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Product Obsolete or Under Obsolescence

XC4000E and XC4000X Series Field Programmable Gate Arrays XX"JNX@
Table 1: XC4000E and XC4000X Series Field Programmable Gate Arrays
Max Logic |Max. RAM Typical Number
Logic Gates Bits Gate Range CLB Total of Max.
Device Cells (No RAM) |(No Logic) |(Logic and RAM)* Matrix CLBs |Flip-Flops | User I/O

XC4002XL 152 1,600 2,048 1,000 - 3,000 8x8 64 256 64
XC4003E 238 3,000 3,200 2,000 - 5,000 10x 10 100 360 80
XC4005E/XL 466 5,000 6,272 3,000 - 9,000 14x 14 196 616 112
XC4006E 608 6,000 8,192 4,000 - 12,000 16 x 16 256 768 128
XC4008E 770 8,000 10,368 6,000 - 15,000 18 x 18 324 936 144
XC4010E/XL 950 10,000 12,800 7,000 - 20,000 20 x 20 400 1,120 160
XC4013E/XL 1368 13,000 18,432 10,000 - 30,000 24 x 24 576 1,536 192
XC4020E/XL 1862 20,000 25,088 13,000 - 40,000 28 x 28 784 2,016 224
XC4025E 2432 25,000 32,768 15,000 - 45,000 32x32 1,024 2,560 256
XC4028EX/XL 2432 28,000 32,768 18,000 - 50,000 32x32 1,024 2,560 256
XC4036EX/XL 3078 36,000 41,472 22,000 - 65,000 36 x 36 1,296 3,168 288
XC4044XL 3800 44,000 51,200 27,000 - 80,000 40 x 40 1,600 3,840 320
XC4052XL 4598 52,000 61,952 | 33,000 - 100,000 | 44x44 1,936 4,576 352
XC4062XL 5472 62,000 73,728 | 40,000 - 130,000 | 48x48 2,304 5,376 384
XC4085XL 7448 85,000 100,352 | 55,000 - 180,000 | 56 x 56 3,136 7,168 448

* Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

Note: All functionality in low-voltage families is the same as
in the corresponding 5-Volt family, except where numerical
references are made to timing or power.

Description

XC4000 Series devices are implemented with a regular,
flexible, programmable architecture of Configurable Logic
Blocks (CLBs), interconnected by a powerful hierarchy of
versatile routing resources, and surrounded by a perimeter
of programmable Input/Output Blocks (IOBs). They have
generous routing resources to accommodate the most
complex interconnect patterns.

The devices are customized by loading configuration data
into internal memory cells. The FPGA can either actively
read its configuration data from an external serial or
byte-parallel PROM (master modes), or the configuration
data can be written into the FPGA from an external device
(slave and peripheral modes).

XC4000 Series FPGAs are supported by powerful and
sophisticated software, covering every aspect of design
from schematic or behavioral entry, floor planning, simula-
tion, automatic block placement and routing of intercon-
nects, to the creation, downloading, and readback of the
configuration bit stream.

Because Xilinx FPGAs can be reprogrammed an unlimited
number of times, they can be used in innovative designs

where hardware is changed dynamically, or where hard-
ware must be adapted to different user applications.
FPGAs are ideal for shortening design and development
cycles, and also offer a cost-effective solution for produc-
tion rates well beyond 5,000 systems per month.

Taking Advantage of Re-configuration

FPGA devices can be re-configured to change logic func-
tion while resident in the system. This capability gives the
system designer a new degree of freedom not available
with any other type of logic.

Hardware can be changed as easily as software. Design
updates or modifications are easy, and can be made to
products already in the field. An FPGA can even be re-con-
figured dynamically to perform different functions at differ-
ent times.

Re-configurable logic can be used to implement system
self-diagnostics, create systems capable of being re-con-
figured for different environments or operations, or imple-
ment multi-purpose hardware for a given application. As an
added benefit, using re-configurable FPGA devices simpli-
fies hardware design and debugging and shortens product
time-to-market.

May 14, 1999 (Version 1.6)



Product Obsolete or Under Obsolescence
XC4000E and XC4000X Series Field Programmable Gate Arrays

S XILINX®

Supported CLB memory configurations and timing modes
for single- and dual-port modes are shown in Table 3.

XC4000 Series devices are the first programmable logic
devices with edge-triggered (synchronous) and dual-port
RAM accessible to the user. Edge-triggered RAM simpli-
fies system timing. Dual-port RAM doubles the effective
throughput of FIFO applications. These features can be
individually programmed in any XC4000 Series CLB.

Advantages of On-Chip and Edge-Triggered RAM

The on-chip RAM is extremely fast. The read access time is
the same as the logic delay. The write access time is
slightly slower. Both access times are much faster than
any off-chip solution, because they avoid I/0O delays.

Edge-triggered RAM, also called synchronous RAM, is a
feature never before available in a Field Programmable
Gate Array. The simplicity of designing with edge-triggered
RAM, and the markedly higher achievable performance,
add up to a significant improvement over existing devices
with on-chip RAM.

Three application notes are available from Xilinx that dis-
cuss edge-triggered RAM: “XC4000E Edge-Triggered and
Dual-Port RAM Capability; “Implementing FIFOs in
XC4000E RAM, and “Synchronous and Asynchronous
FIFO Designs” All three application notes apply to both
XC4000E and XC4000X RAM.

Table 3: Supported RAM Modes

16 | 16 | 32 Edge- Level-

X X X | Triggered | Sensitive

1 2 1 Timing Timing
Single-Port v v v v v
Dual-Port v v

RAM Configuration Options

The function generators in any CLB can be configured as
RAM arrays in the following sizes:

» Two 16x1 RAMSs: two data inputs and two data outputs
with identical or, if preferred, different addressing for
each RAM

* One 32x1 RAM: one data input and one data output.

One F or G function generator can be configured as a 16x1
RAM while the other function generators are used to imple-
ment any function of up to 5 inputs.

Additionally, the XC4000 Series RAM may have either of
two timing modes:

» Edge-Triggered (Synchronous): data written by the
designated edge of the CLB clock. WE acts as a true
clock enable.

* Level-Sensitive (Asynchronous): an external WE signal
acts as the write strobe.

The selected timing mode applies to both function genera-
tors within a CLB when both are configured as RAM.

The number of read ports is also programmable:

¢ Single Port: each function generator has a common
read and write port

e Dual Port: both function generators are configured
together as a single 16x1 dual-port RAM with one write
port and two read ports. Simultaneous read and write
operations to the same or different addresses are
supported.

RAM configuration options are selected by placing the
appropriate library symbol.

Choosing a RAM Configuration Mode

The appropriate choice of RAM mode for a given design
should be based on timing and resource requirements,
desired functionality, and the simplicity of the design pro-
cess. Recommended usage is shown in Table 4.

The difference between level-sensitive, edge-triggered,
and dual-port RAM is only in the write operation. Read
operation and timing is identical for all modes of operation.

Table 4: RAM Mode Selection

Dual-Port
Level-Sens | Edge-Trigg | Edge-Trigg
itive ered ered
Use_for New No Yes Yes
Designs?
Size (16x1, 1/2CLB | 1/2CLB 1CLB
Registered)
Simultaneous
Read/Write No No Yes
Relative 2X (4X
Performance X 2X effective)

RAM Inputs and Outputs

The F1-F4 and G1-G4 inputs to the function generators act
as address lines, selecting a particular memory cell in each
look-up table.

The functionality of the CLB control signals changes when
the function generators are configured as RAM. The
DIN/H2, H1, and SR/HO lines become the two data inputs
(DO, D1) and the Write Enable (WE) input for the 16x2
memory. When the 32x1 configuration is selected, D1 acts
as the fifth address bit and DO is the data input.

The contents of the memory cell(s) being addressed are
available at the F’ and G’ function-generator outputs. They
can exit the CLB through its X and Y outputs, or can be cap-
tured in the CLB flip-flop(s).

Configuring the CLB function generators as Read/Write
memory does not affect the functionality of the other por-
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tions of the CLB, with the exception of the redefinition of the
control signals. In 16x2 and 16x1 modes, the H’' function
generator can be used to implement Boolean functions of
F’, G, and D1, and the D flip-flops can latch the F’, G’, H’, or
DO signals.

Single-Port Edge-Triggered Mode

Edge-triggered (synchronous) RAM simplifies timing
requirements. XC4000 Series edge-triggered RAM timing
operates like writing to a data register. Data and address
are presented. The register is enabled for writing by a logic
High on the write enable input, WE. Then a rising or falling
clock edge loads the data into the register, as shown in
Figure 3.

nals. An internal write pulse is generated that performs the
write. See Figure 4 and Figure 5 for block diagrams of a
CLB configured as 16x2 and 32x1 edge-triggered, sin-
gle-port RAM.

The relationships between CLB pins and RAM inputs and
outputs for single-port, edge-triggered mode are shown in
Table 5.

The Write Clock input (WCLK) can be configured as active
on either the rising edge (default) or the falling edge. It uses
the same CLB pin (K) used to clock the CLB flip-flops, but it
can be independently inverted. Consequently, the RAM
output can optionally be registered within the same CLB
either by the same clock edge as the RAM, or by the oppo-
site edge of this clock. The sense of WCLK applies to both

function generators in the CLB when both are configured
WCLK (K) as RAM.
The WE pin is active-High and is not invertible within the
CLB.
WE
J Note: The pulse following the active edge of WCLK (Ty\yps
Toss Tons in Figure 3) must be less than one millisecond wide. For
| most applications, this requirement is not overly restrictive;
DATAIN * however, it must not be forgotten. Stopping WCLK at this
point in the write cycle could result in excessive current and
Tass Tans even damage to the larger devices if many CLBs are con-
ADDRESS figured as edge-triggered RAM.
Table 5: Single-Port Edge-Triggered RAM Signals
-
To Toos 2 RAM Signal CLB Pin Function
D DO or D1 (16x2, Data In
DATA OUT oLD NEW 16x1), DO (32x1)
ois A[3:0] F1-F4 or G1-G4 Address
Figure 3: Edge-Triggered RAM Write Timing Al4] D1 (32x1) Address
WE WE Write Enable
Complex timing relationships between address, data, and WCLK K Clock
write enable signals are not required, and the external write SPO F or G Single Port Out
enable pulse becomes a simple clock enable. The active (Data Out) (Data Out)
edge of WCLK latches the address, input data, and WE sig-
May 14, 1999 (Version 1.6) 6-13
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Figure 10: 32x1 Level-Sensitive Single-Port RAM (F and G addresses are identical)
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Figure 13: Fast Carry Logic in XC4000E CLB (shaded area not present in XC4000X)
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Any XC4000 Series 5-Volt device with its outputs config-
ured in TTL mode can drive the inputs of any typical
3.3-Volt device. (For a detailed discussion of how to inter-
face between 5 V and 3.3 V devices, see the 3V Products
section of The Programmable Logic Data Book.)

Supported destinations for XC4000 Series device outputs
are shown in Table 12.

An output can be configured as open-drain (open-collector)
by placing an OBUFT symbol in a schematic or HDL code,
then tying the 3-state pin (T) to the output signal, and the
input pin (1) to Ground. (See Figure 18.)

Table 12: Supported Destinations for XC4000 Series
Outputs

XC4000 Series
Outputs
Destination 3.3V, 5V, 5y,

CMOS| TTL | CMOS
Any typical device, Vcc=3.3V, v v somel
CMOS-threshold inputs
Any device, Vcc =5V, v v v
TTL-threshold inputs
Any device, Vcc =5V, Unreliable v
CMOS-threshold inputs Data

1. Only if destination device has 5-V tolerant inputs

o

L > OPAD |

OBUFT

X6702

Figure 18: Open-Drain Output

Output Slew Rate

The slew rate of each output buffer is, by default, reduced,
to minimize power bus transients when switching non-criti-
cal signals. For critical signals, attach a FAST attribute or
property to the output buffer or flip-flop.

For XC4000E devices, maximum total capacitive load for
simultaneous fast mode switching in the same direction is
200 pF for all package pins between each Power/Ground
pin pair. For XC4000X devices, additional internal

Power/Ground pin pairs are connected to special Power
and Ground planes within the packages, to reduce ground
bounce. Therefore, the maximum total capacitive load is
300 pF between each external Power/Ground pin pair.
Maximum loading may vary for the low-voltage devices.

For slew-rate limited outputs this total is two times larger for
each device type: 400 pF for XC4000E devices and 600 pF
for XC4000X devices. This maximum capacitive load
should not be exceeded, as it can result in ground bounce
of greater than 1.5 V amplitude and more than 5 ns dura-
tion. This level of ground bounce may cause undesired
transient behavior on an output, or in the internal logic. This
restriction is common to all high-speed digital ICs, and is
not particular to Xilinx or the XC4000 Series.

XC4000 Series devices have a feature called “Soft
Start-up,” designed to reduce ground bounce when all out-
puts are turned on simultaneously at the end of configura-
tion. When the configuration process is finished and the
device starts up, the first activation of the outputs is auto-
matically slew-rate limited. Immediately following the initial
activation of the 1/O, the slew rate of the individual outputs
is determined by the individual configuration option for each
IOB.

Global Three-State

A separate Global 3-State line (not shown in Figure 15 or
Figure 16) forces all FPGA outputs to the high-impedance
state, unless boundary scan is enabled and is executing an
EXTEST instruction. This global net (GTS) does not com-
pete with other routing resources; it uses a dedicated distri-
bution network.

GTS can be driven from any user-programmable pin as a
global 3-state input. To use this global net, place an input
pad and input buffer in the schematic or HDL code, driving
the GTS pin of the STARTUP symbol. A specific pin loca-
tion can be assigned to this input using a LOC attribute or
property, just as with any other user-programmable pad. An
inverter can optionally be inserted after the input buffer to
invert the sense of the Global 3-State signal. Using GTS is
similar to GSR. See Figure 2 on page 11 for details.

Alternatively, GTS can be driven from any internal node.

6-24
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Figure 25: High-Level Routing Diagram of XC4000 Series CLB (shaded arrows indicate XC4000X only)

Table 14: Routing per CLB in XC4000 Series Devices

XC4000E XC4000X
Vertical [Horizontal Vertical Horizontal

Singles 8 8 8 8
Doubles 4 4 4 4
Quads 0 0 12 12
Longlines 6 6 10 6
Direct 0 0 2 2
Connects

Globals 4 0 8 0
Carry Logic 2 0 1 0
Total 24 18 45 32

Programmable Switch Matrices

The horizontal and vertical single- and double-length lines
intersect at a box called a programmable switch matrix
(PSM). Each switch matrix consists of programmable pass
transistors used to establish connections between the lines
(see Figure 26).

For example, a single-length signal entering on the right
side of the switch matrix can be routed to a single-length
line on the top, left, or bottom sides, or any combination
thereof, if multiple branches are required. Similarly, a dou-
ble-length signal can be routed to a double-length line on
any or all of the other three edges of the programmable
switch matrix.

1 ‘
Double : b

T T 3

1

Singles ] 1 {

T

1 ; Six Pass Transistors

: 5 Per Switch Matrix
Double : : Interconnect Point

| R N N [ Y d=1

X6600
Figure 26: Programmable Switch Matrix (PSM)

Single-Length Lines

Single-length lines provide the greatest interconnect flexi-
bility and offer fast routing between adjacent blocks. There
are eight vertical and eight horizontal single-length lines
associated with each CLB. These lines connect the switch-
ing matrices that are located in every row and a column of
CLBs.

Single-length lines are connected by way of the program-
mable switch matrices, as shown in Figure 28. Routing
connectivity is shown in Figure 27.

Single-length lines incur a delay whenever they go through
a switching matrix. Therefore, they are not suitable for rout-
ing signals for long distances. They are normally used to
conduct signals within a localized area and to provide the
branching for nets with fanout greater than one.

May 14, 1999 (Version 1.6)
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Figure 28: Single- and Double-Length Lines, with
Programmable Switch Matrices (PSMs)

Double-Length Lines

The double-length lines consist of a grid of metal segments,
each twice as long as the single-length lines: they run past
two CLBs before entering a switch matrix. Double-length
lines are grouped in pairs with the switch matrices stag-
gered, so that each line goes through a switch matrix at
every other row or column of CLBs (see Figure 28).

There are four vertical and four horizontal double-length
lines associated with each CLB. These lines provide faster
signal routing over intermediate distances, while retaining
routing flexibility. Double-length lines are connected by way
of the programmable switch matrices. Routing connectivity
is shown in Figure 27.

Quad Lines (XC4000X only)

XC4000X devices also include twelve vertical and twelve
horizontal quad lines per CLB row and column. Quad lines
are four times as long as the single-length lines. They are
interconnected via buffered switch matrices (shown as dia-
monds in Figure 27 on page 30). Quad lines run past four
CLBs before entering a buffered switch matrix. They are
grouped in fours, with the buffered switch matrices stag-
gered, so that each line goes through a buffered switch
matrix at every fourth CLB location in that row or column.
(See Figure 29.)

The buffered switch matrixes have four pins, one on each
edge. All of the pins are bidirectional. Any pin can drive any
or all of the other pins.

Each buffered switch matrix contains one buffer and six
pass transistors. It resembles the programmable switch
matrix shown in Figure 26, with the addition of a program-
mable buffer. There can be up to two independent inputs

CLB CLB CLB
Lt .
N
R ——
X
CLB cL| Ik CLB
R
CLB CLB| |,/ CLB
y

X9014
Figure 29: Quad Lines (XC4000X only)

and up to two independent outputs. Only one of the inde-
pendent inputs can be buffered.

The place and route software automatically uses the timing
requirements of the design to determine whether or not a
quad line signal should be buffered. A heavily loaded signal
is typically buffered, while a lightly loaded one is not. One
scenario is to alternate buffers and pass transistors. This
allows both vertical and horizontal quad lines to be buffered
at alternating buffered switch matrices.

Due to the buffered switch matrices, quad lines are very
fast. They provide the fastest available method of routing
heavily loaded signals for long distances across the device.

Longlines

Longlines form a grid of metal interconnect segments that
run the entire length or width of the array. Longlines are
intended for high fan-out, time-critical signal nets, or nets
that are distributed over long distances. In XC4000X
devices, quad lines are preferred for critical nets, because
the buffered switch matrices make them faster for high
fan-out nets.

Two horizontal longlines per CLB can be driven by 3-state
or open-drain drivers (TBUFs). They can therefore imple-
ment unidirectional or bidirectional buses, wide multiplex-
ers, or wired-AND functions. (See “Three-State Buffers” on
page 26 for more details.)

Each horizontal longline driven by TBUFs has either two
(XC4000E) or eight (XC4000X) pull-up resistors. To acti-
vate these resistors, attach a PULLUP symbol to the
long-line net. The software automatically activates the
appropriate number of pull-ups. There is also a weak
keeper at each end of these two horizontal longlines. This

May 14, 1999 (Version 1.6)
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Figure 36: Any BUFGLS (GCKL1 - GCK8) Can
Drive Any or All Clock Inputs on the Device

Global Early Buffers

Each corner of the XC4000X device has two Global Early
buffers. The primary purpose of the Global Early buffers is
to provide an earlier clock access than the potentially
heavily-loaded Global Low-Skew buffers. A clock source
applied to both buffers will result in the Global Early clock
edge occurring several nanoseconds earlier than the Glo-
bal Low-Skew buffer clock edge, due to the lighter loading.

Global Early buffers also facilitate the fast capture of device
inputs, using the Fast Capture latches described in “IOB
Input Signals” on page 20. For Fast Capture, take a single
clock signal, and route it through both a Global Early buffer
and a Global Low-Skew buffer. (The two buffers share an
input pad.) Use the Global Early buffer to clock the Fast
Capture latch, and the Global Low-Skew buffer to clock the
normal input flip-flop or latch, as shown in Figure 17 on
page 23.

The Global Early buffers can also be used to provide a fast
Clock-to-Out on device output pins. However, an early clock
in the output flip-flop IOB must be taken into consideration
when calculating the internal clock speed for the design.

The Global Early buffers at the left and right edges of the
chip have slightly different capabilities than the ones at the
top and bottom. Refer to Figure 37, Figure 38, and
Figure 35 on page 36 while reading the following explana-
tion.

Each Global Early buffer can access the eight vertical Glo-
bal lines for all CLBs in the quadrant. Therefore, only
one-fourth of the CLB clock pins can be accessed. This
restriction is in large part responsible for the faster speed of
the buffers, relative to the Global Low-Skew buffers.

8 7
> | 0B | | 0B B¢
1v v 6
I [
(0] CLB CLB o
B B
I [
(¢} CLB CLB o
B B
A A
2 D OB | 10B R 5
3 4

X6751

Figure 37: Left and Right BUFGEs Can Drive Any or
All Clock Inputs in Same Quadrant or Edge (GCK1 is
shown. GCK2, GCK5 and GCKG6 are similar.)

The left-side Global Early buffers can each drive two of the
four vertical lines accessing the I0Bs on the entire left edge
of the device. The right-side Global Early buffers can each
drive two of the eight vertical lines accessing the IOBs on
the entire right edge of the device. (See Figure 37.)

Each left and right Global Early buffer can also drive half of
the I0Bs along either the top or bottom edge of the device,
using a dedicated line that can only be accessed through
the Global Early buffers.

The top and bottom Global Early buffers can drive half of
the 10Bs along either the left or right edge of the device, as
shown in Figure 38. They can only access the top and bot-
tom 10Bs via the CLB global lines.

8 7
| 0B | | I0B |
1v v 6
I I
0] CLB CLB o
B B
I I
] CLB CLB o
B
A A
2 > 10B | 10B | < 5
3 4
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Figure 38: Top and Bottom BUFGEs Can Drive Any
or All Clock Inputs in Same Quadrant (GCK8 is
shown. GCK3, GCK4 and GCK?7 are similar.)
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Table 16: Pin Descriptions (Continued)

I/0 I/0
During | After
Pin Name | Config. | Config. Pin Description
If boundary scan is used, these pins are Test Data In, Test Clock, and Test Mode Select
inputs respectively. They come directly from the pads, bypassing the IOBs. These pins
yo |ean also be used as inputs to the CLB logic after configuration is completed.
TDI, TCK, If the BSCAN symbol is not placed in the design, all boundary scan functions are inhib-
I orl | ) S .

TMS (JTAG) ited once configuration is completed, and these pins become user-programmable 1/O.
The pins can be used automatically or user-constrained. To use them, use "LOC=" or
place the library components TDI, TCK, and TMS instead of the usual pad symbols. In-
put or output buffers must still be used.

High During Configuration (HDC) is driven High until the 1/0 go active. It is available as

HDC 0] I/0  |a control output indicating that configuration is not yet completed. After configuration,
HDC is a user-programmable 1/O pin.

Low During Configuration (LDC) is driven Low until the I/O go active. Itis available as a

LDC o I/O |control output indicating that configuration is not yet completed. After configuration,
LDC is a user-programmable I/O pin.

Before and during configuration, INIT is a bidirectional signal. A 1 kQ - 10 kQ external
pull-up resistor is recommended.
As an active-Low open-drain output, INIT is held Low during the power stabilization and

NIT e e internal clearing of the configuration memory. As an active-Low input, it can be used
to hold the FPGA in the internal WAIT state before the start of configuration. Master
mode devices stay in a WAIT state an additional 30 to 300 ps after INIT has gone High.
During configuration, a Low on this output indicates that a configuration data error has
occurred. After the I/O go active, INIT is a user-programmable I/O pin.

Four Primary Global inputs each drive a dedicated internal global net with short delay
PGCK1 - and minimal skew. If not used to drive a global buffer, any of these pins is a user-pro-
PGCK4 Weak Lor /O grammable I/O.
(XC4000E | Pull-up The PGCK1-PGCK4 pins drive the four Primary Global Buffers. Any input pad symbol
only) connected directly to the input of a BUFGP symbol is automatically placed on one of
these pins.
Four Secondary Global inputs each drive a dedicated internal global net with short delay
SGCK1 - and minimal skew. These internal global nets can also be driven from internal logic. If
SGCK4 Weak Lor /O not used to drive a global net, any of these pins is a user-programmable I/O pin.
(XC4000E | Pull-up The SGCK1-SGCKA4 pins provide the shortest path to the four Secondary Global Buff-
only) ers. Any input pad symbol connected directly to the input of a BUFGS symbol is auto-
matically placed on one of these pins.
Eight inputs can each drive a Global Low-Skew buffer. In addition, each can drive a Glo-
GCK1 - bal Early buffer. Each pair of global buffers can also be driven from internal logic, but
GCK8 Weak Lor /O must share an input signal. If not used to drive a global buffer, any of these pins is a
(XC4000X | Pull-up user-programmable 1/O.

only) Any input pad symbol connected directly to the input of a BUFGLS or BUFGE symbol
is automatically placed on one of these pins.

FCLK1 - Four inputs can each drive a Fast Clock (FCLK) buffer which can deliver a clock signal
FCLK4 to any 0B clock input in the octant of the die served by the Fast Clock buffer. Two Fast
(XC4000XLA | Weak Lor /O Clock buffers serve the two IOB octants on the left side of the die and the other two Fast
and Pull-up Clock buffers serve the two IOB octants on the right side of the die. On each side of the
XC4000XV die, one Fast Clock buffer serves the upper octant and the other serves the lower octant.

only) If not used to drive a Fast Clock buffer, any of these pins is a user-programmable 1/O.
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Table 16: Pin Descriptions (Continued)

Pin Description

These four inputs are used in Asynchronous Peripheral mode. The chip is selected

when CS0 is Low and CS1 is High. While the chip is selected, a Low on Write Strobe
(WS) loads the data present on the DO - D7 inputs into the internal data buffer. A Low
on Read Strobe (RS) changes D7 into a status output — High if Ready, Low if Busy —

Expreimode, CSl1is used as a serial-enable signal for daisy-chaining.
WS and RS should be mutually exclusive, but if both are Low simultaneously, the Write
Strobe overrides. After configuration, these are user-programmable 1/O pins.

During Master Parallel configuration, these 18 output pins address the configuration
EPROM. After configuration, they are user-programmable /O pins.

During Master Parallel configuration with an XC4000X master, these 4 output pins add
4 more bits to address the configuration EPROM. After configuration, they are user-pro-
grammable 1/O pins. (See Master Parallel Configuration section for additional details.)

During Master Parallel and Peripheral configuration, these eight input pins receive con-
figuration data. After configuration, they are user-programmable I/O pins.

During Slave Serial or Master Serial configuration, DIN is the serial configuration data
input receiving data on the rising edge of CCLK. During Parallel configuration, DIN is
the DO input. After configuration, DIN is a user-programmable 1/O pin.

During configuration in any mode but Express mode, DOUT is the serial configuration
data output that can drive the DIN of daisy-chained slave FPGAs. DOUT data changes
on the falling edge of CCLK, one-and-a-half CCLK periods after it was received at the

In Express modefor XC4000E and XC4000X only, DOUT is the status output that can
drive the CS1 of daisy-chained FPGAs, to enable and disable downstream devices.

I/0 I/0
During | After
Pin Name | Config. | Config.
CS0, CS1, | o
WS, RS and drives DO - D6 High.
AO - A17 o I/O
Al18 - A21
(XC4003XL to O I/O
XC4085XL)
DO - D7 1/0
DIN 1/0
DOUT 0] /O |DIN input.
After configuration, DOUT is a user-programmable /O pin.
Unrestricted User-Programmable I/O Pins
o o ﬁik 1o
P tor (25 kQ - 100 kQ) that defines the logic level as High.

These pins can be configured to be input and/or output after configuration is completed.
Before configuration is completed, these pins have an internal high-value pull-up resis-

Boundary Scan

The ‘bed of nails’ has been the traditional method of testing
electronic assemblies. This approach has become less
appropriate, due to closer pin spacing and more sophisti-
cated assembly methods like surface-mount technology
and multi-layer boards. The IEEE Boundary Scan Standard
1149.1 was developed to facilitate board-level testing of
electronic assemblies. Design and test engineers can
imbed a standard test logic structure in their device to
achieve high fault coverage for I/O and internal logic. This
structure is easily implemented with a four-pin interface on
any boundary scan-compatible IC. IEEE 1149.1-compati-
ble devices may be serial daisy-chained together, con-
nected in parallel, or a combination of the two.

The XC4000 Series implements IEEE 1149.1-compatible
BYPASS, PRELOAD/SAMPLE and EXTEST boundary
scan instructions. When the boundary scan configuration
option is selected, three normal user 1/O pins become ded-
icated inputs for these functions. Another user output pin
becomes the dedicated boundary scan output. The details

of how to enable this circuitry are covered later in this sec-
tion.

By exercising these input signals, the user can serially load
commands and data into these devices to control the driv-
ing of their outputs and to examine their inputs. This
method is an improvement over bed-of-nails testing. It
avoids the need to over-drive device outputs, and it reduces
the user interface to four pins. An optional fifth pin, a reset
for the control logic, is described in the standard but is not
implemented in Xilinx devices.

The dedicated on-chip logic implementing the IEEE 1149.1
functions includes a 16-state machine, an instruction regis-
ter and a number of data registers. The functional details
can be found in the IEEE 1149.1 specification and are also
discussed in the Xilinx application note XAPP 017: “Bound-
ary Scan in XC4000 Devices."

Figure 40 on page 43 shows a simplified block diagram of
the XC4000E Input/Output Block with boundary scan
implemented. XC4000X boundary scan logic is identical.
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Table 17: Boundary Scan Instructions

Instruction 12 Test I/0 Data
11 10 Selected TDO Source Source
0 0 EXTEST DR DR
0 0 1 |SAMPLE/PR DR Pin/Logic
ELOAD
0 1 0 USER 1 BSCAN. | User Logic
TDO1
0 1 1 USER 2 BSCAN. | User Logic
TDO2
1 0 0 |READBACK | Readback | Pin/Logic
Data
1 0 1 |CONFIGURE| DOUT Disabled
1 1 0 Reserved — —
1 1 1 BYPASS Bypass —
Register
Bit 0 ( TDO end) TDO.T
Bit 1 TDO.O
Bit 2
{ Top-edge I0Bs (Right to Left)

{ Left-edge I0Bs (Top to Bottom)

MDL1.T
MD1.0
MD1.I
MDO.!
MD2.1

{ Bottom-edge 10Bs (Left to Right)

{ Right-edge 10Bs (Bottom to Top)

B SCANT.UPD

(TDI end)

X6075

Figure 42: Boundary Scan Bit Sequence

Avoiding Inadvertent Boundary Scan

If TMS or TCK is used as user I/O, care must be taken to
ensure that at least one of these pins is held constant dur-
ing configuration. In some applications, a situation may
occur where TMS or TCK is driven during configuration.
This may cause the device to go into boundary scan mode
and disrupt the configuration process.

To prevent activation of boundary scan during configura-
tion, do either of the following:

« TMS: Tie High to put the Test Access Port controller
in a benign RESET state
» TCK: Tie High or Low—don't toggle this clock input.

For more information regarding boundary scan, refer to the
Xilinx Application Note XAPP 017.001, “Boundary Scan in
XC4000E Devices."

Optional l\ To User
l/ Logic
IBUF
BSCAN
[ ToI DI DO TDO
T™MS ™S DRCK [—
TCK TCK IDLE [—
To User
From — TDO1 SEL1 |— Logic
User Logic — TDO2 SEL2 [—
X2675

Figure 43: Boundary Scan Schematic Example

Configuration

Configuration is the process of loading design-specific pro-
gramming data into one or more FPGAs to define the func-
tional operation of the internal blocks and their
interconnections. This is somewhat like loading the com-
mand registers of a programmable peripheral chip. XC4000
Series devices use several hundred bits of configuration
data per CLB and its associated interconnects. Each con-
figuration bit defines the state of a static memory cell that
controls either a function look-up table bit, a multiplexer
input, or an interconnect pass transistor. The XACTstep
development system translates the design into a netlist file.
It automatically partitions, places and routes the logic and
generates the configuration data in PROM format.

Special Purpose Pins

Three configuration mode pins (M2, M1, M0) are sampled
prior to configuration to determine the configuration mode.
After configuration, these pins can be used as auxiliary
connections. M2 and MO can be used as inputs, and M1
can be used as an output. The XACT step development sys-
tem does not use these resources unless they are explicitly
specified in the design entry. This is done by placing a spe-
cial pad symbol called MD2, MD1, or MDO instead of the
input or output pad symbol.

In XC4000 Series devices, the mode pins have weak
pull-up resistors during configuration. With all three mode
pins High, Slave Serial mode is selected, which is the most
popular configuration mode. Therefore, for the most com-
mon configuration mode, the mode pins can be left uncon-
nected. (Note, however, that the internal pull-up resistor
value can be as high as 100 kQ.) After configuration, these
pins can individually have weak pull-up or pull-down resis-
tors, as specified in the design. A pull-down resistor value
of 4.7 kQ is recommended.

These pins are located in the lower left chip corner and are
near the readback nets. This location allows convenient
routing if compatibility with the XC2000 and XC3000 family
conventions of MO/RT, M1/RD is desired.
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Table 20: XC4000E Program Data

Device XC4003E | XC4005E | XC4006E | XC4008E | XC4010E | XC4013E | XC4020E | XC4025E
Max Logic Gates 3,000 5,000 6,000 8,000 10,000 13,000 20,000 25,000
CLBs 100 196 256 324 400 576 784 1,024
(Row x Col.) (10x10) | (14x14) | (16x16) | (18x18) | (20x20) | (24x24) | (28x28) | (32x32)
I0Bs 80 112 128 144 160 192 224 256
Flip-Flops 360 616 768 936 1,120 1,536 2,016 2,560
Bits per Frame 126 166 186 206 226 266 306 346
Frames 428 572 644 716 788 932 1,076 1,220
Program Data 53,936 94,960 119,792 147,504 178,096 247,920 329,264 422,128
PROM Size 53,984 95,008 119,840 147,552 178,144 247,968 329,312 422,176
(bits)

Notes: 1. Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits
Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1
Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits
PROM Size = Program Data + 40 (header) + 8
2. The user can add more “one” bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of
any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra “one”
bits, even for extra leading ones at the beginning of the header.

Table 21: XC4000EX/XL Program Data

Device XC4002XL | XC4005 |XC4010 |XC4013 |XC4020 [XC4028 |XC4036 | XC4044 | XC4052 | XC4062 | XC4085
Max Logic 2,000 5,000 10,000 | 13,000 | 20,000 | 28,000 | 36,000 44,000 52,000 62,000 85,000
Gates
CLBs 64 196 400 576 784 1,024 1,296 1,600 1,936 2,304 3,136
(Row x (8x8) |[(14x14)[(20x20)[(24x24)|(28x28)|(32x32)|(36x36)| (40x40) | (44x44) | (48x48) | (56 x 56)
Column)

I0Bs 64 112 160 192 224 256 288 320 352 384 448
Flip-Flops 256 616 1,120 1,536 2,016 2,560 3,168 3,840 4,576 5,376 7,168
Bits per 133 205 277 325 373 421 469 517 565 613 709
Frame

Frames 459 741 1,023 1,211 1,399 1,587 1,775 1,963 2,151 2,339 2,715
Program Data 61,052 | 151,910 | 283,376 | 393,580 | 521,832 | 668,124 | 832,480 | 1,014,876 | 1,215,320 | 1,433,804 | 1,924,940
PROM Size 61,104 | 151,960 | 283,424 | 393,632 | 521,880 | 668,172 | 832,528 | 1,014,924 | 1,215,368 | 1,433,852 | 1,924,992
(bits)

Notes: 1. Bits per frame = (13 x number of rows) + 9 for the top + 17 for the bottom + 8 + 1 start bit + 4 error check bits.
Frames = (47 x number of columns) + 27 for the left edge + 52 for the right edge + 4.
Program data = (bits per frame x number of frames) + 5 postamble bits.
PROM size = (program data + 40 header bits + 8 start bits) rounded up to the nearest byte.
2. The user can add more “one” bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end
of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra “one”
bits, even for extra leading “ones” at the beginning of the header.

Cyclic Redundancy Check (CRC) for figuration process with a potentially corrupted bitstream is
Configuration and Readback terminated. The FPGA pulls the INIT pin Low and goes into
a Wait state.

The Cyclic Redundancy Check is a method of error detec-
tion in data transmission applications. Generally, the trans-
mitting system performs a calculation on the serial
bitstream. The result of this calculation is tagged onto the
data stream as additional check bits. The receiving system
performs an identical calculation on the bitstream and com-
pares the result with the received checksum.

During Readback, 11 bits of the 16-bit checksum are added
to the end of the Readback data stream. The checksum is
computed using the CRC-16 CCITT polynomial, as shown
in Figure 45. The checksum consists of the 11 most signif-
icant bits of the 16-bit code. A change in the checksum indi-
cates a change in the Readback bitstream. A comparison
to a previous checksum is meaningful only if the readback
Each data frame of the configuration bitstream has four data is independent of the current device state. CLB out-

error bits at the end, as shown in Table 19. If a frame data puts should not be included (Read Capture Option not
error is detected during the loading of the FPGA, the con-
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Table 22: Pin Functions During Configuration

CONFIGURATION MODE <M2:M1:M0>
SLAVE MASTER SYNCH. ASYNCH. MASTER MASTER USER
SERIAL SERIAL PERIPHERAL | PERIPHERAL |PARALLEL DOWN | PARALLEL UP OPERATION
<1:1:1> <0:0:0> <0:1:1> <1:0:1> <1:1:0> <1:0:0>
M2(HIGH) (1) M2(LOW) (1) M2(LOW) (1) M2(HIGH) (1) M2(HIGH) (1) M2(HIGH) (1) 0)
M1(HIGH) (1) M1(LOW) (1) M1(HIGH) (1) M1(LOW) (1) M1(HIGH) (1) M1(LOW) (1) (0)
MO(HIGH) (1) MO(LOW) (1) MO(HIGH) (1) MO(HIGH) (1) MO(LOW) (I) MO(LOW) (1) ()
HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) 110
LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) 110
INIT INIT INIT INIT INIT INIT 110
DONE DONE DONE DONE DONE DONE DONE
PROGRAM (I) | PROGRAM () | PROGRAM () | PROGRAM (I) PROGRAM (1) PROGRAM (I) PROGRAM
CCLK (l) CCLK (0) CCLK (1) CCLK (0) CCLK (0) CCLK (0) CCLK (l)
RDY/BUSY (O) | RDY/BUSY (O) RCLK (O) RCLK (0O) 110
RS (I) 110
CS0 (1) 110
DATA 7 (1) DATA 7 (1) DATA 7 (1) DATA 7 (1) 110
DATA 6 (1) DATA 6 (1) DATA 6 (1) DATA 6 (1) 110
DATA 5 (1) DATA 5 (1) DATA 5 (1) DATA 5 (1) 110
DATA 4 (1) DATA 4 (1) DATA 4 (1) DATA 4 (1) 1/0
DATA 3 (1) DATA 3 (1) DATA 3 (1) DATA 3 (1) 1/O
DATA 2 (1) DATA 2 (1) DATA 2 (1) DATA 2 (1) 11O
DATA 1 (1) DATA 1 (1) DATA 1 (1) DATA 1 (1) 110
DIN (1) DIN (1) DATA 0 (1) DATA 0 (1) DATA 0 (1) DATA 0 (1) 110
DOUT DOUT DOUT DOUT DOUT DOUT SGCK4-GCK6-1/0
TDI TDI TDI TDI TDI TDI TDI-I/O
TCK TCK TCK TCK TCK TCK TCK-/O
T™MS T™MS T™MS T™MS T™MS T™MS TMS-I/O
TDO TDO TDO TDO TDO TDO TDO-(0)
WS (1) A0 A0 110
Al Al PGCK4-GCK7-1/0
Ccs1 A2 A2 110
A3 A3 110
A4 A4 110
A5 A5 110
A6 A6 110
A7 A7 110
A8 A8 110
A9 A9 1/0
A10 A10 11O
All All 11O
Al12 Al12 110
Al13 Al13 110
Al4 Al4 110
A15 Al15 SGCK1-GCK8-1/0
Al16 Al6 PGCK1-GCK1-1/0
Al7 Al7 110
A18* A18* 110
A19* A19* 110
A20* A20* 11O
A21* A21* 110
ALL OTHERS
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Configuration Timing

The seven configuration modes are discussed in detail in
this section. Timing specifications are included.

Slave Serial Mode

In Slave Serial mode, an external signal drives the CCLK
input of the FPGA. The serial configuration bitstream must
be available at the DIN input of the lead FPGA a short
setup time before each rising CCLK edge.

The lead FPGA then presents the preamble data—and all
data that overflows the lead device—on its DOUT pin.

NOTE:
M2, M1, MO can be shorted
to Ground if not used as I/O

There is an internal delay of 0.5 CCLK periods, which
means that DOUT changes on the falling CCLK edge, and
the next FPGA in the daisy chain accepts data on the sub-
sequent rising CCLK edge.

Figure 51 shows a full master/slave system. An XC4000
Series device in Slave Serial mode should be connected as
shown in the third device from the left.

Slave Serial mode is selected by a <111> on the mode pins
(M2, M1, M0). Slave Serial is the default mode if the mode
pins are left unconnected, as they have weak pull-up resis-
tors during configuration.

NOTE:
M2, M1, MO can be shorted
to Vcc if not used as I/0

4.7KQ

N/C

MO M1
N/C —— M2
DOUT > DIN DOUT DIN DOUT [—
XC4000E/X vee | o cowk
MASTER XC1700D +5V XC4000E/X, XC3100A
SERIAL 4rKa XC5200 SLAVE
cCLK oLk VPP SLAVE
DIN DATA
| PROGRAM Lbc CE CEO —>{ PROGRAM »| RESET
DONE NIT > > RESET/OE —| poNE INIT > —| o INT >
(Low Reset Option Used)
PROGRAM %9025
Figure 51: Master/Slave Serial Mode Circuit Diagram
Bitn+1

DIN T Bitn T
@TDCC > @ Tcep

<—®TCC|_
CCLK ][ \\
@TCCH—>‘_®TCCO
(o?;%dg Bitn-1 Bitn
X5379

Description Symbol Min Max Units
DIN setup 1 Tbce 20 ns
DIN hold 2 Teep 0 ns
DIN to DOUT 3 Teco 30 ns

CCLK —

High time 4 Tcen 45 ns
Low time 5 Teel 45 ns
Frequency Fce 10 MHz

Note: Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High.

Figure 52: Slave Serial Mode Programming Switching Characteristics
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Master Parallel Modes

In the two Master Parallel modes, the lead FPGA directly
addresses an industry-standard byte-wide EPROM, and
accepts eight data bits just before incrementing or decre-
menting the address outputs.

The eight data bits are serialized in the lead FPGA, which
then presents the preamble data—and all data that over-
flows the lead device—on its DOUT pin. There is an inter-
nal delay of 1.5 CCLK periods, after the rising CCLK edge
that accepts a byte of data (and also changes the EPROM
address) until the falling CCLK edge that makes the LSB
(DO) of this byte appear at DOUT. This means that DOUT
changes on the falling CCLK edge, and the next FPGA in
the daisy chain accepts data on the subsequent rising
CCLK edge.

The PROM address pins can be incremented or decre-
mented, depending on the mode pin settings. This option
allows the FPGA to share the PROM with a wide variety of
microprocessors and micro controllers. Some processors
must boot from the bottom of memory (all zeros) while oth-
ers must boot from the top. The FPGA is flexible and can
load its configuration bitstream from either end of the mem-
ory.

Master Parallel Up mode is selected by a <100> on the
mode pins (M2, M1, M0). The EPROM addresses start at
00000 and increment.

Master Parallel Down mode is selected by a <110> on the
mode pins. The EPROM addresses start at 3FFFF and
decrement.

Additional Address lines in XC4000 devices

The XC4000X devices have additional address lines
(A18-A21) allowing the additional address space required
to daisy-chain several large devices.

The extra address lines are programmable in XC4000EX
devices. By default these address lines are not activated. In
the default mode, the devices are compatible with existing
XC4000 and XC4000E products. If desired, the extra
address lines can be used by specifying the address lines
option in bitgen as 22 (bitgen -g AddressLines:22). The
lines (A18-A21) are driven when a master device detects,
via the bitstream, that it should be using all 22 address
lines. Because these pins will initially be pulled high by
internal pull-ups, designers using Master Parallel Up mode
should use external pull down resistors on pins A18-A21. If
Master Parallel Down mode is used external resistors are
not necessary.

All 22 address lines are always active in Master Parallel
modes with XC4000XL devices. The additional address
lines behave identically to the lower order address lines. If
the Address Lines option in bitgen is set to 18, it will be
ignored by the XC4000XL device.

The additional address lines (A18-A21) are not available in
the PC84 package.

Y

HIGH

or
47€Q S NiC

MO M1 M2

CCLK

TO CCLK OF OPTIONAL

TO DIN OF OPTIONAL
DAISY-CHAINED FPGAS

N/C

Y

NOTE:MO can be shorted pout

DAISY-CHAINED FPGAS ‘ ‘

to Ground if not used
as 1/0.

vce
EPROM
(8K x 8)
4.7KQ

A12

All

Al10

PROGRAM A9

D7 A8

D6 A7

D5 A6

D4 A5

D3 A4

D2 A3

D1 A2

MARRRRRRR

DO Al

A0

DONE OE

CE

(OR LARGER)

D7
D6
D5
D4
D3
D2
D1
DO

MO M1 M2

DIN DouT

CCLK

USER CONTROL OF HIGHER

ORDER PROM ADDRESS BITS

CAN BE USED TO SELECT BETWEEN
ALTERNATIVE CONFIGURATIONS

XC4000E/X
SLAVE

PROGRAM

DONE

J )]

DATA BUS

- 8

PROGRAM

Figure 54: Master Parallel Mode Circuit Diagram

X9026
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éﬂtﬁ&é ><K Address for Byte n Address for Byte n + 1
\v et @ TrAC
DO0-D7
XRXKXXKXKRIN o X
(@D Tpre— «— (@ Trep
RCLK /
(output) / ‘e ]

|

CCLK

CCLK
(output)
DOUT
(output) X be \X o7
Byten-1 X6078
Description Symbol Min Max Units

Delay to Address valid 1 TrAC 0 200 ns

RCLK Data setup time 2 Tpre 60 ns

Data hold time 3 TreD 0 ns

Notes: 1. At power-up, Vcc must rise from 2.0 V to Vcec min in less than 25 ms, otherwise delay configuration by pulling PROGRAM
Low until Vcc is valid.

2. The first Data byte is loaded and CCLK starts at the end of the first RCLK active cycle (rising edge).
This timing diagram shows that the EPROM requirements are extremely relaxed. EPROM access time can be longer than
500 ns. EPROM data output has no hold-time requirements.

Figure 55: Master Parallel Mode Programming Switching Characteristics
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/gYTE\ /BYTE \
\ / \ L /

4

[ BYTE 0 OUT »| BYTE 10UT

BN €D & €D &5 &3 &5 € &
Rowmj\ / \

DOUT

X6096

Description Symbol Min Max Units
INIT (High) setup time Tic 5 us
DO - D7 setup time Toc 60 ns
CCLK DO - D7 .hold. time Tep 0 ns
CCLK High time Teen 50 ns
CCLK Low time TceL 60 ns

CCLK Frequency Fce 8 MHz

Notes: 1. Peripheral Synchronous mode can be considered Slave Parallel mode. An external CCLK provides timing, clocking in the
first data byte on the second rising edge of CCLK after INIT goes High. Subsequent data bytes are clocked in on every
eighth consecutive rising edge of CCLK.

2. The RDY/BUSY line goes High for one CCLK period after data has been clocked in, although synchronous operation does
not require such a response.

3. The pin name RDY/BUSY is a misnomer. In Synchronous Peripheral mode this is really an ACKNOWLEDGE signal.

4. Note that data starts to shift out serially on the DOUT pin 0.5 CCLK periods after it was loaded in parallel. Therefore,
additional CCLK pulses are clearly required after the last byte has been loaded.

Figure 57: Synchronous Peripheral Mode Programming Switching Characteristics
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v ® ) )
&X"JNX XC4000E and XC4000X Series Field Programmable Gate Arrays
Write to LCA Read Status
WS/CS0 \ / RS, CSO
RS, CS1 WS, CS1
-~ @ Tea

N , ,
<—@ — ®TCD @ @
Toc
1/ READY
bo-b7 _< BUSY b7
; A 5 5 ; A ;
CCLK R \ B \ ’ y ’
S LU W \_/ \_
—>|

RDY/BUSY N

DOUT X Previous Byte D6 X D7 X DO X D1 X D2

X6097

Description Symbol Min Max Units
Effective Write time 1 Tca 100 ns
. (CS0, WS=Low; RS, CS1=High)

write DIN setup time 2 Toc 60 ns
DIN hold time 3 Tep 0 ns
RDY/BUSY delay after end of 4 TwWTRB 60 ns
Write or Read

RDY RDY/BUSY active after beginning 7 60 ns
of Read
RDY/BUSY Low output (Note 4) 6 Tgusy 2 9 CCLK

periods

Notes: 1. Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High.
2. The time from the end of WS to CCLK cycle for the new byte of data depends on the completion of previous byte
processing and the phase of the internal timing generator for CCLK.
3. CCLK and DOUT timing is tested in slave mode.
4. Tgysy indicates that the double-buffered parallel-to-serial converter is not yet ready to receive new data. The shortest
Tgusy occurs when a byte is loaded into an empty parallel-to-serial converter. The longest Tgygy occurs when a new word
is loaded into the input register before the second-level buffer has started shifting out data

This timing diagram shows very relaxed requirements. Data need not be held beyond the rising edge of WS. RDY/BUSY wiill
go active within 60 ns after the end of WS. A new write may be asserted immediately after RDY/BUSY goes Low, but write
may not be terminated until RDY/BUSY has been High for one CCLK period.

Figure 59: Asynchronous Peripheral Mode Programming Switching Characteristics
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Product Obsolete or Under Obsolescence
XC4000E and XC4000X Series Field Programmable Gate Arrays

User I/O Per Package

Table 27, Table 28, and Table 29 show the number of user 1/0Os available in each package for XC4000-Series devices. Call
your local sales office for the latest availability information, or see the Xilinx website at http://www.xilinx.com for the latest
revision of the specifications.

Table 27: User I1/O Chart for XC4000XL FPGAs

Device

Max
110

Maximum User Accessible I/0O by E’ackage ?ype

TQ144

HT144

HQ160

TQ176

HT176

HQ208

HQ240

PQ240

BG256

PG299

HQ304

BG352

PG411

BG432

PG475

PG559

BG560

XC4002XL

64

2 [PO100

2 [VQ100

XC4005XL

112

=)
2
~
~

~
N

[
[
N

XC4010XL

160

XC4013XL

192

113

145

XC4020XL

224

113

145

192

205

XC4028XL

256

129

160

193

205

256

256

256

XC4036XL

288

129

160

193

256

288

288

288

XC4044XL

320

129

160

193

256

289

320

320

XC4052XL

352

193

256

352

352

352

XC4062XL

384

193

256

352

384

384

XC4085XL

448

352

448

448

1/29/99

Table 28: User I/0O Chart for XC4000E FPGAs

Device

Max

Maximum User Accessible /0 by

ackage ?ype

110

s |PQ100

s V@100

PG120

TQ144

PG156

PG191
|Ho208

PG223

BG225

|Ho240

PQ240

PG299

IHQ304

XC4003E

80

@
o

XC4005E

112

XC4006E

128

XC4008E

144

XC4010E

160

160 160

160

XC4013E

192

160

192

192

192

192

XC4020E

224

160

192

193

XC4025E

256

192

193

256

1/29/99

Table 29: User 1/O Chart for XC4000EX FPGAs

Device

Max

Maximum User Accessible I/0O by I-Dackage ?ype

I/0

HQ208

HQ240

PG299

HQ304

BG352

PG411

BG432

XC4028EX

256

160

193

256

256

256

XC4036EX

288

193

256

288

288

288

1/29/99
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