

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	400
Number of Logic Elements/Cells	950
Total RAM Bits	12800
Number of I/O	160
Number of Gates	10000
Voltage - Supply	4.5V ~ 5.5V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	208-BFQFP Exposed Pad
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc4010e-3hq208i

Email: info@E-XFL.COM

Detaile

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Max Logic	Max. RAM	Typical			Number	
	Logic	Gates	Bits	Gate Range	CLB	Total	of	Max.
Device	Cells	(No RAM)	(No Logic)	(Logic and RAM)*	Matrix	CLBs	Flip-Flops	User I/O
XC4002XL	152	1,600	2,048	1,000 - 3,000	8 x 8	64	256	64
XC4003E	238	3,000	3,200	2,000 - 5,000	10 x 10	100	360	80
XC4005E/XL	466	5,000	6,272	3,000 - 9,000	14 x 14	196	616	112
XC4006E	608	6,000	8,192	4,000 - 12,000	16 x 16	256	768	128
XC4008E	770	8,000	10,368	6,000 - 15,000	18 x 18	324	936	144
XC4010E/XL	950	10,000	12,800	7,000 - 20,000	20 x 20	400	1,120	160
XC4013E/XL	1368	13,000	18,432	10,000 - 30,000	24 x 24	576	1,536	192
XC4020E/XL	1862	20,000	25,088	13,000 - 40,000	28 x 28	784	2,016	224
XC4025E	2432	25,000	32,768	15,000 - 45,000	32 x 32	1,024	2,560	256
XC4028EX/XL	2432	28,000	32,768	18,000 - 50,000	32 x 32	1,024	2,560	256
XC4036EX/XL	3078	36,000	41,472	22,000 - 65,000	36 x 36	1,296	3,168	288
XC4044XL	3800	44,000	51,200	27,000 - 80,000	40 x 40	1,600	3,840	320
XC4052XL	4598	52,000	61,952	33,000 - 100,000	44 x 44	1,936	4,576	352
XC4062XL	5472	62,000	73,728	40,000 - 130,000	48 x 48	2,304	5,376	384
XC4085XL	7448	85,000	100,352	55,000 - 180,000	56 x 56	3,136	7,168	448

Table 1: XC4000E and XC4000X Series Field Programmable Gate Arrays

* Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

Note: All functionality in low-voltage families is the same as in the corresponding 5-Volt family, except where numerical references are made to timing or power.

Description

XC4000 Series devices are implemented with a regular, flexible, programmable architecture of Configurable Logic Blocks (CLBs), interconnected by a powerful hierarchy of versatile routing resources, and surrounded by a perimeter of programmable Input/Output Blocks (IOBs). They have generous routing resources to accommodate the most complex interconnect patterns.

The devices are customized by loading configuration data into internal memory cells. The FPGA can either actively read its configuration data from an external serial or byte-parallel PROM (master modes), or the configuration data can be written into the FPGA from an external device (slave and peripheral modes).

XC4000 Series FPGAs are supported by powerful and sophisticated software, covering every aspect of design from schematic or behavioral entry, floor planning, simulation, automatic block placement and routing of interconnects, to the creation, downloading, and readback of the configuration bit stream.

Because Xilinx FPGAs can be reprogrammed an unlimited number of times, they can be used in innovative designs

where hardware is changed dynamically, or where hardware must be adapted to different user applications. FPGAs are ideal for shortening design and development cycles, and also offer a cost-effective solution for production rates well beyond 5,000 systems per month.

Taking Advantage of Re-configuration

FPGA devices can be re-configured to change logic function while resident in the system. This capability gives the system designer a new degree of freedom not available with any other type of logic.

Hardware can be changed as easily as software. Design updates or modifications are easy, and can be made to products already in the field. An FPGA can even be re-configured dynamically to perform different functions at different times.

Re-configurable logic can be used to implement system self-diagnostics, create systems capable of being re-configured for different environments or operations, or implement multi-purpose hardware for a given application. As an added benefit, using re-configurable FPGA devices simplifies hardware design and debugging and shortens product time-to-market.

Detailed Functional Description

XC4000 Series devices achieve high speed through advanced semiconductor technology and improved architecture. The XC4000E and XC4000X support system clock rates of up to 80 MHz and internal performance in excess of 150 MHz. Compared to older Xilinx FPGA families, XC4000 Series devices are more powerful. They offer on-chip edge-triggered and dual-port RAM, clock enables on I/O flip-flops, and wide-input decoders. They are more versatile in many applications, especially those involving RAM. Design cycles are faster due to a combination of increased routing resources and more sophisticated software.

Basic Building Blocks

Xilinx user-programmable gate arrays include two major configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs).

- CLBs provide the functional elements for constructing the user's logic.
- IOBs provide the interface between the package pins and internal signal lines.

Three other types of circuits are also available:

- 3-State buffers (TBUFs) driving horizontal longlines are associated with each CLB.
- Wide edge decoders are available around the periphery of each device.
- An on-chip oscillator is provided.

Programmable interconnect resources provide routing paths to connect the inputs and outputs of these configurable elements to the appropriate networks.

The functionality of each circuit block is customized during configuration by programming internal static memory cells. The values stored in these memory cells determine the logic functions and interconnections implemented in the FPGA. Each of these available circuits is described in this section.

Configurable Logic Blocks (CLBs)

Configurable Logic Blocks implement most of the logic in an FPGA. The principal CLB elements are shown in Figure 1. Two 4-input function generators (F and G) offer unrestricted versatility. Most combinatorial logic functions need four or fewer inputs. However, a third function generator (H) is provided. The H function generator has three inputs. Either zero, one, or two of these inputs can be the outputs of F and G; the other input(s) are from outside the CLB. The CLB can, therefore, implement certain functions of up to nine variables, like parity check or expandable-identity comparison of two sets of four inputs. Each CLB contains two storage elements that can be used to store the function generator outputs. However, the storage elements and function generators can also be used independently. These storage elements can be configured as flip-flops in both XC4000E and XC4000X devices; in the XC4000X they can optionally be configured as latches. DIN can be used as a direct input to either of the two storage elements. H1 can drive the other through the H function generator. Function generator outputs can also drive two outputs independent of the storage element outputs. This versatility increases logic capacity and simplifies routing.

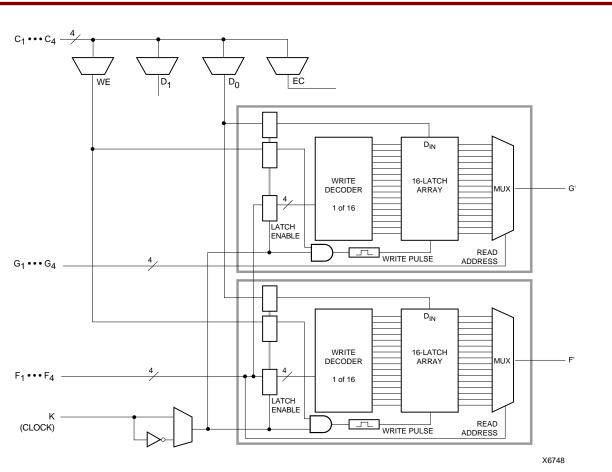
Thirteen CLB inputs and four CLB outputs provide access to the function generators and storage elements. These inputs and outputs connect to the programmable interconnect resources outside the block.

Function Generators

Four independent inputs are provided to each of two function generators (F1 - F4 and G1 - G4). These function generators, with outputs labeled F' and G', are each capable of implementing any arbitrarily defined Boolean function of four inputs. The function generators are implemented as memory look-up tables. The propagation delay is therefore independent of the function implemented.

A third function generator, labeled H', can implement any Boolean function of its three inputs. Two of these inputs can optionally be the F' and G' functional generator outputs. Alternatively, one or both of these inputs can come from outside the CLB (H2, H0). The third input must come from outside the block (H1).

Signals from the function generators can exit the CLB on two outputs. F' or H' can be connected to the X output. G' or H' can be connected to the Y output.


A CLB can be used to implement any of the following functions:

- any function of up to four variables, plus any second function of up to four unrelated variables, plus any third function of up to three unrelated variables¹
- any single function of five variables
- any function of four variables together with some functions of six variables
- some functions of up to nine variables.

Implementing wide functions in a single block reduces both the number of blocks required and the delay in the signal path, achieving both increased capacity and speed.

The versatility of the CLB function generators significantly improves system speed. In addition, the design-software tools can deal with each function generator independently. This flexibility improves cell usage.

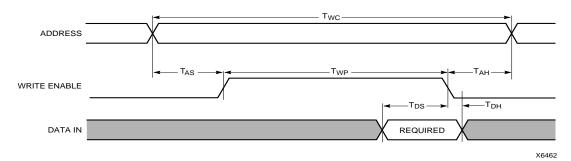
^{1.} When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two unregistered function generator outputs are available from the CLB.

Figure 7: 16x1 Edge-Triggered Dual-Port RAM

Figure 8 shows the write timing for level-sensitive, single-port RAM.

The relationships between CLB pins and RAM inputs and outputs for single-port level-sensitive mode are shown in Table 7.

Figure 9 and Figure 10 show block diagrams of a CLB configured as 16x2 and 32x1 level-sensitive, single-port RAM.


Initializing RAM at Configuration

Both RAM and ROM implementations of the XC4000 Series devices are initialized during configuration. The initial contents are defined via an INIT attribute or property attached to the RAM or ROM symbol, as described in the schematic library guide. If not defined, all RAM contents are initialized to all zeros, by default.

RAM initialization occurs only during configuration. The RAM content is not affected by Global Set/Reset.

Table 7: Single-Port Level-Sensitive RAM Signals

RAM Signal	CLB Pin	Function
D	D0 or D1	Data In
A[3:0]	F1-F4 or G1-G4	Address
WE	WE	Write Enable
0	F' or G'	Data Out

XILINX[®]

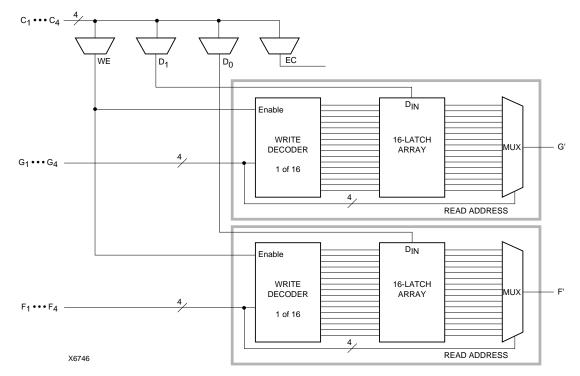


Figure 9: 16x2 (or 16x1) Level-Sensitive Single-Port RAM

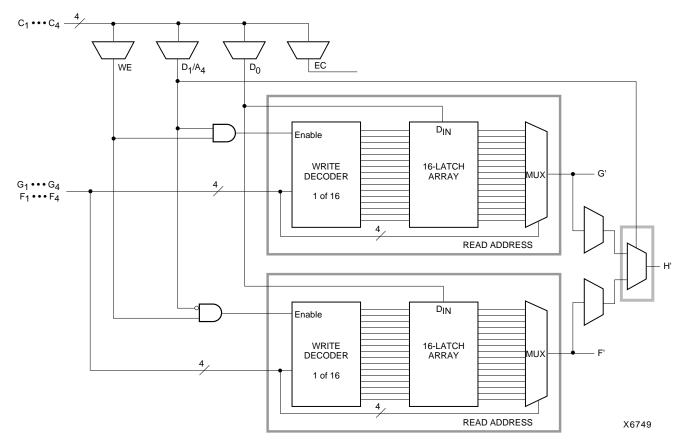


Figure 10: 32x1 Level-Sensitive Single-Port RAM (F and G addresses are identical)

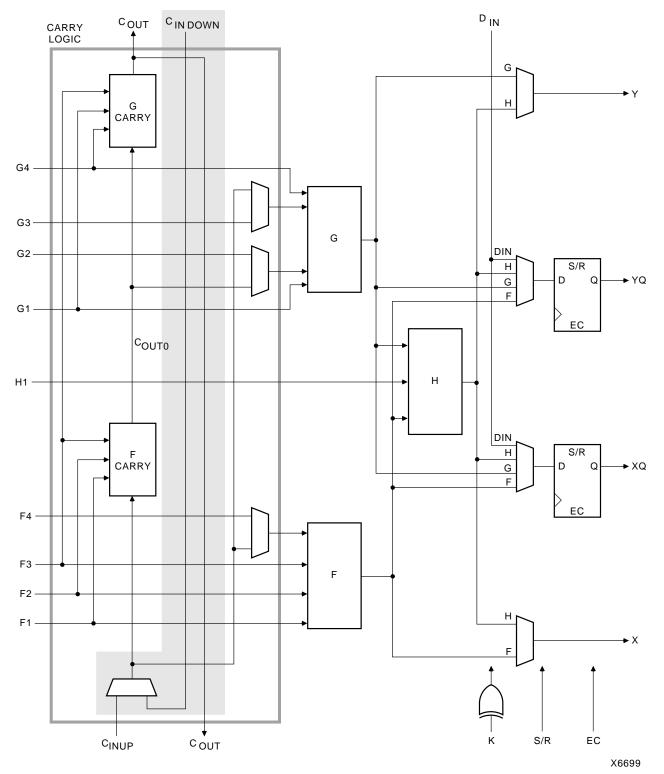


Figure 13: Fast Carry Logic in XC4000E CLB (shaded area not present in XC4000X)

 Table 8: Supported Sources for XC4000 Series Device

 Inputs

		0E/EX Inputs	XC4000XL Series Inputs		
Source	5 V, TTL	5 V, CMOS	3.3 V CMOS		
Any device, Vcc = 3.3 V, CMOS outputs		Unreli			
XC4000 Series, Vcc = 5 V, TTL outputs	\checkmark	-able Data			
Any device, $Vcc = 5 V$, TTL outputs (Voh $\leq 3.7 V$)	\checkmark	Data			
Any device, Vcc = 5 V, CMOS outputs	\checkmark	V	\checkmark		

XC4000XL 5-Volt Tolerant I/Os

The I/Os on the XC4000XL are fully 5-volt tolerant even though the V_{CC} is 3.3 volts. This allows 5 V signals to directly connect to the XC4000XL inputs without damage, as shown in Table 8. In addition, the 3.3 volt V_{CC} can be applied before or after 5 volt signals are applied to the I/Os. This makes the XC4000XL immune to power supply sequencing problems.

Registered Inputs

The I1 and I2 signals that exit the block can each carry either the direct or registered input signal.

The input and output storage elements in each IOB have a common clock enable input, which, through configuration, can be activated individually for the input or output flip-flop, or both. This clock enable operates exactly like the EC pin on the XC4000 Series CLB. It cannot be inverted within the IOB.

The storage element behavior is shown in Table 9.

Table 9: Input Register Functionality(active rising edge is shown)

Mode	Clock	Clock Enable	D	Q
Power-Up or GSR	Х	X	X	SR
Flip-Flop		1*	D	D
	0	Х	Х	Q
Latch	1	1*	Х	Q
	0	1*	D	D
Both	Х	0	Х	Q

Legend:

Х

_ Don't care

Rising edge

SR Set or Reset value. Reset is default.

0* Input is Low or unconnected (default value)

1* Input is High or unconnected (default value)

Optional Delay Guarantees Zero Hold Time

The data input to the register can optionally be delayed by several nanoseconds. With the delay enabled, the setup time of the input flip-flop is increased so that normal clock routing does not result in a positive hold-time requirement. A positive hold time requirement can lead to unreliable, temperature- or processing-dependent operation.

The input flip-flop setup time is defined between the data measured at the device I/O pin and the clock input at the IOB (not at the clock pin). Any routing delay from the device clock pin to the clock input of the IOB must, therefore, be subtracted from this setup time to arrive at the real setup time requirement relative to the device pins. A short specified setup time might, therefore, result in a negative setup time at the device pins, i.e., a positive hold-time requirement.

When a delay is inserted on the data line, more clock delay can be tolerated without causing a positive hold-time requirement. Sufficient delay eliminates the possibility of a data hold-time requirement at the external pin. The maximum delay is therefore inserted as the default.

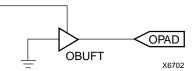
The XC4000E IOB has a one-tap delay element: either the delay is inserted (default), or it is not. The delay guarantees a zero hold time with respect to clocks routed through any of the XC4000E global clock buffers. (See "Global Nets and Buffers (XC4000E only)" on page 35 for a description of the global clock buffers in the XC4000E.) For a shorter input register setup time, with non-zero hold, attach a NODELAY attribute or property to the flip-flop.

The XC4000X IOB has a two-tap delay element, with choices of a full delay, a partial delay, or no delay. The attributes or properties used to select the desired delay are shown in Table 10. The choices are no added attribute, MEDDELAY, and NODELAY. The default setting, with no added attribute, ensures no hold time with respect to any of the XC4000X clock buffers, including the Global Low-Skew buffers. MEDDELAY ensures no hold time with respect to the Global Early buffers. Inputs with NODELAY may have a positive hold time with respect to all clock buffers. For a description of each of these buffers, see "Global Nets and Buffers (XC4000X only)" on page 37.

Table 10	: XC4000X	IOB Inp	out Delay	Element
----------	-----------	---------	-----------	---------

Value	When to Use
full delay	Zero Hold with respect to Global
(default, no	Low-Skew Buffer, Global Early Buffer
attribute added)	
MEDDELAY	Zero Hold with respect to Global Early Buffer
NODELAY	Short Setup, positive Hold time

Any XC4000 Series 5-Volt device with its outputs configured in TTL mode can drive the inputs of any typical 3.3-Volt device. (For a detailed discussion of how to interface between 5 V and 3.3 V devices, see the 3V Products section of *The Programmable Logic Data Book*.)


Supported destinations for XC4000 Series device outputs are shown in Table 12.

An output can be configured as open-drain (open-collector) by placing an OBUFT symbol in a schematic or HDL code, then tying the 3-state pin (T) to the output signal, and the input pin (I) to Ground. (See Figure 18.)

Table 12: Supported Destinations for XC4000 SeriesOutputs

	XC4000 Series Outputs				
Destination	3.3 V, CMOS	5 V, TTL	5 V, CMOS		
Any typical device, Vcc = 3.3 V,			some ¹		
CMOS-threshold inputs					
Any device, Vcc = 5 V,					
TTL-threshold inputs					
Any device, Vcc = 5 V,	Unre				
CMOS-threshold inputs	Da	ata			

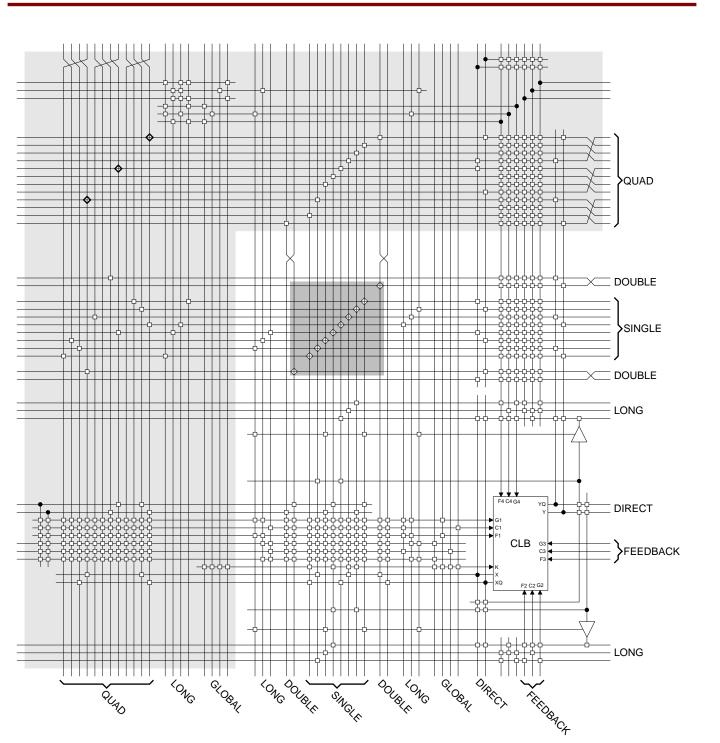
1. Only if destination device has 5-V tolerant inputs

Output Slew Rate

The slew rate of each output buffer is, by default, reduced, to minimize power bus transients when switching non-critical signals. For critical signals, attach a FAST attribute or property to the output buffer or flip-flop.

For XC4000E devices, maximum total capacitive load for simultaneous fast mode switching in the same direction is 200 pF for all package pins between each Power/Ground pin pair. For XC4000X devices, additional internal Power/Ground pin pairs are connected to special Power and Ground planes within the packages, to reduce ground bounce. Therefore, the maximum total capacitive load is 300 pF between each external Power/Ground pin pair. Maximum loading may vary for the low-voltage devices.

For slew-rate limited outputs this total is two times larger for each device type: 400 pF for XC4000E devices and 600 pF for XC4000X devices. This maximum capacitive load should not be exceeded, as it can result in ground bounce of greater than 1.5 V amplitude and more than 5 ns duration. This level of ground bounce may cause undesired transient behavior on an output, or in the internal logic. This restriction is common to all high-speed digital ICs, and is not particular to Xilinx or the XC4000 Series.


XC4000 Series devices have a feature called "Soft Start-up," designed to reduce ground bounce when all outputs are turned on simultaneously at the end of configuration. When the configuration process is finished and the device starts up, the first activation of the outputs is automatically slew-rate limited. Immediately following the initial activation of the I/O, the slew rate of the individual outputs is determined by the individual configuration option for each IOB.

Global Three-State

A separate Global 3-State line (not shown in Figure 15 or Figure 16) forces all FPGA outputs to the high-impedance state, unless boundary scan is enabled and is executing an EXTEST instruction. This global net (GTS) does not compete with other routing resources; it uses a dedicated distribution network.

GTS can be driven from any user-programmable pin as a global 3-state input. To use this global net, place an input pad and input buffer in the schematic or HDL code, driving the GTS pin of the STARTUP symbol. A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the Global 3-State signal. Using GTS is similar to GSR. See Figure 2 on page 11 for details.

Alternatively, GTS can be driven from any internal node.

Common to XC4000E and XC4000X

Programmable Switch Matrix

XC4000X only

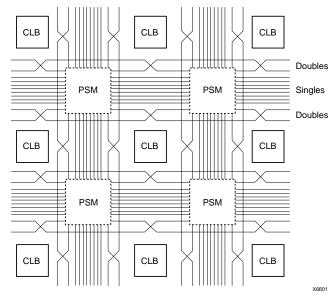


Figure 28: Single- and Double-Length Lines, with Programmable Switch Matrices (PSMs)

Double-Length Lines

The double-length lines consist of a grid of metal segments, each twice as long as the single-length lines: they run past two CLBs before entering a switch matrix. Double-length lines are grouped in pairs with the switch matrices staggered, so that each line goes through a switch matrix at every other row or column of CLBs (see Figure 28).

There are four vertical and four horizontal double-length lines associated with each CLB. These lines provide faster signal routing over intermediate distances, while retaining routing flexibility. Double-length lines are connected by way of the programmable switch matrices. Routing connectivity is shown in Figure 27.

Quad Lines (XC4000X only)

XC4000X devices also include twelve vertical and twelve horizontal quad lines per CLB row and column. Quad lines are four times as long as the single-length lines. They are interconnected via buffered switch matrices (shown as diamonds in Figure 27 on page 30). Quad lines run past four CLBs before entering a buffered switch matrix. They are grouped in fours, with the buffered switch matrices staggered, so that each line goes through a buffered switch matrix at every fourth CLB location in that row or column. (See Figure 29.)

The buffered switch matrixes have four pins, one on each edge. All of the pins are bidirectional. Any pin can drive any or all of the other pins.

Each buffered switch matrix contains one buffer and six pass transistors. It resembles the programmable switch matrix shown in Figure 26, with the addition of a programmable buffer. There can be up to two independent inputs

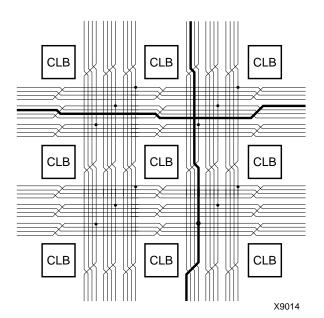


Figure 29: Quad Lines (XC4000X only)

and up to two independent outputs. Only one of the independent inputs can be buffered.

The place and route software automatically uses the timing requirements of the design to determine whether or not a quad line signal should be buffered. A heavily loaded signal is typically buffered, while a lightly loaded one is not. One scenario is to alternate buffers and pass transistors. This allows both vertical and horizontal quad lines to be buffered at alternating buffered switch matrices.

Due to the buffered switch matrices, quad lines are very fast. They provide the fastest available method of routing heavily loaded signals for long distances across the device.

Longlines

Longlines form a grid of metal interconnect segments that run the entire length or width of the array. Longlines are intended for high fan-out, time-critical signal nets, or nets that are distributed over long distances. In XC4000X devices, quad lines are preferred for critical nets, because the buffered switch matrices make them faster for high fan-out nets.

Two horizontal longlines per CLB can be driven by 3-state or open-drain drivers (TBUFs). They can therefore implement unidirectional or bidirectional buses, wide multiplexers, or wired-AND functions. (See "Three-State Buffers" on page 26 for more details.)

Each horizontal longline driven by TBUFs has either two (XC4000E) or eight (XC4000X) pull-up resistors. To activate these resistors, attach a PULLUP symbol to the long-line net. The software automatically activates the appropriate number of pull-ups. There is also a weak keeper at each end of these two horizontal longlines. This

IOB inputs and outputs interface with the octal lines via the single-length interconnect lines. Single-length lines are also used for communication between the octals and double-length lines, quads, and longlines within the CLB array.

Segmentation into buffered octals was found to be optimal for distributing signals over long distances around the device.

Global Nets and Buffers

Both the XC4000E and the XC4000X have dedicated global networks. These networks are designed to distribute clocks and other high fanout control signals throughout the devices with minimal skew. The global buffers are described in detail in the following sections. The text descriptions and diagrams are summarized in Table 15. The table shows which CLB and IOB clock pins can be sourced by which global buffers.

In both XC4000E and XC4000X devices, placement of a library symbol called BUFG results in the software choosing the appropriate clock buffer, based on the timing requirements of the design. The detailed information in these sections is included only for reference.

Global Nets and Buffers (XC4000E only)

Four vertical longlines in each CLB column are driven exclusively by special global buffers. These longlines are in addition to the vertical longlines used for standard interconnect. The four global lines can be driven by either of two types of global buffers. The clock pins of every CLB and IOB can also be sourced from local interconnect. Two different types of clock buffers are available in the XC4000E:

- Primary Global Buffers (BUFGP)
- Secondary Global Buffers (BUFGS)

Four Primary Global buffers offer the shortest delay and negligible skew. Four Secondary Global buffers have slightly longer delay and slightly more skew due to potentially heavier loading, but offer greater flexibility when used to drive non-clock CLB inputs.

The Primary Global buffers must be driven by the semi-dedicated pads. The Secondary Global buffers can be sourced by either semi-dedicated pads or internal nets.

Each CLB column has four dedicated vertical Global lines. Each of these lines can be accessed by one particular Primary Global buffer, or by any of the Secondary Global buffers, as shown in Figure 34. Each corner of the device has one Primary buffer and one Secondary buffer.

IOBs along the left and right edges have four vertical global longlines. Top and bottom IOBs can be clocked from the global lines in the adjacent CLB column.

A global buffer should be specified for all timing-sensitive global signal distribution. To use a global buffer, place a BUFGP (primary buffer), BUFGS (secondary buffer), or BUFG (either primary or secondary buffer) element in a schematic or in HDL code. If desired, attach a LOC attribute or property to direct placement to the designated location. For example, attach a LOC=L attribute or property to a BUFGS symbol to direct that a buffer be placed in one of the two Secondary Global buffers on the left edge of the device, or a LOC=BL to indicate the Secondary Global buffer on the bottom edge of the device, on the left.

	XC4000E			Local		
	BUFGP	BUFGS	BUFGLS	L & R BUFGE	T & B BUFGE	Inter- connect
All CLBs in Quadrant						
All CLBs in Device						
IOBs on Adjacent Vertical Half Edge	V	V	V	\checkmark	\checkmark	V
IOBs on Adjacent Vertical Full Edge	V	V	V	\checkmark		V
IOBs on Adjacent Horizontal Half Edge (Direct)				\checkmark		V
IOBs on Adjacent Horizontal Half Edge (through CLB globals)	\checkmark	V	V	\checkmark	V	V
IOBs on Adjacent Horizontal Full Edge (through CLB globals)	\checkmark	V	V			V

Table 15: Clock Pin Access

L = Left, R = Right, T = Top, B = Bottom

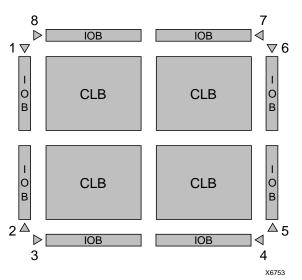


Figure 36: Any BUFGLS (GCK1 - GCK8) Can Drive Any or All Clock Inputs on the Device

Global Early Buffers

Each corner of the XC4000X device has two Global Early buffers. The primary purpose of the Global Early buffers is to provide an earlier clock access than the potentially heavily-loaded Global Low-Skew buffers. A clock source applied to both buffers will result in the Global Early clock edge occurring several nanoseconds earlier than the Global Low-Skew buffer clock edge, due to the lighter loading.

Global Early buffers also facilitate the fast capture of device inputs, using the Fast Capture latches described in "IOB Input Signals" on page 20. For Fast Capture, take a single clock signal, and route it through both a Global Early buffer and a Global Low-Skew buffer. (The two buffers share an input pad.) Use the Global Early buffer to clock the Fast Capture latch, and the Global Low-Skew buffer to clock the normal input flip-flop or latch, as shown in Figure 17 on page 23.

The Global Early buffers can also be used to provide a fast Clock-to-Out on device output pins. However, an early clock in the output flip-flop IOB must be taken into consideration when calculating the internal clock speed for the design.

The Global Early buffers at the left and right edges of the chip have slightly different capabilities than the ones at the top and bottom. Refer to Figure 37, Figure 38, and Figure 35 on page 36 while reading the following explanation.

Each Global Early buffer can access the eight vertical Global lines for all CLBs in the quadrant. Therefore, only one-fourth of the CLB clock pins can be accessed. This restriction is in large part responsible for the faster speed of the buffers, relative to the Global Low-Skew buffers.

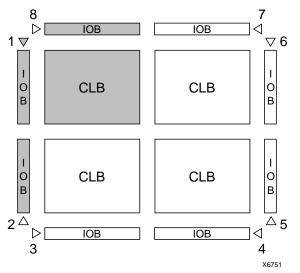


Figure 37: Left and Right BUFGEs Can Drive Any or All Clock Inputs in Same Quadrant or Edge (GCK1 is shown. GCK2, GCK5 and GCK6 are similar.)

The left-side Global Early buffers can each drive two of the four vertical lines accessing the IOBs on the entire left edge of the device. The right-side Global Early buffers can each drive two of the eight vertical lines accessing the IOBs on the entire right edge of the device. (See Figure 37.)

Each left and right Global Early buffer can also drive half of the IOBs along either the top or bottom edge of the device, using a dedicated line that can only be accessed through the Global Early buffers.

The top and bottom Global Early buffers can drive half of the IOBs along either the left or right edge of the device, as shown in Figure 38. They can only access the top and bottom IOBs via the CLB global lines.

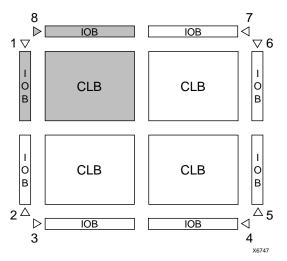


Figure 38: Top and Bottom BUFGEs Can Drive Any or All Clock Inputs in Same Quadrant (GCK8 is shown. GCK3, GCK4 and GCK7 are similar.)

Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays

Table 16: Pin Descriptions

	l/O During	I/O After	
Pin Name Permanently [Config.	Config.	Pin Description
VCC			Eight or more (depending on package) connections to the nominal +5 V supply voltage (+3.3 V for low-voltage devices). All must be connected, and each must be decoupled with a 0.01 - 0.1 μ F capacitor to Ground.
GND	I	I	Eight or more (depending on package type) connections to Ground. All must be con- nected.
CCLK	l or O	I	During configuration, Configuration Clock (CCLK) is an output in Master modes or Asyn- chronous Peripheral mode, but is an input in Slave mode and Synchronous Peripheral mode. After configuration, CCLK has a weak pull-up resistor and can be selected as the Readback Clock. There is no CCLK High or Low time restriction on XC4000 Series de- vices, except during Readback. See "Violating the Maximum High and Low Time Spec- ification for the Readback Clock" on page 56 for an explanation of this exception.
DONE	I/O	0	DONE is a bidirectional signal with an optional internal pull-up resistor. As an output, it indicates the completion of the configuration process. As an input, a Low level on DONE can be configured to delay the global logic initialization and the enabling of outputs. The optional pull-up resistor is selected as an option in the XACT <i>step</i> program that creates the configuration bitstream. The resistor is included by default.
PROGRAM	1	I	PROGRAM is an active Low input that forces the FPGA to clear its configuration mem- ory. It is used to initiate a configuration cycle. When PROGRAM goes High, the FPGA finishes the current clear cycle and executes another complete clear cycle, before it goes into a WAIT state and releases INIT. The PROGRAM pin has a permanent weak pull-up, so it need not be externally pulled up to Vcc.
User I/O Pins	That Can	Have Spe	ecial Functions
RDY/BUSY	о	I/O	During Peripheral mode configuration, this pin indicates when it is appropriate to write another byte of data into the FPGA. The same status is also available on D7 in Asyn- chronous Peripheral mode, if a read operation is performed when the device is selected. After configuration, RDY/BUSY is a user-programmable I/O pin. RDY/BUSY is pulled High with a high-impedance pull-up prior to INIT going High.
RCLK	о	I/O	During Master Parallel configuration, each change on the A0-A17 outputs (A0 - A21 for XC4000X) is preceded by a rising edge on $\overline{\text{RCLK}}$, a redundant output signal. $\overline{\text{RCLK}}$ is useful for clocked PROMs. It is rarely used during configuration. After configuration, $\overline{\text{RCLK}}$ is a user-programmable I/O pin.
M0, M1, M2	I	I (M0), O (M1), I (M2)	As Mode inputs, these pins are sampled after INIT goes High to determine the configuration mode to be used. After configuration, M0 and M2 can be used as inputs, and M1 can be used as a 3-state output. These three pins have no associated input or output registers. During configuration, these pins have weak pull-up resistors. For the most popular configuration mode, Slave Serial, the mode pins can thus be left unconnected. The three mode inputs can be individually configured with or without weak pull-up or pull-down resistors. A pull-down resistor value of 4.7 k Ω is recommended. These pins can only be used as inputs or outputs when called out by special schematic definitions. To use these pins, place the library components MD0, MD1, and MD2 instead of the usual pad symbols. Input or output buffers must still be used.
TDO	0	0	If boundary scan is used, this pin is the Test Data Output. If boundary scan is not used, this pin is a 3-state output without a register, after configuration is completed. This pin can be user output only when called out by special schematic definitions. To use this pin, place the library component TDO instead of the usual pad symbol. An output buffer must still be used.

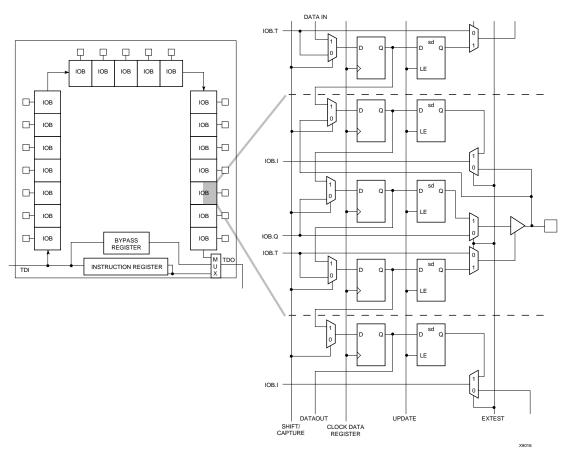


Figure 41: XC4000 Series Boundary Scan Logic

Instruction Set

The XC4000 Series boundary scan instruction set also includes instructions to configure the device and read back the configuration data. The instruction set is coded as shown in Table 17.

Bit Sequence

The bit sequence within each IOB is: In, Out, 3-State. The input-only M0 and M2 mode pins contribute only the In bit to the boundary scan I/O data register, while the output-only M1 pin contributes all three bits.

The first two bits in the I/O data register are TDO.T and TDO.O, which can be used for the capture of internal signals. The final bit is BSCANT.UPD, which can be used to drive an internal net. These locations are primarily used by Xilinx for internal testing.

From a cavity-up view of the chip (as shown in XDE or Epic), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 42. The device-specific pinout tables for the XC4000 Series include the boundary scan locations for each IOB pin.

BSDL (Boundary Scan Description Language) files for XC4000 Series devices are available on the Xilinx FTP site.

Including Boundary Scan in a Schematic

If boundary scan is only to be used during configuration, no special schematic elements need be included in the schematic or HDL code. In this case, the special boundary scan pins TDI, TMS, TCK and TDO can be used for user functions after configuration.

To indicate that boundary scan remain enabled after configuration, place the BSCAN library symbol and connect the TDI, TMS, TCK and TDO pad symbols to the appropriate pins, as shown in Figure 43.

Even if the boundary scan symbol is used in a schematic, the input pins TMS, TCK, and TDI can still be used as inputs to be routed to internal logic. Care must be taken not to force the chip into an undesired boundary scan state by inadvertently applying boundary scan input patterns to these pins. The simplest way to prevent this is to keep TMS High, and then apply whatever signal is desired to TDI and TCK.

used), and if RAM is present, the RAM content must be unchanged.

Statistically, one error out of 2048 might go undetected.

Configuration Sequence

There are four major steps in the XC4000 Series power-up configuration sequence.

- Configuration Memory Clear
- Initialization
- Configuration
- Start-Up

The full process is illustrated in Figure 46.

Configuration Memory Clear

When power is first applied or is reapplied to an FPGA, an internal circuit forces initialization of the configuration logic. When Vcc reaches an operational level, and the circuit passes the write and read test of a sample pair of configuration bits, a time delay is started. This time delay is nominally 16 ms, and up to 10% longer in the low-voltage devices. The delay is four times as long when in Master Modes (M0 Low), to allow ample time for all slaves to reach a stable Vcc. When all INIT pins are tied together, as recommended, the longest delay takes precedence. Therefore, devices with different time delays can easily be mixed and matched in a daisy chain.

This delay is applied only on power-up. It is not applied when re-configuring an FPGA by pulsing the $\overrightarrow{\text{PROGRAM}}$ pin

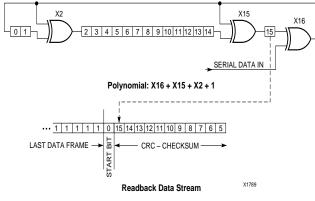


Figure 45: Circuit for Generating CRC-16

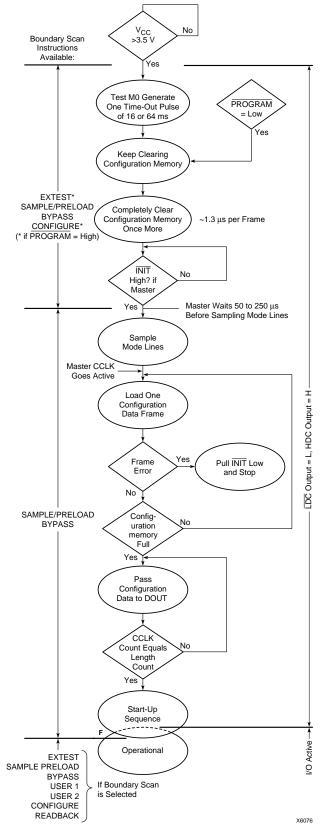


Figure 46: Power-up Configuration Sequence

The default option, and the most practical one, is for DONE to go High first, disconnecting the configuration data source and avoiding any contention when the I/Os become active one clock later. Reset/Set is then released another clock period later to make sure that user-operation starts from stable internal conditions. This is the most common sequence, shown with heavy lines in Figure 47, but the designer can modify it to meet particular requirements.

Normally, the start-up sequence is controlled by the internal device oscillator output (CCLK), which is asynchronous to the system clock.

XC4000 Series offers another start-up clocking option, UCLK_NOSYNC. The three events described above need not be triggered by CCLK. They can, as a configuration option, be triggered by a user clock. This means that the device can wake up in synchronism with the user system.

When the UCLK_SYNC option is enabled, the user can externally hold the open-drain DONE output Low, and thus stall all further progress in the start-up sequence until DONE is released and has gone High. This option can be used to force synchronization of several FPGAs to a common user clock, or to guarantee that all devices are successfully configured before any I/Os go active.

If either of these two options is selected, and no user clock is specified in the design or attached to the device, the chip could reach a point where the configuration of the device is complete and the Done pin is asserted, but the outputs do not become active. The solution is either to recreate the bitstream specifying the start-up clock as CCLK, or to supply the appropriate user clock.

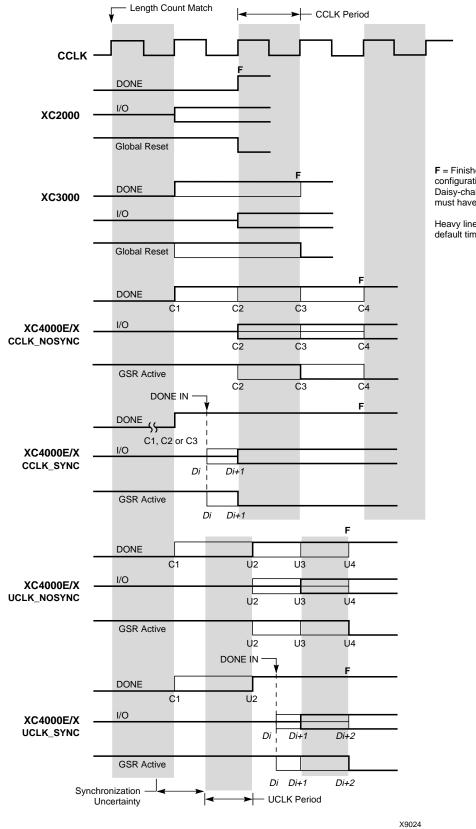
Start-up Sequence

The Start-up sequence begins when the configuration memory is full, and the total number of configuration clocks

received since $\overline{\text{INIT}}$ went High equals the loaded value of the length count.

The next rising clock edge sets a flip-flop Q0, shown in Figure 48. Q0 is the leading bit of a 5-bit shift register. The outputs of this register can be programmed to control three events.

- The release of the open-drain DONE output
- The change of configuration-related pins to the user function, activating all IOBs.
- The termination of the global Set/Reset initialization of all CLB and IOB storage elements.


The DONE pin can also be wire-ANDed with DONE pins of other FPGAs or with other external signals, and can then be used as input to bit Q3 of the start-up register. This is called "Start-up Timing Synchronous to Done In" and is selected by either CCLK_SYNC or UCLK_SYNC.

When DONE is not used as an input, the operation is called "Start-up Timing Not Synchronous to DONE In," and is selected by either CCLK_NOSYNC or UCLK_NOSYNC.

As a configuration option, the start-up control register beyond Q0 can be clocked either by subsequent CCLK pulses or from an on-chip user net called STARTUP.CLK. These signals can be accessed by placing the STARTUP library symbol.

Start-up from CCLK

If CCLK is used to drive the start-up, Q0 through Q3 provide the timing. Heavy lines in Figure 47 show the default timing, which is compatible with XC2000 and XC3000 devices using early DONE and late Reset. The thin lines indicate all other possible timing options.

F = Finished, no more configuration clocks needed Daisy-chain lead device must have latest F

Heavy lines describe default timing

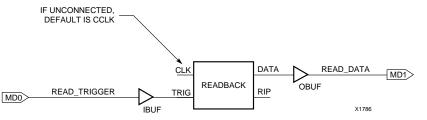


Figure 49: Readback Schematic Example

Readback Options

Readback options are: Read Capture, Read Abort, and Clock Select. They are set with the bitstream generation software.

Read Capture

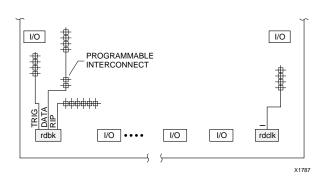
When the Read Capture option is selected, the readback data stream includes sampled values of CLB and IOB signals. The rising edge of RDBK.TRIG latches the inverted values of the four CLB outputs, the IOB output flip-flops and the input signals I1 and I2. Note that while the bits describing configuration (interconnect, function generators, and RAM content) are *not* inverted, the CLB and IOB output signals *are* inverted.

When the Read Capture option is not selected, the values of the capture bits reflect the configuration data originally written to those memory locations.

If the RAM capability of the CLBs is used, RAM data are available in readback, since they directly overwrite the F and G function-table configuration of the CLB.

RDBK.TRIG is located in the lower-left corner of the device, as shown in Figure 50.

Read Abort


When the Read Abort option is selected, a High-to-Low transition on RDBK.TRIG terminates the readback operation and prepares the logic to accept another trigger.

After an aborted readback, additional clocks (up to one readback clock per configuration frame) may be required to re-initialize the control logic. The status of readback is indicated by the output control net RDBK.RIP. RDBK.RIP is High whenever a readback is in progress.

Clock Select

CCLK is the default clock. However, the user can insert another clock on RDBK.CLK. Readback control and data are clocked on rising edges of RDBK.CLK. If readback must be inhibited for security reasons, the readback control nets are simply not connected.

RDBK.CLK is located in the lower right chip corner, as shown in Figure 50.

S. XILINX®

Figure 50: READBACK Symbol in Graphical Editor

Violating the Maximum High and Low Time Specification for the Readback Clock

The readback clock has a maximum High and Low time specification. In some cases, this specification cannot be met. For example, if a processor is controlling readback, an interrupt may force it to stop in the middle of a readback. This necessitates stopping the clock, and thus violating the specification.

The specification is mandatory only on clocking data at the end of a frame prior to the next start bit. The transfer mechanism will load the data to a shift register during the last six clock cycles of the frame, prior to the start bit of the following frame. This loading process is dynamic, and is the source of the maximum High and Low time requirements.

Therefore, the specification only applies to the six clock cycles prior to and including any start bit, including the clocks before the first start bit in the readback data stream. At other times, the frame data is already in the register and the register is not dynamic. Thus, it can be shifted out just like a regular shift register.

The user must precisely calculate the location of the readback data relative to the frame. The system must keep track of the position within a data frame, and disable interrupts before frame boundaries. Frame lengths and data formats are listed in Table 19, Table 20 and Table 21.

Readback with the XChecker Cable

The XChecker Universal Download/Readback Cable and Logic Probe uses the readback feature for bitstream verification. It can also display selected internal signals on the PC or workstation screen, functioning as a low-cost in-circuit emulator.

Table 23: Pin Functions During Configuration

		CONFIGURATION	MODE <m2:m1:m< th=""><th>/0></th><th></th><th></th></m2:m1:m<>	/0>		
SLAVE SERIAL <1:1:1>	MASTER SERIAL <0:0:0>	SYNCH. PERIPHERAL <0:1:1>	ASYNCH. PERIPHERAL <1:0:1>	MASTER PARALLEL DOWN <1:1:0>	MASTER PARALLEL UP <1:0:0>	USER OPERATION
M2(HIGH) (I)	M2(LOW) (I)	M2(LOW) (I)	M2(HIGH) (I)	M2(HIGH) (I)	M2(HIGH) (I)	(I)
M1(HIGH) (I)	M1(LOW) (I)	M1(HIGH) (I)	M1(LOW) (I)	M1(HIGH) (I)	M1(LOW) (I)	(O)
M0(HIGH) (I)	M0(LOW) (I)	M0(HIGH) (I)	M0(HIGH) (I)	M0(LOW) (I)	M0(LOW) (I)	(1)
HDC (HIGH)	HDC (HIGH)	HDC (HIGH)	HDC (HIGH)	HDC (HIGH)	HDC (HIGH)	I/O
LDC (LOW)	LDC (LOW)	LDC (LOW)	LDC (LOW)	LDC (LOW)	LDC (LOW)	I/O
		INIT	INIT /	INIT /	INIT	I/O
DONE	DONE	DONE	DONE	DONE	DONE	DONE
PROGRAM (I)	PROGRAM (I)	PROGRAM (I)	PROGRAM (I)	PROGRAM (I)	PROGRAM (I)	PROGRAM
CCLK (I)	CCLK (O)	CCLK (I)	CCLK (O)	CCLK (O)	CCLK (O)	CCLK (I)
001.00		RDY/BUSY (O)	RDY/BUSY (O)	RCLK (0)	RCLK (0)	I/O
			RS (I)			I/O
						I/O
		DATA 7 (I)	DATA 7 (I)	DATA 7 (I)	DATA 7 (I)	I/O
			.,	()		I/O
					DATA 6 (I)	1/0 1/0
		DATA 4 (I)	DATA 4 (I)	DATA 4 (I)	DATA 4 (I)	I/O
		DATA 3 (I)	DATA 3 (I)	DATA 3 (I)	DATA 3 (I)	I/O
		DATA 2 (I)	DATA 2 (I)	DATA 2 (I)	DATA 2 (I)	I/O
		DATA 1 (I)	DATA 1 (I)	DATA 1 (I)	DATA 1 (I)	I/O
DIN (I)	DIN (I)	DATA 0 (I)	DATA 0 (I)	DATA 0 (I)	DATA 0 (I)	I/O
DOUT	DOUT	DOUT	DOUT	DOUT	DOUT	SGCK4-GCK6-I/O
TDI	TDI	TDI	TDI	TDI	TDI	TDI-I/O
TCK	TCK	TCK	ТСК	TCK	ТСК	TCK-I/O
TMS	TMS	TMS	TMS	TMS	TMS	TMS-I/O
TDO	TDO	TDO	TDO	TDO	TDO	TDO-(O)
			WS (I)	A0	A0	I/O
				A1	A1	PGCK4-GCK7-I/C
			CS1	A2	A2	I/O
				A3	A3	I/O
				A4	A4	I/O
				A5	A5	I/O
				A6	A6	I/O
				A7	A7	I/O
				A8	A8	I/O
				A9	A9	I/O
				A10	A10	I/O
				A11	A11	I/O
				A12	A12	I/O
				A13	A13	I/O
				A14	A14	I/O
				A15	A15	SGCK1-GCK8-I/O
				A16	A16	PGCK1-GCK1-I/O
				A10	A10	1/0
				A17 A18*	A18*	I/O
				A10 A19*	A10 A19*	I/O
				A19 A20*	A19* A20*	1/0 1/0
				A20 A21*		1/0 1/0
				A21"	A21*	
						ALL OTHERS

* XC4000X only Notes

1. A shaded table cell represents a 50 k Ω - 100 k Ω pull-up before and during configuration.

(I) represents an input; (O) represents an output.
 INIT is an open-drain output during configuration.

Product Availability

Table 24, Table 25, and Table 26 show the planned packages and speed grades for XC4000-Series devices. Call your local sales office for the latest availability information, or see the Xilinx website at http://www.xilinx.com for the latest revision of the specifications.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		D D P	α 2 2 2 Π T T T T	0 2 2 2 1 High-Pert. ΤΩFP	HQ208 High-Pert.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	HQ240 High-Pert.	PQ240 Plast	0 2 2 2 BG256 Plast. BG256 BGA	PG299 Ceram.	HQ304 High-Pert.	BG352 Plast.	PG411 Ceram.	BG432 Plast. BGA	PG475 Ceram.	PG559 Ceram.	BG560 Plast.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	HQ160	b0 160	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 D D D D D D D D D D D D D D D D D D D		D D D D D D D D D		PQ240	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		HQ304 ^{High}						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CI CI CI CI CI CI CI CI CI CI CI CI CI C	C1 C1 C1		HQ20		ΗΩ24			PG29	HQ30	BG35	PG41	BG43	PG47	PG55	BG56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CI CI CI CI CI CI CI CI CI CI CI CI CI C	C I C I	C1 C1		CI CI CI CI CI CI CI CI			C I C I								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CI CI CI CI CI CI CI CI CI CI CI CI CI C	C I C I	C1 C1		CI CI CI CI CI CI CI CI			C I C I								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CI CI CI CI CI CI CI CI CI CI CI CI CI C	C I C I	C1 C1		CI CI CI CI CI CI CI CI			C I C I								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CI CI CI CI CI CI CI CI CI CI CI CI CI C	C I C I	C1 C1		CI CI CI CI CI CI CI CI			C I C I								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CI CI CI CI CI CI CI CI CI CI CI CI CI C	C I C I	C1 C1		CI CI CI CI CI CI CI CI			C I C I								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C	C I C I	C1 C1		CI CI CI CI CI CI CI			C I C I								
$XC4010XL \begin{bmatrix} -1 & C1 & C1 & C1 & C1 \\ -09C & C & C & C & C \\ 3 & C1 & C1 & C1 & C1 \\ -2 & C1 & C1 & C1 & C1 \\ -2 & C1 & C1 & C1 & C1 \\ -1 & C1 & C1 & C1 & C1 \\ -09C & C & C & C & C \\ -00C & C & C & C & C \\ -00C & C & C & C & C \\ -00C & C & C & C & C \\ -00C & C & C & C & C \\ -00C & C & C & C & C \\ -00C & C & C & C & C \\ -00C & C & C & C & C \\ -00C & C & C & C & C \\ -00C & C & C & C & C \\ -00C & C & C & C & C \\ -00C & C & C & C & C \\ -00C & C & C & C & C \\ -00C & C & C & C & C \\ -00C & C & C & C & C \\ -00C & C & C & C & C \\ $		C C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	C I C I	C1 C1		C CI CI CI CI CI			C I C I								
-3 C1 C1 C1 -2 C1 C1 C1 -1 C1 C1 C1 -09C C C C -09C C C C -09C C C C -1 C1 C1 C -09C C C C -1 -1 C C -2 -1 C C -1 -1 C C -09C -1 C C -09C -1 C C -09C -1 C C -1 -1 C C		CI CI CI CI CI CI CI CI C C C	C I C I	C1 C1		CI CI CI CI CI			C I C I								
-2 C1 C1 C1 -1 C1 C1 C1 C1 -09C C C C C -09C C C C C C -09C C C C C C -2 - L C C C -2 - L L C C -1 C - C C C -09C - L L C C -09C - L L C C -09C - L L C C -1 - L L C C -1 - L L C C C -1 - L L L C C -1 - L L L L C -1		CI CI CI CI CI CI CI CI CI CI	C I C I	C1 C1		C I C I C I C I			C I C I								
I CI CI CI -09C C C C C -09C C C C C -3 - - C C -2 - - C C -2 - - C C -1 - - C C -00C - - C C -1 - - C		CI CI CI CI CI C C CI	CI	C1 C1		C I C C I			CI								1
-1 C1 C1 C1 C1 -09C C C C C -09C C C C C -2 - - C C -2 - - C C -09C - - C C -1 - - C C -1 - - - C -2 - - - C -1 - - </td <td></td> <td>C CI CI CI C C C CI</td> <td></td> <td>C1 C1</td> <td></td> <td>C C I</td> <td></td> <td>l</td>		C CI CI CI C C C CI		C1 C1		C C I											l
-3 C C C -2 -2 -2 C C -1 -2 -2 C C -09C -2 -2 C C -08C -2 -2 C C -08C -2 -2 C C -2 -2 -2 C C -1 -2 -2 C C -09C -3 -4 C C -1 -2 -4 -4 C -1 -2 -4 -4 -4 -3 -4 -4 -4 -4 -3 -4 -4 -4 -4 -3 -4 -4 -4 -4 -2 -4 -4 -4 -4 -2 -4 -4 -4 -4 -2 -4 -4 -4 -4 -1 -4		CI CI C C C C	с 	C1 C1		CI		01	С								µ
-2 C C -1 C C -09C C C -09C C C -08C C C -08C C C -2 C C -1 C C -09C C C -1 C C -1 C C -2 C C C C C C C C <td></td> <td>C I C I C C C I</td> <td></td> <td>C1 C1</td> <td></td> <td> </td>		C I C I C C C I		C1 C1													
.1	C C C C C C C C C C C C C C C C C C C	C I C C C I		CI				CI	CI								
-09C 0	C C C C C C C C C C C C C C C C C C C	C C C1				0.1		CI	CI								
-08C C 3 3 C -2 C C -1 C C -09C C C -09C C XC4028XL -2 -1 -09C -3 -09C -09C <	C C C C	C C I		C		CI		CI	CI								
3 3 6 7 7 2 2 3 6 7		CI		-		С		С	С								
-2 C C C -1 - C C -09C - C C -09C - C C -2 - - C -1 - - - -09C - - - -09C - - - -1 - - - - -3 - - - - -3 - - - - -2 - - - - -3 - - - - -2 - - - - -2 - - - - -1 - - - -	01			С		С		С	С								L
XC4020XL -1 C C -09C 0 0 C -3 0 0 C -2 0 0 0 -1 0 0 0 -09C 0 0 0 -1 0 0 0 -3 0 0 0 -3 0 0 0 -3 0 0 0 -3 0 0 0 -2 0 0 0 -2 0 0 0 -2 0 0 0 -1 0 0 0				CI		CI		CI	CI								
-1 -0 0 -09C -0 0 0 -3 -0 -0 0 -2 -0 -0 0 -1 -0 -0 0 -09C -0 -0 0 -3 -0 -0 0 -3 -0 -0 0 -2 -0 0 0 -3 -0 0 0 -2 0 0 0 -2 0 0 0	<u></u>			CI		CI		CI	CI								
XC4028XL -3 -2 -2		CI		CI		CI		CI	CI								
XC4028XL -2		С		С		С	<u> </u>	С	С	0.1		0.1					
XC4028XL -1 -09C -3 -2 -2 -1 -2 -1 -2 -1 -2 -2 -1 -2 -2 -2 -2 -1 -2 -2 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	CI				CI		CI		CI	CI	CI	CI					
-09C -3 -2 XC4036XL -1	C I C I				C1 C1		C1 C1		C I C I	C1 C1	C1 C1	C I C I					
-3 -3 -2 -2 -1 -1	C				C		C		C	C	c	c					
XC4036XL -1	CI				CI		CI		C	C	CI	CI	CI	CI			
XC4036XL -1	CI				CI		C				CI	CI	CI	CI			
	C1				CI		CI				CI	CI	CI	CI			
	C				C		C				c	C	C	C			
-08C	C C				C		C				c	c	C	C			
-3	CI				CI		CI				CI	CI	CI	CI			
-2	C1				CI		CI				CI	CI	CI	CI			
XC4044XL -1	CI				CI		CI				CI	CI	CI	CI			
-09C	C				C		C				C	C	C	C			
-3							CI				CI		CI	CI			CI
							CI				CI		CI	CI			CI
XC4052XL -1							CI				CI		CI	CI			CI
-09C							С				С		С	С			С
-3							CI				CI			CI	CI		CI
-2							CI				CI			CI	CI		CI
XC4062XL -1							CI				CI			CI	CI		CI
-09C							С				С			С	С		С
-08C							С				С			С	С		С
-3														CI		CI	CI
XC4085XL														CI		CI	CI
														CI		CI	CI
-09C														С		С	С

Table 24: Component Availability Chart for XC4000XL FPGAs

C = Commercial T_J = 0° to +85°C I= Industrial $T_J = -40^{\circ}C$ to $+100^{\circ}C$

PINS		84	100	100	120	144	156	160	191	208	208	223	225	240	240	299	304
TYPE		Plast. PLCC	Plast. PQFP	Plast. VQFP	Ceram. PGA	Plast. TQFP	Ceram. PGA	Plast. PQFP	Ceram. PGA	High-Perf. QFP	Plast. PQFP	Ceram. PGA	Plast. BGA	High-Perf. QFP	Plast. PQFP	Ceram. PGA	High-Perf. QF
CODE		PC84	PQ100	VQ100	PG120	ТQ144	PG156	PQ160	PG191	HQ208	PQ208	PG223	BG225	HQ240	PQ240	PG299	HQ304
XC4003E	-4	CI	CI	CI	CI												
	-3	CI	CI	CI	CI												
	-2	CI	СІ	СІ	СІ												
	-1	C	C	C	C												
XC4005E	-4	CI	CI			CI	CI	CI			CI						
	-3	CI	CI			CI	CI	CI			CI						
	-2	CI	CI			CI	CI	CI			СІ						
	-1	С	С			С	С	С			С						
XC4006E	-4	CI				CI	CI	CI			CI						
	-3	CI				CI	CI	CI			CI						
	-2	CI				CI	CI	CI			CI						
	-1	С				С	С	С			С						
XC4008E	-4	CI						CI	CI		CI						
	-3	CI						CI	CI		CI						
	-2	CI						CI	CI		CI						
	-1	С						С	С		С						
XC4010E	-4	CI						CI	CI	CI	CI		CI				
	-3	CI						CI	CI	CI	CI		CI				
	-2	CI						CI	CI	CI	CI		CI				
	-1	С						С	С	С	С		С				
XC4013E	-4							CI		CI	CI	CI	CI	CI	CI		
	-3							CI		CI	CI	CI	CI	CI	CI		
	-2							CI		CI	CI	CI	CI	CI	CI		
	-1							С		C	С	C	С	C	С		
XC4020E XC4025E	-4									C1 C1		CI CI		CI CI			
	-3 -2									CI		CI		CI			
	-2									C		C		C			
	-1											CI		CI		CI	CI
	-4 -3											CI		CI		CI	CI
	-3 -2											C C		C		C C	C
1/29/99	-2											U		U		U	U

Table 25: Component Availability Chart for XC4000E FPGAs

1/29/99

C = Commercial $T_J = 0^\circ$ to +85°C I= Industrial $T_J = -40^\circ$ C to +100°C

Table 26: Component Availability Chart for XC4000EX FPGAs

PINS 208 240 299 304 352 411 432 High-Perf. QFP High-Perf. QFP Ceram. PGA High-Perf. QFP Plast. Ceram. PGA Plast. BGA TYPE BGA HQ240 PG299 HQ304 BG352 PG411 BG432 HQ208 CODE -4 СΙ СІ СΙ СІ СІ XC4028EX -3 СІ СΙ СΙ СІ СІ -2 С С С С С -4 СI СІ СІ CI CI XC4036EX -3 СΙ СΙ СΙ СІ СΙ -2 С С С С С

1/29/99

C = Commercial $T_J = 0^{\circ}$ to +85°C

I= Industrial $T_J = -40^{\circ}C$ to $+100^{\circ}C$