as software. Design
updates or modifications are easy, and can be made to
products already in the field. An FPGA can even be re-con-
figured dynamically to perform different functions at differ-
ent times.

Re-configurable logic can be used to implement system
self-diagnostics, create systems capable of being re-con-
figured for different environments or operations, or imple-
ment multi-purpose hardware for a given application. As an
added benefit, using re-configurable FPGA devices simpli-
fies hardware design and debugging and shortens product
time-to-market.

Table 1: XC4000E and XC4000X Series Field Programmable Gate Arrays

Device
Logic
Cells

Max Logic
Gates

(No RAM)

Max. RAM
Bits

(No Logic)

Typical
Gate Range

(Logic and RAM)*
CLB

Matrix
Total
CLBs

Number
of

Flip-Flops
Max.

User I/O
XC4002XL 152 1,600 2,048 1,000 - 3,000 8 x 8 64 256 64
XC4003E 238 3,000 3,200 2,000 - 5,000 10 x 10 100 360 80
XC4005E/XL 466 5,000 6,272 3,000 - 9,000 14 x 14 196 616 112
XC4006E 608 6,000 8,192 4,000 - 12,000 16 x 16 256 768 128
XC4008E 770 8,000 10,368 6,000 - 15,000 18 x 18 324 936 144
XC4010E/XL 950 10,000 12,800 7,000 - 20,000 20 x 20 400 1,120 160
XC4013E/XL 1368 13,000 18,432 10,000 - 30,000 24 x 24 576 1,536 192
XC4020E/XL 1862 20,000 25,088 13,000 - 40,000 28 x 28 784 2,016 224
XC4025E 2432 25,000 32,768 15,000 - 45,000 32 x 32 1,024 2,560 256
XC4028EX/XL 2432 28,000 32,768 18,000 - 50,000 32 x 32 1,024 2,560 256
XC4036EX/XL 3078 36,000 41,472 22,000 - 65,000 36 x 36 1,296 3,168 288
XC4044XL 3800 44,000 51,200 27,000 - 80,000 40 x 40 1,600 3,840 320
XC4052XL 4598 52,000 61,952 33,000 - 100,000 44 x 44 1,936 4,576 352
XC4062XL 5472 62,000 73,728 40,000 - 130,000 48 x 48 2,304 5,376 384
XC4085XL 7448 85,000 100,352 55,000 - 180,000 56 x 56 3,136 7,168 448
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Input Thresholds

The input thresholds of 5V devices can be globally config-
ured for either TTL (1.2 V threshold) or CMOS (2.5 V
threshold), just like XC2000 and XC3000 inputs. The two
global adjustments of input threshold and output level are
independent of each other. The XC4000XL family has an
input threshold of 1.6V, compatible with both 3.3V CMOS
and TTL levels.

Global Signal Access to Logic

There is additional access from global clocks to the F and
G function generator inputs.

Configuration Pin Pull-Up Resistors

During configuration, these pins have weak pull-up resis-
tors. For the most popular configuration mode, Slave
Serial, the mode pins can thus be left unconnected. The
three mode inputs can be individually configured with or
without weak pull-up or pull-down resistors. A pull-down
resistor value of 4.7 kΩ is recommended.

The three mode inputs can be individually configured with
or without weak pull-up or pull-down resistors after configu-
ration.

The PROGRAM input pin has a permanent weak pull-up.

Soft Start-up

Like the XC3000A, XC4000 Series devices have “Soft
Start-up.” When the configuration process is finished and
the device starts up, the first activation of the outputs is
automatically slew-rate limited. This feature avoids poten-
tial ground bounce when all outputs are turned on simulta-
neously. Immediately after start-up, the slew rate of the
individual outputs is, as in the XC4000 family, determined
by the individual configuration option.

XC4000 and XC4000A Compatibility

Existing XC4000 bitstreams can be used to configure an
XC4000E device. XC4000A bitstreams must be recompiled
for use with the XC4000E due to improved routing
resources, although the devices are pin-for-pin compatible.

Additional Improvements in XC4000X Only

Increased Routing

New interconnect in the XC4000X includes twenty-two
additional vertical lines in each column of CLBs and twelve
new horizontal lines in each row of CLBs. The twelve “Quad
Lines” in each CLB row and column include optional repow-
ering buffers for maximum speed. Additional high-perfor-
mance routing near the IOBs enhances pin flexibility.

Faster Input and Output

A fast, dedicated early clock sourced by global clock buffers
is available for the IOBs. To ensure synchronization with the
regular global clocks, a Fast Capture latch driven by the
early clock is available. The input data can be initially
loaded into the Fast Capture latch with the early clock, then
transferred to the input flip-flop or latch with the low-skew
global clock. A programmable delay on the input can be
used to avoid hold-time requirements. See “IOB Input Sig-
nals” on page 20 for more information.

Latch Capability in CLBs

Storage elements in the XC4000X CLB can be configured
as either flip-flops or latches. This capability makes the
FPGA highly synthesis-compatible.

IOB Output MUX From Output Clock

A multiplexer in the IOB allows the output clock to select
either the output data or the IOB clock enable as the output
to the pad. Thus, two different data signals can share a sin-
gle output pad, effectively doubling the number of device
outputs without requiring a larger, more expensive pack-
age. This multiplexer can also be configured as an
AND-gate to implement a very fast pin-to-pin path. See
“IOB Output Signals” on page 23 for more information.

Additional Address Bits

Larger devices require more bits of configuration data. A
daisy chain of several large XC4000X devices may require
a PROM that cannot be addressed by the eighteen address
bits supported in the XC4000E. The XC4000X Series
therefore extends the addressing in Master Parallel config-
uration mode to 22 bits.
6-8 May 14, 1999 (Version 1.6)
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Detailed Functional Description
XC4000 Series devices achieve high speed through
advanced semiconductor technology and improved archi-
tecture. The XC4000E and XC4000X support system clock
rates of up to 80 MHz and internal performance in excess
of 150 MHz. Compared to older Xilinx FPGA families,
XC4000 Series devices are more powerful. They offer
on-chip edge-triggered and dual-port RAM, clock enables
on I/O flip-flops, and wide-input decoders. They are more
versatile in many applications, especially those involving
RAM. Design cycles are faster due to a combination of
increased routing resources and more sophisticated soft-
ware.

Basic Building Blocks
Xilinx user-programmable gate arrays include two major
configurable elements: configurable logic blocks (CLBs)
and input/output blocks (IOBs).

• CLBs provide the functional elements for constructing
the user’s logic.

• IOBs provide the interface between the package pins
and internal signal lines.

Three other types of circuits are also available:

• 3-State buffers (TBUFs) driving horizontal longlines are
associated with each CLB.

• Wide edge decoders are available around the periphery
of each device.

• An on-chip oscillator is provided.

Programmable interconnect resources provide routing
paths to connect the inputs and outputs of these config-
urable elements to the appropriate networks.

The functionality of each circuit block is customized during
configuration by programming internal static memory cells.
The values stored in these memory cells determine the
logic functions and interconnections implemented in the
FPGA. Each of these available circuits is described in this
section.

Configurable Logic Blocks (CLBs)
Configurable Logic Blocks implement most of the logic in
an FPGA. The principal CLB elements are shown in
Figure 1. Two 4-input function generators (F and G) offer
unrestricted versatility. Most combinatorial logic functions
need four or fewer inputs. However, a third function gener-
ator (H) is provided. The H function generator has three
inputs. Either zero, one, or two of these inputs can be the
outputs of F and G; the other input(s) are from outside the
CLB. The CLB can, therefore, implement certain functions
of up to nine variables, like parity check or expand-
able-identity comparison of two sets of four inputs.

Each CLB contains two storage elements that can be used
to store the function generator outputs. However, the stor-
age elements and function generators can also be used
independently. These storage elements can be configured
as flip-flops in both XC4000E and XC4000X devices; in the
XC4000X they can optionally be configured as latches. DIN
can be used as a direct input to either of the two storage
elements. H1 can drive the other through the H function
generator. Function generator outputs can also drive two
outputs independent of the storage element outputs. This
versatility increases logic capacity and simplifies routing.

Thirteen CLB inputs and four CLB outputs provide access
to the function generators and storage elements. These
inputs and outputs connect to the programmable intercon-
nect resources outside the block.

Function Generators

Four independent inputs are provided to each of two func-
tion generators (F1 - F4 and G1 - G4). These function gen-
erators, with outputs labeled F’ and G’, are each capable of
implementing any arbitrarily defined Boolean function of
four inputs. The function generators are implemented as
memory look-up tables. The propagation delay is therefore
independent of the function implemented.

A third function generator, labeled H’, can implement any
Boolean function of its three inputs. Two of these inputs can
optionally be the F’ and G’ functional generator outputs.
Alternatively, one or both of these inputs can come from
outside the CLB (H2, H0). The third input must come from
outside the block (H1).

Signals from the function generators can exit the CLB on
two outputs. F’ or H’ can be connected to the X output. G’ or
H’ can be connected to the Y output.

A CLB can be used to implement any of the following func-
tions:

• any function of up to four variables, plus any second
function of up to four unrelated variables, plus any third

function of up to three unrelated variables1

• any single function of five variables
• any function of four variables together with some

functions of six variables
• some functions of up to nine variables.

Implementing wide functions in a single block reduces both
the number of blocks required and the delay in the signal
path, achieving both increased capacity and speed.

The versatility of the CLB function generators significantly
improves system speed. In addition, the design-software
tools can deal with each function generator independently.
This flexibility improves cell usage.

1.  When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two
unregistered function generator outputs are available from the CLB.
May 14, 1999 (Version 1.6) 6-9
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Supported CLB memory configurations and timing modes
for single- and dual-port modes are shown in Table 3.

XC4000 Series devices are the first programmable logic
devices with edge-triggered (synchronous) and dual-port
RAM accessible to the user. Edge-triggered RAM simpli-
fies system timing. Dual-port RAM doubles the effective
throughput of FIFO applications. These features can be
individually programmed in any XC4000 Series CLB.

Advantages of On-Chip and Edge-Triggered RAM

The on-chip RAM is extremely fast. The read access time is
the same as the logic delay. The write access time is
slightly slower. Both access times are much faster than
any off-chip solution, because they avoid I/O delays.

Edge-triggered RAM, also called synchronous RAM, is a
feature never before available in a Field Programmable
Gate Array. The simplicity of designing with edge-triggered
RAM, and the markedly higher achievable performance,
add up to a significant improvement over existing devices
with on-chip RAM.

Three application notes are available from Xilinx that dis-
cuss edge-triggered RAM: “XC4000E Edge-Triggered and
Dual-Port RAM Capability,” “Implementing FIFOs in
XC4000E RAM,” and “Synchronous and Asynchronous
FIFO Designs.” All three application notes apply to both
XC4000E and XC4000X RAM.

RAM Configuration Options

The function generators in any CLB can be configured as
RAM arrays in the following sizes:

• Two 16x1 RAMs: two data inputs and two data outputs
with identical or, if preferred, different addressing for
each RAM

• One 32x1 RAM: one data input and one data output.

One F or G function generator can be configured as a 16x1
RAM while the other function generators are used to imple-
ment any function of up to 5 inputs.

Additionally, the XC4000 Series RAM may have either of
two timing modes:

• Edge-Triggered (Synchronous): data written by the
designated edge of the CLB clock. WE acts as a true
clock enable.

• Level-Sensitive (Asynchronous): an external WE signal
acts as the write strobe.

The selected timing mode applies to both function genera-
tors within a CLB when both are configured as RAM.

The number of read ports is also programmable:

• Single Port: each function generator has a common
read and write port

• Dual Port: both function generators are configured
together as a single 16x1 dual-port RAM with one write
port and two read ports. Simultaneous read and write
operations to the same or different addresses are
supported.

RAM configuration options are selected by placing the
appropriate library symbol.

Choosing a RAM Configuration Mode

The appropriate choice of RAM mode for a given design
should be based on timing and resource requirements,
desired functionality, and the simplicity of the design pro-
cess. Recommended usage is shown in Table 4.

The difference between level-sensitive, edge-triggered,
and dual-port RAM is only in the write operation. Read
operation and timing is identical for all modes of operation.

RAM Inputs and Outputs

The F1-F4 and G1-G4 inputs to the function generators act
as address lines, selecting a particular memory cell in each
look-up table.

The functionality of the CLB control signals changes when
the function generators are configured as RAM. The
DIN/H2, H1, and SR/H0 lines become the two data inputs
(D0, D1) and the Write Enable (WE) input for the 16x2
memory. When the 32x1 configuration is selected, D1 acts
as the fifth address bit and D0 is the data input.

The contents of the memory cell(s) being addressed are
available at the F’ and G’ function-generator outputs. They
can exit the CLB through its X and Y outputs, or can be cap-
tured in the CLB flip-flop(s).

Configuring the CLB function generators as Read/Write
memory does not affect the functionality of the other por-

Table 3: Supported RAM Modes

16
x
1

16
x
2

32
x
1

Edge-
Triggered

Timing

Level-
Sensitive

Timing
Single-Port √ √ √ √ √
Dual-Port √ √

Table 4: RAM Mode Selection

Level-Sens
itive

Edge-Trigg
ered

Dual-Port
Edge-Trigg

ered
Use for New
Designs?

No Yes Yes

Size (16x1,
Registered)

1/2 CLB 1/2 CLB 1 CLB

Simultaneous
Read/Write

No No Yes

Relative
Performance

X 2X
2X (4X

effective)
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tions of the CLB, with the exception of the redefinition of the
control signals. In 16x2 and 16x1 modes, the H’ function
generator can be used to implement Boolean functions of
F’, G’, and D1, and the D flip-flops can latch the F’, G’, H’, or
D0 signals.

Single-Port Edge-Triggered Mode

Edge-triggered (synchronous) RAM simplifies timing
requirements. XC4000 Series edge-triggered RAM timing
operates like writing to a data register. Data and address
are presented. The register is enabled for writing by a logic
High on the write enable input, WE. Then a rising or falling
clock edge loads the data into the register, as shown in
Figure 3.

Complex timing relationships between address, data, and
write enable signals are not required, and the external write
enable pulse becomes a simple clock enable. The active
edge of WCLK latches the address, input data, and WE sig-

nals. An internal write pulse is generated that performs the
write. See Figure 4 and Figure 5 for block diagrams of a
CLB configured as 16x2 and 32x1 edge-triggered, sin-
gle-port RAM.

The relationships between CLB pins and RAM inputs and
outputs for single-port, edge-triggered mode are shown in
Table 5.

The Write Clock input (WCLK) can be configured as active
on either the rising edge (default) or the falling edge. It uses
the same CLB pin (K) used to clock the CLB flip-flops, but it
can be independently inverted. Consequently, the RAM
output can optionally be registered within the same CLB
either by the same clock edge as the RAM, or by the oppo-
site edge of this clock. The sense of WCLK applies to both
function generators in the CLB when both are configured
as RAM.

The WE pin is active-High and is not invertible within the
CLB.

Note: The pulse following the active edge of WCLK (TWPS
in Figure 3) must be less than one millisecond wide. For
most applications, this requirement is not overly restrictive;
however, it must not be forgotten. Stopping WCLK at this
point in the write cycle could result in excessive current and
even damage to the larger devices if many CLBs are con-
figured as edge-triggered RAM.

X6461

WCLK (K)

WE

ADDRESS

DATA IN

DATA OUT OLD NEW

TDSS
TDHS

TASS TAHS

TWSS

TWPS

TWHS

TWOS

TILOTILO

Figure 3:    Edge-Triggered RAM Write Timing

Table 5: Single-Port Edge-Triggered RAM Signals

RAM Signal CLB Pin Function
D D0 or D1 (16x2,

16x1), D0 (32x1)
Data In

A[3:0] F1-F4 or G1-G4 Address
A[4] D1 (32x1) Address
WE WE Write Enable
WCLK K Clock
SPO
(Data Out)

F’ or G’ Single Port Out
(Data Out)
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XC4000XL 5-Volt Tolerant I/Os

The I/Os on the XC4000XL are fully 5-volt tolerant even
though the VCC is 3.3 volts. This allows 5 V signals to
directly connect to the XC4000XL inputs without damage,
as shown in Table 8. In addition, the 3.3 volt VCC can be
applied before or after 5 volt signals are applied to the I/Os.
This makes the XC4000XL immune to power supply
sequencing problems.

Registered Inputs

The I1 and I2 signals that exit the block can each carry
either the direct or registered input signal.

The input and output storage elements in each IOB have a
common clock enable input, which, through configuration,
can be activated individually for the input or output flip-flop,
or both. This clock enable operates exactly like the EC pin
on the XC4000 Series CLB. It cannot be inverted within the
IOB.

The storage element behavior is shown in Table 9.

Table 9: Input Register Functionality
(active rising edge is shown)

Optional Delay Guarantees Zero Hold Time

The data input to the register can optionally be delayed by
several nanoseconds. With the delay enabled, the setup
time of the input flip-flop is increased so that normal clock
routing does not result in a positive hold-time requirement.
A positive hold time requirement can lead to unreliable,
temperature- or processing-dependent operation.

The input flip-flop setup time is defined between the data
measured at the device I/O pin and the clock input at the
IOB (not at the clock pin). Any routing delay from the device
clock pin to the clock input of the IOB must, therefore, be
subtracted from this setup time to arrive at the real setup
time requirement relative to the device pins. A short speci-
fied setup time might, therefore, result in a negative setup
time at the device pins, i.e., a positive hold-time require-
ment.

When a delay is inserted on the data line, more clock delay
can be tolerated without causing a positive hold-time
requirement. Sufficient delay eliminates the possibility of a
data hold-time requirement at the external pin. The maxi-
mum delay is therefore inserted as the default.

The XC4000E IOB has a one-tap delay element: either the
delay is inserted (default), or it is not. The delay guarantees
a zero hold time with respect to clocks routed through any
of the XC4000E global clock buffers. (See “Global Nets and
Buffers (XC4000E only)” on page 35 for a description of the
global clock buffers in the XC4000E.) For a shorter input
register setup time, with non-zero hold, attach a NODELAY
attribute or property to the flip-flop.

The XC4000X IOB has a two-tap delay element, with
choices of a full delay, a partial delay, or no delay. The
attributes or properties used to select the desired delay are
shown in Table 10. The choices are no added attribute,
MEDDELAY, and NODELAY. The default setting, with no
added attribute, ensures no hold time with respect to any of
the XC4000X clock buffers, including the Global Low-Skew
buffers. MEDDELAY ensures no hold time with respect to
the Global Early buffers. Inputs with NODELAY may have a
positive hold time with respect to all clock buffers. For a
description of each of these buffers, see “Global Nets and
Buffers (XC4000X only)” on page 37.

Table 10: XC4000X IOB Input Delay Element

Table 8: Supported Sources for XC4000 Series Device
Inputs

Source

XC4000E/EX
Series Inputs

XC4000XL
Series Inputs

5 V,
TTL

5 V,
CMOS

3.3 V
CMOS

Any device, Vcc = 3.3 V,
CMOS outputs

√
Unreli
-able
Data

√

XC4000 Series, Vcc = 5 V,
TTL outputs

√ √

Any device, Vcc = 5 V,
TTL outputs (Voh ≤ 3.7 V)

√ √

Any device, Vcc = 5 V,
CMOS outputs

√ √ √

Mode Clock
Clock

Enable
D Q

Power-Up or
GSR

X X X SR

Flip-Flop __/ 1* D D
0 X X Q

Latch  1 1* X Q
 0 1* D D

Both X 0 X Q
Legend:

X
__/
SR
0*
1*

Don’t care
Rising edge
Set or Reset value. Reset is default.
Input is Low or unconnected (default value)
Input is High or unconnected (default value)

Value When to Use
full delay
(default, no
attribute added)

Zero Hold with respect to Global
Low-Skew Buffer, Global Early Buffer

MEDDELAY Zero Hold with respect to Global Early
Buffer

NODELAY Short Setup, positive Hold time
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Table 14: Routing per CLB in XC4000 Series Devices

Programmable Switch Matrices

The horizontal and vertical single- and double-length lines
intersect at a box called a programmable switch matrix
(PSM). Each switch matrix consists of programmable pass
transistors used to establish connections between the lines
(see Figure 26).

For example, a single-length signal entering on the right
side of the switch matrix can be routed to a single-length
line on the top, left, or bottom sides, or any combination
thereof, if multiple branches are required. Similarly, a dou-
ble-length signal can be routed to a double-length line on
any or all of the other three edges of the programmable
switch matrix.

Single-Length Lines

Single-length lines provide the greatest interconnect flexi-
bility and offer fast routing between adjacent blocks. There
are eight vertical and eight horizontal single-length lines
associated with each CLB. These lines connect the switch-
ing matrices that are located in every row and a column of
CLBs.

Single-length lines are connected by way of the program-
mable switch matrices, as shown in Figure 28. Routing
connectivity is shown in Figure 27.

Single-length lines incur a delay whenever they go through
a switching matrix. Therefore, they are not suitable for rout-
ing signals for long distances. They are normally used to
conduct signals within a localized area and to provide the
branching for nets with fanout greater than one.

x5994

Quad

Quad

Single

Double

Long

Direct
Connect

Long

CLB

Long Global
Clock

Long Double Single Global
Clock

Carry
Chain

Direct
Connect

Figure 25:   High-Level Routing Diagram of XC4000 Series CLB (shaded arrows indicate XC4000X only)

XC4000E XC4000X
Vertical Horizontal Vertical Horizontal

Singles 8 8 8 8
Doubles 4 4 4 4
Quads 0 0 12 12
Longlines 6 6 10 6
Direct
Connects

0 0 2 2

Globals 4 0 8 0
Carry Logic 2 0 1 0
Total 24 18 45 32

Six Pass Transistors
Per Switch Matrix
Interconnect Point

Singles

Double

Double

Sin
gle

s

Double

Double

X6600

Figure 26:   Programmable Switch Matrix (PSM)
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Double-Length Lines

The double-length lines consist of a grid of metal segments,
each twice as long as the single-length lines: they run past
two CLBs before entering a switch matrix. Double-length
lines are grouped in pairs with the switch matrices stag-
gered, so that each line goes through a switch matrix at
every other row or column of CLBs (see Figure 28).

There are four vertical and four horizontal double-length
lines associated with each CLB. These lines provide faster
signal routing over intermediate distances, while retaining
routing flexibility. Double-length lines are connected by way
of the programmable switch matrices. Routing connectivity
is shown in Figure 27.

Quad Lines (XC4000X only)

XC4000X devices also include twelve vertical and twelve
horizontal quad lines per CLB row and column. Quad lines
are four times as long as the single-length lines. They are
interconnected via buffered switch matrices (shown as dia-
monds in Figure 27 on page 30). Quad lines run past four
CLBs before entering a buffered switch matrix. They are
grouped in fours, with the buffered switch matrices stag-
gered, so that each line goes through a buffered switch
matrix at every fourth CLB location in that row or column.
(See Figure 29.)

The buffered switch matrixes have four pins, one on each
edge. All of the pins are bidirectional. Any pin can drive any
or all of the other pins.

Each buffered switch matrix contains one buffer and six
pass transistors. It resembles the programmable switch
matrix shown in Figure 26, with the addition of a program-
mable buffer. There can be up to two independent inputs

and up to two independent outputs. Only one of the inde-
pendent inputs can be buffered.

The place and route software automatically uses the timing
requirements of the design to determine whether or not a
quad line signal should be buffered. A heavily loaded signal
is typically buffered, while a lightly loaded one is not. One
scenario is to alternate buffers and pass transistors. This
allows both vertical and horizontal quad lines to be buffered
at alternating buffered switch matrices.

Due to the buffered switch matrices, quad lines are very
fast. They provide the fastest available method of routing
heavily loaded signals for long distances across the device.

Longlines

Longlines form a grid of metal interconnect segments that
run the entire length or width of the array. Longlines are
intended for high fan-out, time-critical signal nets, or nets
that are distributed over long distances. In XC4000X
devices, quad lines are preferred for critical nets, because
the buffered switch matrices make them faster for high
fan-out nets.

Two horizontal longlines per CLB can be driven by 3-state
or open-drain drivers (TBUFs). They can therefore imple-
ment unidirectional or bidirectional buses, wide multiplex-
ers, or wired-AND functions. (See “Three-State Buffers” on
page 26 for more details.)

Each horizontal longline driven by TBUFs has either two
(XC4000E) or eight (XC4000X) pull-up resistors. To acti-
vate these resistors, attach a PULLUP symbol to the
long-line net. The software automatically activates the
appropriate number of pull-ups. There is also a weak
keeper at each end of these two horizontal longlines. This

CLB

PSM PSM

PSMPSM

CLB CLB

CLB CLB CLB

CLB CLB CLB

Doubles

Singles

Doubles

X6601

Figure 28: Single- and Double-Length Lines, with
Programmable Switch Matrices (PSMs)

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

X9014

Figure 29:   Quad Lines (XC4000X only)
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IOB inputs and outputs interface with the octal lines via the
single-length interconnect lines. Single-length lines are
also used for communication between the octals and dou-
ble-length lines, quads, and longlines within the CLB array.

Segmentation into buffered octals was found to be optimal
for distributing signals over long distances around the
device.

Global Nets and Buffers
Both the XC4000E and the XC4000X have dedicated glo-
bal networks. These networks are designed to distribute
clocks and other high fanout control signals throughout the
devices with minimal skew. The global buffers are
described in detail in the following sections. The text
descriptions and diagrams are summarized in Table 15.
The table shows which CLB and IOB clock pins can be
sourced by which global buffers.

In both XC4000E and XC4000X devices, placement of a
library symbol called BUFG results in the software choos-
ing the appropriate clock buffer, based on the timing
requirements of the design. The detailed information in
these sections is included only for reference.

Global Nets and Buffers (XC4000E only)

Four vertical longlines in each CLB column are driven
exclusively by special global buffers. These longlines are
in addition to the vertical longlines used for standard inter-
connect. The four global lines can be driven by either of two
types of global buffers. The clock pins of every CLB and
IOB can also be sourced from local interconnect.

Two different types of clock buffers are available in the
XC4000E:

• Primary Global Buffers (BUFGP)
• Secondary Global Buffers (BUFGS)

Four Primary Global buffers offer the shortest delay and
negligible skew. Four Secondary Global buffers have
slightly longer delay and slightly more skew due to poten-
tially heavier loading, but offer greater flexibility when used
to drive non-clock CLB inputs.

The Primary Global buffers must be driven by the
semi-dedicated pads. The Secondary Global buffers can
be sourced by either semi-dedicated pads or internal nets.

Each CLB column has four dedicated vertical Global lines.
Each of these lines can be accessed by one particular Pri-
mary Global buffer, or by any of the Secondary Global buff-
ers, as shown in Figure 34. Each corner of the device has
one Primary buffer and one Secondary buffer.

IOBs along the left and right edges have four vertical global
longlines. Top and bottom IOBs can be clocked from the
global lines in the adjacent CLB column.

A global buffer should be specified for all timing-sensitive
global signal distribution. To use a global buffer, place a
BUFGP (primary buffer), BUFGS (secondary buffer), or
BUFG (either primary or secondary buffer) element in a
schematic or in HDL code. If desired, attach a LOC
attribute or property to direct placement to the designated
location. For example, attach a LOC=L attribute or property
to a BUFGS symbol to direct that a buffer be placed in one
of the two Secondary Global buffers on the left edge of the
device, or a LOC=BL to indicate the Secondary Global
buffer on the bottom edge of the device, on the left.

L = Left, R = Right, T = Top, B = Bottom

Table 15: Clock Pin Access

XC4000E XC4000X Local
Inter-

connectBUFGP BUFGS BUFGLS
L & R

BUFGE
T & B

BUFGE
All CLBs in Quadrant √ √ √ √ √ √
All CLBs in Device √ √ √ √
IOBs on Adjacent Vertical
Half Edge

√ √ √ √ √ √

IOBs on Adjacent Vertical
Full Edge

√ √ √ √ √

IOBs on Adjacent Horizontal
Half Edge (Direct)

√ √

IOBs on Adjacent Horizontal
Half Edge (through CLB globals)

√ √ √ √ √ √

IOBs on Adjacent Horizontal
Full Edge (through CLB globals)

√ √ √ √
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Figure 34:   XC4000E Global Net Distribution
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Figure 35:   XC4000X Global Net Distribution
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Global Early Buffers

Each corner of the XC4000X device has two Global Early
buffers. The primary purpose of the Global Early buffers is
to provide an earlier clock access than the potentially
heavily-loaded Global Low-Skew buffers. A clock source
applied to both buffers will result in the Global Early clock
edge occurring several nanoseconds earlier than the Glo-
bal Low-Skew buffer clock edge, due to the lighter loading.

Global Early buffers also facilitate the fast capture of device
inputs, using the Fast Capture latches described in “IOB
Input Signals” on page 20. For Fast Capture, take a single
clock signal, and route it through both a Global Early buffer
and a Global Low-Skew buffer. (The two buffers share an
input pad.) Use the Global Early buffer to clock the Fast
Capture latch, and the Global Low-Skew buffer to clock the
normal input flip-flop or latch, as shown in Figure 17 on
page 23.

The Global Early buffers can also be used to provide a fast
Clock-to-Out on device output pins. However, an early clock
in the output flip-flop IOB must be taken into consideration
when calculating the internal clock speed for the design.

The Global Early buffers at the left and right edges of the
chip have slightly different capabilities than the ones at the
top and bottom. Refer to Figure 37, Figure 38, and
Figure 35 on page 36 while reading the following explana-
tion.

Each Global Early buffer can access the eight vertical Glo-
bal lines for all CLBs in the quadrant. Therefore, only
one-fourth of the CLB clock pins can be accessed. This
restriction is in large part responsible for the faster speed of
the buffers, relative to the Global Low-Skew buffers.

The left-side Global Early buffers can each drive two of the
four vertical lines accessing the IOBs on the entire left edge
of the device. The right-side Global Early buffers can each
drive two of the eight vertical lines accessing the IOBs on
the entire right edge of the device. (See Figure 37.)

Each left and right Global Early buffer can also drive half of
the IOBs along either the top or bottom edge of the device,
using a dedicated line that can only be accessed through
the Global Early buffers.

The top and bottom Global Early buffers can drive half of
the IOBs along either the left or right edge of the device, as
shown in Figure 38. They can only access the top and bot-
tom IOBs via the CLB global lines.
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Figure 36:   Any BUFGLS (GCK1 - GCK8) Can
Drive Any or All Clock Inputs on the Device
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Figure 37: Left and Right BUFGEs Can Drive Any or
All Clock Inputs in Same Quadrant or Edge (GCK1 is
shown. GCK2, GCK5 and GCK6 are similar.)
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Figure 38:   Top and Bottom BUFGEs Can Drive Any
or All Clock Inputs in Same Quadrant (GCK8 is
shown. GCK3, GCK4 and GCK7 are similar.)
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is passed through and is captured by each FPGA when it
recognizes the 0010 preamble. Following the length-count
data, each FPGA outputs a High on DOUT until it has
received its required number of data frames.

After an FPGA has received its configuration data, it
passes on any additional frame start bits and configuration
data on DOUT. When the total number of configuration
clocks applied after memory initialization equals the value
of the 24-bit length count, the FPGAs begin the start-up
sequence and become operational together. FPGA I/O are
normally released two CCLK cycles after the last configura-
tion bit is received. Figure 47 on page 53 shows the
start-up timing for an XC4000 Series device.

The daisy-chained bitstream is not simply a concatenation
of the individual bitstreams. The PROM file formatter must
be used to combine the bitstreams for a daisy-chained con-
figuration.

Multi-Family Daisy Chain

All Xilinx FPGAs of the XC2000, XC3000, and XC4000
Series use a compatible bitstream format and can, there-
fore, be connected in a daisy chain in an arbitrary
sequence. There is, however, one limitation. The lead
device must belong to the highest family in the chain. If the
chain contains XC4000 Series devices, the master nor-
mally cannot be an XC2000 or XC3000 device.

The reason for this rule is shown in Figure 47 on page 53.
Since all devices in the chain store the same length count
value and generate or receive one common sequence of
CCLK pulses, they all recognize length-count match on the
same CCLK edge, as indicated on the left edge of
Figure 47. The master device then generates additional
CCLK pulses until it reaches its finish point F. The different
families generate or require different numbers of additional
CCLK pulses until they reach F. Not reaching F means that
the device does not really finish its configuration, although
DONE may have gone High, the outputs became active,
and the internal reset was released. For the XC4000 Series
device, not reaching F means that readback cannot be ini-

tiated and most boundary scan instructions cannot be
used.

The user has some control over the relative timing of these
events and can, therefore, make sure that they occur at the
proper time and the finish point F is reached. Timing is con-
trolled using options in the bitstream generation software.

XC3000 Master with an XC4000 Series Slave

Some designers want to use an inexpensive lead device in
peripheral mode and have the more precious I/O pins of the
XC4000 Series devices all available for user I/O. Figure 44
provides a solution for that case.

This solution requires one CLB, one IOB and pin, and an
internal oscillator with a frequency of up to 5 MHz as a
clock source. The XC3000 master device must be config-
ured with late Internal Reset, which is the default option.

One CLB and one IOB in the lead XC3000-family device
are used to generate the additional CCLK pulse required by
the XC4000 Series devices. When the lead device removes
the internal RESET signal, the 2-bit shift register responds
to its clock input and generates an active Low output signal
for the duration of the subsequent clock period. An external
connection between this output and CCLK thus creates the
extra CCLK pulse.

Output
Connected
to CCLK

OE/T

0
1
1
0
0
..

0
0
1
1
1
..

Reset

X5223
etc

Active Low Output
Active High Output

Figure 44:   CCLK Generation for XC3000 Master
Driving an XC4000 Series Slave
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Setting CCLK Frequency
For Master modes, CCLK can be generated in either of two
frequencies. In the default slow mode, the frequency
ranges from 0.5 MHz to 1.25 MHz for XC4000E and
XC4000EX devices and from 0.6 MHz to 1.8 MHz for
XC4000XL devices. In fast CCLK mode, the frequency
ranges from 4 MHz to 10 MHz for XC4000E/EX devices and
from 5 MHz to 15 MHz for XC4000XL devices. The fre-
quency is selected by an option when running the bitstream
generation software. If an XC4000 Series Master is driving
an XC3000- or XC2000-family slave, slow CCLK mode
must be used. In addition, an XC4000XL device driving a
XC4000E or XC4000EX should use slow mode. Slow mode
is the default.

Table 19: XC4000 Series Data Stream Formats

Data Stream Format
The data stream (“bitstream”) format is identical for all con-
figuration modes.

The data stream formats are shown in Table 19. Bit-serial
data is read from left to right, and byte-parallel data is effec-
tively assembled from this serial bitstream, with the first bit
in each byte assigned to D0.

The configuration data stream begins with a string of eight
ones, a preamble code, followed by a 24-bit length count
and a separator field of ones. This header is followed by the
actual configuration data in frames. The length and number
of frames depends on the device type (see Table 20 and
Table 21). Each frame begins with a start field and ends
with an error check. A postamble code is required to signal
the end of data for a single device. In all cases, additional
start-up bytes of data are required to provide four clocks for
the startup sequence at the end of configuration. Long
daisy chains require additional startup bytes to shift the last
data through the chain. All startup bytes are don’t-cares;
these bytes are not included in bitstreams created by the
Xilinx software.

A selection of CRC or non-CRC error checking is allowed
by the bitstream generation software. The non-CRC error
checking tests for a designated end-of-frame field for each
frame. For CRC error checking, the software calculates a
running CRC and inserts a unique four-bit partial check at
the end of each frame. The 11-bit CRC check of the last
frame of an FPGA includes the last seven data bits.

Detection of an error results in the suspension of data load-
ing and the pulling down of the INIT pin. In Master modes,
CCLK and address signals continue to operate externally.
The user must detect INIT and initialize a new configuration
by pulsing the PROGRAM pin Low or cycling Vcc.

Data Type
All Other

Modes (D0...)
Fill Byte 11111111b
Preamble Code 0010b
Length Count COUNT(23:0)
Fill Bits 1111b
Start Field 0b
Data Frame DATA(n-1:0)
CRC or Constant
Field Check

xxxx (CRC)
or 0110b

Extend Write Cycle —
Postamble 01111111b
Start-Up Bytes xxh
Legend:
Not shaded Once per bitstream
Light Once per data frame
Dark Once per device
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Notes: 1. Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits
Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1
Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits
PROM Size = Program Data + 40 (header) + 8

2. The user can add more “one” bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of
any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra “one”
bits, even for extra leading ones at the beginning of the header.

Cyclic Redundancy Check (CRC) for
Configuration and Readback
The Cyclic Redundancy Check is a method of error detec-
tion in data transmission applications. Generally, the trans-
mitting system performs a calculation on the serial
bitstream. The result of this calculation is tagged onto the
data stream as additional check bits. The receiving system
performs an identical calculation on the bitstream and com-
pares the result with the received checksum.

Each data frame of the configuration bitstream has four
error bits at the end, as shown in Table 19. If a frame data
error is detected during the loading of the FPGA, the con-

figuration process with a potentially corrupted bitstream is
terminated. The FPGA pulls the INIT pin Low and goes into
a Wait state.

During Readback, 11 bits of the 16-bit checksum are added
to the end of the Readback data stream. The checksum is
computed using the CRC-16 CCITT polynomial, as shown
in Figure 45. The checksum consists of the 11 most signif-
icant bits of the 16-bit code. A change in the checksum indi-
cates a change in the Readback bitstream. A comparison
to a previous checksum is meaningful only if the readback
data is independent of the current device state. CLB out-
puts should not be included (Read Capture option not

Table 20: XC4000E Program Data

Device XC4003E XC4005E XC4006E XC4008E XC4010E XC4013E XC4020E XC4025E
Max Logic Gates 3,000 5,000 6,000 8,000 10,000 13,000 20,000 25,000
CLBs
(Row x Col.)

100
(10 x 10)

196
(14 x 14)

256
(16 x 16)

324
(18 x 18)

400
(20 x 20)

576
(24 x 24)

784
(28 x 28)

1,024
(32 x 32)

IOBs 80 112 128 144 160 192 224 256
Flip-Flops 360 616 768 936 1,120 1,536 2,016 2,560
Bits per Frame 126 166 186 206 226 266 306 346
Frames 428 572 644 716 788 932 1,076 1,220
Program Data 53,936 94,960 119,792 147,504 178,096 247,920 329,264 422,128
PROM Size
(bits)

53,984 95,008 119,840 147,552 178,144 247,968 329,312 422,176

Table 21: XC4000EX/XL Program Data

Device XC4002XL XC4005 XC4010 XC4013 XC4020 XC4028 XC4036 XC4044 XC4052 XC4062 XC4085

Max Logic
Gates

2,000 5,000 10,000 13,000 20,000 28,000 36,000 44,000 52,000 62,000 85,000

CLBs
(Row x
Column)

64
(8 x 8)

196
(14 x 14)

400
(20 x 20)

576
(24 x 24)

784
(28 x 28)

1,024
(32 x 32)

1,296
(36 x 36)

1,600
(40 x 40)

1,936
(44 x 44)

2,304
(48 x 48)

3,136
(56 x 56)

IOBs 64 112 160 192 224 256 288 320 352 384 448

Flip-Flops 256 616 1,120 1,536 2,016 2,560 3,168 3,840 4,576 5,376 7,168

Bits per
Frame

133 205 277 325 373 421 469 517 565 613 709

Frames 459 741 1,023 1,211 1,399 1,587 1,775 1,963 2,151 2,339 2,715

Program Data 61,052 151,910 283,376 393,580 521,832 668,124 832,480 1,014,876 1,215,320 1,433,804 1,924,940

PROM Size
(bits)

61,104 151,960 283,424 393,632 521,880 668,172 832,528 1,014,924 1,215,368 1,433,852 1,924,992

Notes: 1. Bits per frame = (13 x number of rows) + 9 for the top + 17 for the bottom + 8 + 1 start bit + 4 error check bits.
Frames = (47 x number of columns) + 27 for the left edge + 52 for the right edge + 4.

 Program data = (bits per frame x number of frames) + 5 postamble bits.
 PROM size = (program data + 40 header bits + 8 start bits) rounded up to the nearest byte.
2. The user can add more “one” bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end

of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra “one”
bits, even for extra leading “ones” at the beginning of the header.
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Low. During this time delay, or as long as the PROGRAM
input is asserted, the configuration logic is held in a Config-
uration Memory Clear state. The configuration-memory
frames are consecutively initialized, using the internal oscil-
lator.

At the end of each complete pass through the frame
addressing, the power-on time-out delay circuitry and the
level of the PROGRAM pin are tested. If neither is asserted,
the logic initiates one additional clearing of the configura-
tion frames and then tests the INIT input.

Initialization

During initialization and configuration, user pins HDC, LDC,
INIT and DONE provide status outputs for the system inter-
face. The outputs LDC, INIT and DONE are held Low and
HDC is held High starting at the initial application of power.

The open drain INIT pin is released after the final initializa-
tion pass through the frame addresses. There is a deliber-
ate delay of 50 to 250 µs (up to 10% longer for low-voltage
devices) before a Master-mode device recognizes an inac-
tive INIT. Two internal clocks after the INIT pin is recognized
as High, the FPGA samples the three mode lines to deter-
mine the configuration mode. The appropriate interface
lines become active and the configuration preamble and
data can be loaded.Configuration

The 0010 preamble code indicates that the following 24 bits
represent the length count. The length count is the total
number of configuration clocks needed to load the com-
plete configuration data. (Four additional configuration
clocks are required to complete the configuration process,
as discussed below.) After the preamble and the length
count have been passed through to all devices in the daisy
chain, DOUT is held High to prevent frame start bits from
reaching any daisy-chained devices.

A specific configuration bit, early in the first frame of a mas-
ter device, controls the configuration-clock rate and can
increase it by a factor of eight. Therefore, if a fast configu-
ration clock is selected by the bitstream, the slower clock
rate is used until this configuration bit is detected.

Each frame has a start field followed by the frame-configu-
ration data bits and a frame error field. If a frame data error
is detected, the FPGA halts loading, and signals the error
by pulling the open-drain INIT pin Low. After all configura-
tion frames have been loaded into an FPGA, DOUT again
follows the input data so that the remaining data is passed
on to the next device.

Delaying Configuration After Power-Up

There are two methods of delaying configuration after
power-up: put a logic Low on the PROGRAM input, or pull
the bidirectional INIT pin Low, using an open-collector
(open-drain) driver. (See Figure 46 on page 50.)

A Low on the PROGRAM input is the more radical
approach, and is recommended when the power-supply

rise time is excessive or poorly defined. As long as PRO-
GRAM is Low, the FPGA keeps clearing its configuration
memory. When PROGRAM goes High, the configuration
memory is cleared one more time, followed by the begin-
ning of configuration, provided the INIT input is not exter-
nally held Low. Note that a Low on the PROGRAM input
automatically forces a Low on the INIT output. The XC4000
Series PROGRAM pin has a permanent weak pull-up.

Using an open-collector or open-drain driver to hold INIT
Low before the beginning of configuration causes the
FPGA to wait after completing the configuration memory
clear operation. When INIT is no longer held Low exter-
nally, the device determines its configuration mode by cap-
turing its mode pins, and is ready to start the configuration
process. A master device waits up to an additional 250 µs
to make sure that any slaves in the optional daisy chain
have seen that INIT is High.

Start-Up

Start-up is the transition from the configuration process to
the intended user operation. This transition involves a
change from one clock source to another, and a change
from interfacing parallel or serial configuration data where
most outputs are 3-stated, to normal operation with I/O pins
active in the user-system. Start-up must make sure that the
user-logic ‘wakes up’ gracefully, that the outputs become
active without causing contention with the configuration sig-
nals, and that the internal flip-flops are released from the
global Reset or Set at the right time.

Figure 47 describes start-up timing for the three Xilinx fam-
ilies in detail. The configuration modes can use any of the
four timing sequences.

To access the internal start-up signals, place the STARTUP
library symbol.

Start-up Timing

Different FPGA families have different start-up sequences.

The XC2000 family goes through a fixed sequence. DONE
goes High and the internal global Reset is de-activated one
CCLK period after the I/O become active.

The XC3000A family offers some flexibility. DONE can be
programmed to go High one CCLK period before or after
the I/O become active. Independent of DONE, the internal
global Reset is de-activated one CCLK period before or
after the I/O become active.

The XC4000 Series offers additional flexibility. The three
events — DONE going High, the internal Set/Reset being
de-activated, and the user I/O going active — can all occur
in any arbitrary sequence. Each of them can occur one
CCLK period before or after, or simultaneous with, any of
the others. This relative timing is selected by means of soft-
ware options in the bitstream generation software.
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Start-up from a User Clock (STARTUP.CLK)

When, instead of CCLK, a user-supplied start-up clock is
selected, Q1 is used to bridge the unknown phase relation-
ship between CCLK and the user clock. This arbitration
causes an unavoidable one-cycle uncertainty in the timing
of the rest of the start-up sequence.

DONE Goes High to Signal End of Configuration

XC4000 Series devices read the expected length count
from the bitstream and store it in an internal register. The
length count varies according to the number of devices and
the composition of the daisy chain. Each device also counts
the number of CCLKs during configuration.

Two conditions have to be met in order for the DONE pin to
go high:

• the chip's internal memory must be full, and
• the configuration length count must be met, exactly.

This is important because the counter that determines
when the length count is met begins with the very first
CCLK, not the first one after the preamble.

Therefore, if a stray bit is inserted before the preamble, or
the data source is not ready at the time of the first CCLK,
the internal counter that holds the number of CCLKs will be
one ahead of the actual number of data bits read. At the
end of configuration, the configuration memory will be full,
but the number of bits in the internal counter will not match
the expected length count.

As a consequence, a Master mode device will continue to
send out CCLKs until the internal counter turns over to
zero, and then reaches the correct length count a second
time. This will take several seconds [224 ∗ CCLK period] —
which is sometimes interpreted as the device not configur-
ing at all.

If it is not possible to have the data ready at the time of the
first CCLK, the problem can be avoided by increasing the
number in the length count by the appropriate value. The
XACT User Guide includes detailed information about man-
ually altering the length count.

Note that DONE is an open-drain output and does not go
High unless an internal pull-up is activated or an external
pull-up is attached. The internal pull-up is activated as the
default by the bitstream generation software.

Release of User I/O After DONE Goes High

By default, the user I/O are released one CCLK cycle after
the DONE pin goes High. If CCLK is not clocked after
DONE goes High, the outputs remain in their initial state —
3-stated, with a 50 kΩ - 100 kΩ pull-up. The delay from
DONE High to active user I/O is controlled by an option to
the bitstream generation software.

Release of Global Set/Reset After DONE Goes
High

By default, Global Set/Reset (GSR) is released two CCLK
cycles after the DONE pin goes High. If CCLK is not
clocked twice after DONE goes High, all flip-flops are held
in their initial set or reset state. The delay from DONE High
to GSR inactive is controlled by an option to the bitstream
generation software.

Configuration Complete After DONE Goes High

Three full CCLK cycles are required after the DONE pin
goes High, as shown in Figure 47 on page 53. If CCLK is
not clocked three times after DONE goes High, readback
cannot be initiated and most boundary scan instructions
cannot be used.

Configuration Through the Boundary Scan
Pins
XC4000 Series devices can be configured through the
boundary scan pins. The basic procedure is as follows:

• Power up the FPGA with INIT held Low (or drive the
PROGRAM pin Low for more than 300 ns followed by a
High while holding INIT Low). Holding INIT Low allows
enough time to issue the CONFIG command to the
FPGA. The pin can be used as I/O after configuration if
a resistor is used to hold INIT Low.

• Issue the CONFIG command to the TMS input
• Wait for INIT to go High
• Sequence the boundary scan Test Access Port to the

SHIFT-DR state
• Toggle TCK to clock data into TDI pin.

The user must account for all TCK clock cycles after INIT
goes High, as all of these cycles affect the Length Count
compare.

For more detailed information, refer to the Xilinx application
note XAPP017, “Boundary Scan in XC4000 Devices.” This
application note also applies to XC4000E and XC4000X
devices.
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Configuration Timing
The seven configuration modes are discussed in detail in
this section. Timing specifications are included.

Slave Serial Mode
In Slave Serial mode, an external signal drives the CCLK
input of the FPGA. The serial configuration bitstream must
be available at the DIN input of the lead FPGA a short
setup time before each rising CCLK edge.

The lead FPGA then presents the preamble data—and all
data that overflows the lead device—on its DOUT pin.

There is an internal delay of 0.5 CCLK periods, which
means that DOUT changes on the falling CCLK edge, and
the next FPGA in the daisy chain accepts data on the sub-
sequent rising CCLK edge.

Figure 51 shows a full master/slave system. An XC4000
Series device in Slave Serial mode should be connected as
shown in the third device from the left.

Slave Serial mode is selected by a <111> on the mode pins
(M2, M1, M0). Slave Serial is the default mode if the mode
pins are left unconnected, as they have weak pull-up resis-
tors during configuration.

Figure 52:   Slave Serial Mode Programming Switching Characteristics
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NOTE:
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Figure 51:   Master/Slave Serial Mode Circuit Diagram

4 TCCH

Bit n Bit n + 1

Bit nBit n - 1

3 TCCO

5 TCCL2 TCCD1 TDCC

DIN

CCLK

DOUT
(Output)

X5379

Description Symbol Min Max Units

CCLK

DIN setup 1 TDCC 20 ns
DIN hold 2 TCCD 0 ns
DIN to DOUT 3 TCCO 30 ns
High time 4 TCCH 45 ns
Low time 5 TCCL 45 ns
Frequency FCC 10 MHz

Note: Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High.
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Synchronous Peripheral Mode
Synchronous Peripheral mode can also be considered
Slave Parallel mode. An external signal drives the CCLK
input(s) of the FPGA(s). The first byte of parallel configura-
tion data must be available at the Data inputs of the lead
FPGA a short setup time before the rising CCLK edge.
Subsequent data bytes are clocked in on every eighth con-
secutive rising CCLK edge.

The same CCLK edge that accepts data, also causes the
RDY/BUSY output to go High for one CCLK period. The pin
name is a misnomer. In Synchronous Peripheral mode it is
really an ACKNOWLEDGE signal. Synchronous operation
does not require this response, but it is a meaningful signal
for test purposes. Note that RDY/BUSY is pulled High with
a high-impedance pullup prior to INIT going High.

The lead FPGA serializes the data and presents the pre-
amble data (and all data that overflows the lead device) on
its DOUT pin. There is an internal delay of 1.5 CCLK peri-
ods, which means that DOUT changes on the falling CCLK
edge, and the next FPGA in the daisy chain accepts data
on the subsequent rising CCLK edge.

In order to complete the serial shift operation, 10 additional
CCLK rising edges are required after the last data byte has
been loaded, plus one more CCLK cycle for each
daisy-chained device.

Synchronous Peripheral mode is selected by a <011> on
the mode pins (M2, M1, M0).

X9027

CONTROL
SIGNALS

DATA BUS

PROGRAM

DOUT

M0 M1 M2
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INIT DONE

PROGRAM

4.7 kΩ

4.7 kΩ
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VCC

OPTIONAL
DAISY-CHAINED
FPGAs

NOTE:
M2 can be shorted to Ground
if not used as I/O

CCLKCLOCK

PROGRAM

DOUT

XC4000E/X
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XC4000E/X
SYNCHRO-
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M0 M1

N/C

8

M2



DIN

INIT DONE

CCLK

N/C

Figure 56:   Synchronous Peripheral Mode Circuit Diagram
6-64 May 14, 1999 (Version 1.6)



R

XC4000E and XC4000X Series Field Programmable Gate Arrays
Product Obsolete or Under Obsolescence
Configuration Switching Characteristics

Master Modes (XC4000E/EX)

Master Modes (XC4000XL)

Slave and Peripheral Modes (All)

Description Symbol Min Max Units

Power-On Reset
M0 = High TPOR 10 40 ms
M0 = Low TPOR 40 130 ms

Program Latency TPI 30 200 µs per
CLB column

CCLK (output) Delay TICCK 40 250 µs
CCLK (output) Period, slow TCCLK 640 2000 ns
CCLK (output) Period, fast TCCLK 80 250 ns

Description Symbol Min Max Units

Power-On Reset
M0 = High TPOR 10 40 ms
M0 = Low TPOR 40 130 ms

Program Latency TPI 30 200 µs per
CLB column

CCLK (output) Delay TICCK 40 250 µs
CCLK (output) Period, slow TCCLK 540 1600 ns
CCLK (output) Period, fast TCCLK 67 200 ns

Description Symbol Min Max Units
Power-On Reset TPOR 10 33 ms
Program Latency TPI 30 200 µs per

CLB column
CCLK (input) Delay (required) TICCK 4 µs
CCLK (input) Period (required) TCCLK 100 ns

VALID

PROGRAM

INIT

Vcc

PIT

PORT

ICCKT CCLKT

CCLK OUTPUT or INPUT

M0, M1, M2 DONE RESPONSE

<300 ns

<300 ns

>300 ns

RE-PROGRAM

X1532

(Required)

I /O
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