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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Product Obsolete or Under Obsolescence
* Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

Note: All functionality in low-voltage families is the same as
in the corresponding 5-Volt family, except where numerical
references are made to timing or power.

Description
XC4000 Series devices are implemented with a regular,
flexible, programmable architecture of Configurable Logic
Blocks (CLBs), interconnected by a powerful hierarchy of
versatile routing resources, and surrounded by a perimeter
of programmable Input/Output Blocks (IOBs). They have
generous routing resources to accommodate the most
complex interconnect patterns.

The devices are customized by loading configuration data
into internal memory cells. The FPGA can either actively
read its configuration data from an external serial or
byte-parallel PROM (master modes), or the configuration
data can be written into the FPGA from an external device
(slave and peripheral modes).

XC4000 Series FPGAs are supported by powerful and
sophisticated software, covering every aspect of design
from schematic or behavioral entry, floor planning, simula-
tion, automatic block placement and routing of intercon-
nects, to the creation, downloading, and readback of the
configuration bit stream.

Because Xilinx FPGAs can be reprogrammed an unlimited
number of times, they can be used in innovative designs

where hardware is changed dynamically, or where hard-
ware must be adapted to different user applications.
FPGAs are ideal for shortening design and development
cycles, and also offer a cost-effective solution for produc-
tion rates well beyond 5,000 systems per month.
n
’
.

Taking Advantage of Re-configuration
FPGA devices can be re-configured to change logic func-
tion while resident in the system. This capability gives the
system designer a new degree of freedom not available
with any other type of logic.

Hardware can be changed as easily as software. Design
updates or modifications are easy, and can be made to
products already in the field. An FPGA can even be re-con-
figured dynamically to perform different functions at differ-
ent times.

Re-configurable logic can be used to implement system
self-diagnostics, create systems capable of being re-con-
figured for different environments or operations, or imple-
ment multi-purpose hardware for a given application. As an
added benefit, using re-configurable FPGA devices simpli-
fies hardware design and debugging and shortens product
time-to-market.

Table 1: XC4000E and XC4000X Series Field Programmable Gate Arrays

Device
Logic
Cells

Max Logic
Gates

(No RAM)

Max. RAM
Bits

(No Logic)

Typical
Gate Range

(Logic and RAM)*
CLB

Matrix
Total
CLBs

Number
of

Flip-Flops
Max.

User I/O
XC4002XL 152 1,600 2,048 1,000 - 3,000 8 x 8 64 256 64
XC4003E 238 3,000 3,200 2,000 - 5,000 10 x 10 100 360 80
XC4005E/XL 466 5,000 6,272 3,000 - 9,000 14 x 14 196 616 112
XC4006E 608 6,000 8,192 4,000 - 12,000 16 x 16 256 768 128
XC4008E 770 8,000 10,368 6,000 - 15,000 18 x 18 324 936 144
XC4010E/XL 950 10,000 12,800 7,000 - 20,000 20 x 20 400 1,120 160
XC4013E/XL 1368 13,000 18,432 10,000 - 30,000 24 x 24 576 1,536 192
XC4020E/XL 1862 20,000 25,088 13,000 - 40,000 28 x 28 784 2,016 224
XC4025E 2432 25,000 32,768 15,000 - 45,000 32 x 32 1,024 2,560 256
XC4028EX/XL 2432 28,000 32,768 18,000 - 50,000 32 x 32 1,024 2,560 256
XC4036EX/XL 3078 36,000 41,472 22,000 - 65,000 36 x 36 1,296 3,168 288
XC4044XL 3800 44,000 51,200 27,000 - 80,000 40 x 40 1,600 3,840 320
XC4052XL 4598 52,000 61,952 33,000 - 100,000 44 x 44 1,936 4,576 352
XC4062XL 5472 62,000 73,728 40,000 - 130,000 48 x 48 2,304 5,376 384
XC4085XL 7448 85,000 100,352 55,000 - 180,000 56 x 56 3,136 7,168 448
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Set/Reset

An asynchronous storage element input (SR) can be con-
figured as either set or reset. This configuration option
determines the state in which each flip-flop becomes oper-
ational after configuration. It also determines the effect of a
Global Set/Reset pulse during normal operation, and the
effect of a pulse on the SR pin of the CLB. All three
set/reset functions for any single flip-flop are controlled by
the same configuration data bit.

The set/reset state can be independently specified for each
flip-flop. This input can also be independently disabled for
either flip-flop.

The set/reset state is specified by using the INIT attribute,
or by placing the appropriate set or reset flip-flop library
symbol.

SR is active High. It is not invertible within the CLB.

Global Set/Reset

A separate Global Set/Reset line (not shown in Figure 1)
sets or clears each storage element during power-up,
re-configuration, or when a dedicated Reset net is driven
active. This global net (GSR) does not compete with other
routing resources; it uses a dedicated distribution network.

Each flip-flop is configured as either globally set or reset in
the same way that the local set/reset (SR) is specified.
Therefore, if a flip-flop is set by SR, it is also set by GSR.
Similarly, a reset flip-flop is reset by both SR and GSR.

GSR can be driven from any user-programmable pin as a
global reset input. To use this global net, place an input pad
and input buffer in the schematic or HDL code, driving the
GSR pin of the STARTUP symbol. (See Figure 2.) A spe-
cific pin location can be assigned to this input using a LOC
attribute or property, just as with any other user-program-
mable pad. An inverter can optionally be inserted after the
input buffer to invert the sense of the Global Set/Reset sig-
nal.

Alternatively, GSR can be driven from any internal node.

Data Inputs and Outputs

The source of a storage element data input is programma-
ble. It is driven by any of the functions F’, G’, and H’, or by
the Direct In (DIN) block input. The flip-flops or latches drive
the XQ and YQ CLB outputs.

Two fast feed-through paths are available, as shown in
Figure 1. A two-to-one multiplexer on each of the XQ and
YQ outputs selects between a storage element output and
any of the control inputs. This bypass is sometimes used by
the automated router to repower internal signals.

Control Signals

Multiplexers in the CLB map the four control inputs (C1 - C4
in Figure 1) into the four internal control signals (H1,
DIN/H2, SR/H0, and EC). Any of these inputs can drive any
of the four internal control signals.

When the logic function is enabled, the four inputs are:

• EC — Enable Clock
• SR/H0 — Asynchronous Set/Reset or H function

generator Input 0
• DIN/H2 — Direct In or H function generator Input 2
• H1 — H function generator Input 1.

When the memory function is enabled, the four inputs are:

• EC — Enable Clock
• WE — Write Enable
• D0 — Data Input to F and/or G function generator
• D1 — Data input to G function generator (16x1 and

16x2 modes) or 5th Address bit (32x1 mode).

Using FPGA Flip-Flops and Latches

The abundance of flip-flops in the XC4000 Series invites
pipelined designs. This is a powerful way of increasing per-
formance by breaking the function into smaller subfunc-
tions and executing them in parallel, passing on the results
through pipeline flip-flops. This method should be seriously
considered wherever throughput is more important than
latency.

To include a CLB flip-flop, place the appropriate library
symbol. For example, FDCE is a D-type flip-flop with clock
enable and asynchronous clear. The corresponding latch
symbol (for the XC4000X only) is called LDCE.

In XC4000 Series devices, the flip flops can be used as reg-
isters or shift registers without blocking the function gener-
ators from performing a different, perhaps unrelated task.
This ability increases the functional capacity of the devices.

The CLB setup time is specified between the function gen-
erator inputs and the clock input K. Therefore, the specified
CLB flip-flop setup time includes the delay through the
function generator.

Using Function Generators as RAM

Optional modes for each CLB make the memory look-up
tables in the F’ and G’ function generators usable as an
array of Read/Write memory cells. Available modes are
level-sensitive (similar to the XC4000/A/H families),
edge-triggered, and dual-port edge-triggered. Depending
on the selected mode, a single CLB can be configured as
either a 16x2, 32x1, or 16x1 bit array.

PAD

IBUF

GSR
GTS

CLK DONEIN
Q1Q4

Q2
Q3

STARTUP

X5260

Figure 2:   Schematic Symbols for Global Set/Reset
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Figure 4:    16x2 (or 16x1) Edge-Triggered Single-Port RAM
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Figure 5:   32x1 Edge-Triggered Single-Port RAM (F and G addresses are identical)
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or clear on reset and after configuration. Other than the glo-
bal GSR net, no user-controlled set/reset signal is available
to the I/O flip-flops. The choice of set or clear applies to
both the initial state of the flip-flop and the response to the
Global Set/Reset pulse. See “Global Set/Reset” on
page 11 for a description of how to use GSR.

JTAG Support

Embedded logic attached to the IOBs contains test struc-
tures compatible with IEEE Standard 1149.1 for boundary
scan testing, permitting easy chip and board-level testing.
More information is provided in “Boundary Scan” on
page 42.

Three-State Buffers
A pair of 3-state buffers is associated with each CLB in the
array. (See Figure 27 on page 30.) These 3-state buffers
can be used to drive signals onto the nearest horizontal
longlines above and below the CLB. They can therefore be
used to implement multiplexed or bidirectional buses on the
horizontal longlines, saving logic resources. Programmable
pull-up resistors attached to these longlines help to imple-
ment a wide wired-AND function.

The buffer enable is an active-High 3-state (i.e. an
active-Low enable), as shown in Table 13.

Another 3-state buffer with similar access is located near
each I/O block along the right and left edges of the array.
(See Figure 33 on page 34.)

The horizontal longlines driven by the 3-state buffers have
a weak keeper at each end. This circuit prevents undefined
floating levels. However, it is overridden by any driver, even
a pull-up resistor.

Special longlines running along the perimeter of the array
can be used to wire-AND signals coming from nearby IOBs
or from internal longlines. These longlines form the wide
edge decoders discussed in “Wide Edge Decoders” on
page 27.

Three-State Buffer Modes

The 3-state buffers can be configured in three modes:

• Standard 3-state buffer
• Wired-AND with input on the I pin
• Wired OR-AND

Standard 3-State Buffer

All three pins are used. Place the library element BUFT.
Connect the input to the I pin and the output to the O pin.
The T pin is an active-High 3-state (i.e. an active-Low
enable). Tie the T pin to Ground to implement a standard
buffer.

Wired-AND with Input on the I Pin

The buffer can be used as a Wired-AND. Use the WAND1
library symbol, which is essentially an open-drain buffer.
WAND4, WAND8, and WAND16 are also available. See the
XACT Libraries Guide for further information.

The T pin is internally tied to the I pin. Connect the input to
the I pin and the output to the O pin. Connect the outputs of
all the WAND1s together and attach a PULLUP symbol.

Wired OR-AND

The buffer can be configured as a Wired OR-AND. A High
level on either input turns off the output. Use the
WOR2AND library symbol, which is essentially an
open-drain 2-input OR gate. The two input pins are func-
tionally equivalent. Attach the two inputs to the I0 and I1
pins and tie the output to the O pin. Tie the outputs of all the
WOR2ANDs together and attach a PULLUP symbol.

Three-State Buffer Examples

Figure 21 shows how to use the 3-state buffers to imple-
ment a wired-AND function. When all the buffer inputs are
High, the pull-up resistor(s) provide the High output.

Figure 22 shows how to use the 3-state buffers to imple-
ment a multiplexer. The selection is accomplished by the
buffer 3-state signal.

Pay particular attention to the polarity of the T pin when
using these buffers in a design. Active-High 3-state (T) is
identical to an active-Low output enable, as shown in
Table 13.

Table 13: Three-State Buffer Functionality
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Figure 21:   Open-Drain Buffers Implement a Wired-AND Function
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The oscillator output is optionally available after configura-
tion. Any two of four resynchronized taps of a built-in divider
are also available. These taps are at the fourth, ninth, four-
teenth and nineteenth bits of the divider. Therefore, if the
primary oscillator output is running at the nominal 8 MHz,
the user has access to an 8 MHz clock, plus any two of 500
kHz, 16kHz, 490Hz and 15Hz (up to 10% lower for low-volt-
age devices). These frequencies can vary by as much as
-50% or +25%.

These signals can be accessed by placing the OSC4
library element in a schematic or in HDL code (see
Figure 24).

The oscillator is automatically disabled after configuration if
the OSC4 symbol is not used in the design.

Programmable Interconnect
All internal connections are composed of metal segments
with programmable switching points and switching matrices
to implement the desired routing. A structured, hierarchical
matrix of routing resources is provided to achieve efficient
automated routing.

The XC4000E and XC4000X share a basic interconnect
structure. XC4000X devices, however, have additional rout-
ing not available in the XC4000E. The extra routing
resources allow high utilization in high-capacity devices. All
XC4000X-specific routing resources are clearly identified
throughout this section. Any resources not identified as
XC4000X-specific are present in all XC4000 Series
devices.

This section describes the varied routing resources avail-
able in XC4000 Series devices. The implementation soft-
ware automatically assigns the appropriate resources
based on the density and timing requirements of the
design.

Interconnect Overview
There are several types of interconnect.

• CLB routing is associated with each row and column of
the CLB array.

• IOB routing forms a ring (called a VersaRing) around
the outside of the CLB array. It connects the I/O with the
internal logic blocks.

• Global routing consists of dedicated networks primarily
designed to distribute clocks throughout the device with
minimum delay and skew. Global routing can also be
used for other high-fanout signals.

Five interconnect types are distinguished by the relative
length of their segments: single-length lines, double-length
lines, quad and octal lines (XC4000X only), and longlines.
In the XC4000X, direct connects allow fast data flow
between adjacent CLBs, and between IOBs and CLBs.

Extra routing is included in the IOB pad ring. The XC4000X
also includes a ring of octal interconnect lines near the
IOBs to improve pin-swapping and routing to locked pins.

XC4000E/X devices include two types of global buffers.
These global buffers have different properties, and are
intended for different purposes. They are discussed in
detail later in this section.

CLB Routing Connections
A high-level diagram of the routing resources associated
with one CLB is shown in Figure 25. The shaded arrows
represent routing present only in XC4000X devices.

Table 14 shows how much routing of each type is available
in XC4000E and XC4000X CLB arrays. Clearly, very large
designs, or designs with a great deal of interconnect, will
route more easily in the XC4000X. Smaller XC4000E
designs, typically requiring significantly less interconnect,
do not require the additional routing.

Figure 27 on page 30 is a detailed diagram of both the
XC4000E and the XC4000X CLB, with associated routing.
The shaded square is the programmable switch matrix,
present in both the XC4000E and the XC4000X. The
L-shaped shaded area is present only in XC4000X devices.
As shown in the figure, the XC4000X block is essentially an
XC4000E block with additional routing.

CLB inputs and outputs are distributed on all four sides,
providing maximum routing flexibility. In general, the entire
architecture is symmetrical and regular. It is well suited to
established placement and routing algorithms. Inputs, out-
puts, and function generators can freely swap positions
within a CLB to avoid routing congestion during the place-
ment and routing operation.
6-28 May 14, 1999 (Version 1.6)
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circuit prevents undefined floating levels. However, it is
overridden by any driver, even a pull-up resistor.

Each XC4000E longline has a programmable splitter switch
at its center, as does each XC4000X longline driven by
TBUFs. This switch can separate the line into two indepen-
dent routing channels, each running half the width or height
of the array.

Each XC4000X longline not driven by TBUFs has a buff-
ered programmable splitter switch at the 1/4, 1/2, and 3/4
points of the array. Due to the buffering, XC4000X longline
performance does not deteriorate with the larger array
sizes. If the longline is split, the resulting partial longlines
are independent.

Routing connectivity of the longlines is shown in Figure 27
on page 30.

Direct Interconnect (XC4000X only)

The XC4000X offers two direct, efficient and fast connec-
tions between adjacent CLBs. These nets facilitate a data
flow from the left to the right side of the device, or from the
top to the bottom, as shown in Figure 30. Signals routed on
the direct interconnect exhibit minimum interconnect prop-
agation delay and use no general routing resources.

The direct interconnect is also present between CLBs and
adjacent IOBs. Each IOB on the left and top device edges
has a direct path to the nearest CLB. Each CLB on the right
and bottom edges of the array has a direct path to the near-
est two IOBs, since there are two IOBs for each row or col-
umn of CLBs.

The place and route software uses direct interconnect
whenever possible, to maximize routing resources and min-
imize interconnect delays.

I/O Routing
XC4000 Series devices have additional routing around the
IOB ring. This routing is called a VersaRing. The VersaRing
facilitates pin-swapping and redesign without affecting
board layout. Included are eight double-length lines span-
ning two CLBs (four IOBs), and four longlines. Global lines
and Wide Edge Decoder lines are provided. XC4000X
devices also include eight octal lines.

A high-level diagram of the VersaRing is shown in
Figure 31. The shaded arrows represent routing present
only in XC4000X devices.

Figure 33 on page 34 is a detailed diagram of the XC4000E
and XC4000X VersaRing. The area shown includes two
IOBs. There are two IOBs per CLB row or column, there-
fore this diagram corresponds to the CLB routing diagram
shown in Figure 27 on page 30. The shaded areas repre-
sent routing and routing connections present only in
XC4000X devices.

Octal I/O Routing (XC4000X only)

Between the XC4000X CLB array and the pad ring, eight
interconnect tracks provide for versatility in pin assignment
and fixed pinout flexibility. (See Figure 32 on page 33.)

These routing tracks are called octals, because they can be
broken every eight CLBs (sixteen IOBs) by a programma-
ble buffer that also functions as a splitter switch. The buffers
are staggered, so each line goes through a buffer at every
eighth CLB location around the device edge.

The octal lines bend around the corners of the device. The
lines cross at the corners in such a way that the segment
most recently buffered before the turn has the farthest dis-
tance to travel before the next buffer, as shown in
Figure 32.

CLB
IOB

X6603

IOB

IOB

IOB

IOB

IOB

IOB

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IO
B

IOB
CLB

CLB

CLB

CLB

CLB

~~
~~

~~
~~

~~~~ ~~~~ ~~~~

Figure 30:   XC4000X Direct Interconnect
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Figure 31:   High-Level Routing Diagram of XC4000 Series VersaRing (Left Edge)
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Figure 32:   XC4000X Octal I/O Routing
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Global Early Buffers

Each corner of the XC4000X device has two Global Early
buffers. The primary purpose of the Global Early buffers is
to provide an earlier clock access than the potentially
heavily-loaded Global Low-Skew buffers. A clock source
applied to both buffers will result in the Global Early clock
edge occurring several nanoseconds earlier than the Glo-
bal Low-Skew buffer clock edge, due to the lighter loading.

Global Early buffers also facilitate the fast capture of device
inputs, using the Fast Capture latches described in “IOB
Input Signals” on page 20. For Fast Capture, take a single
clock signal, and route it through both a Global Early buffer
and a Global Low-Skew buffer. (The two buffers share an
input pad.) Use the Global Early buffer to clock the Fast
Capture latch, and the Global Low-Skew buffer to clock the
normal input flip-flop or latch, as shown in Figure 17 on
page 23.

The Global Early buffers can also be used to provide a fast
Clock-to-Out on device output pins. However, an early clock
in the output flip-flop IOB must be taken into consideration
when calculating the internal clock speed for the design.

The Global Early buffers at the left and right edges of the
chip have slightly different capabilities than the ones at the
top and bottom. Refer to Figure 37, Figure 38, and
Figure 35 on page 36 while reading the following explana-
tion.

Each Global Early buffer can access the eight vertical Glo-
bal lines for all CLBs in the quadrant. Therefore, only
one-fourth of the CLB clock pins can be accessed. This
restriction is in large part responsible for the faster speed of
the buffers, relative to the Global Low-Skew buffers.

The left-side Global Early buffers can each drive two of the
four vertical lines accessing the IOBs on the entire left edge
of the device. The right-side Global Early buffers can each
drive two of the eight vertical lines accessing the IOBs on
the entire right edge of the device. (See Figure 37.)

Each left and right Global Early buffer can also drive half of
the IOBs along either the top or bottom edge of the device,
using a dedicated line that can only be accessed through
the Global Early buffers.

The top and bottom Global Early buffers can drive half of
the IOBs along either the left or right edge of the device, as
shown in Figure 38. They can only access the top and bot-
tom IOBs via the CLB global lines.
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Figure 36:   Any BUFGLS (GCK1 - GCK8) Can
Drive Any or All Clock Inputs on the Device
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Figure 37: Left and Right BUFGEs Can Drive Any or
All Clock Inputs in Same Quadrant or Edge (GCK1 is
shown. GCK2, GCK5 and GCK6 are similar.)
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Figure 38:   Top and Bottom BUFGEs Can Drive Any
or All Clock Inputs in Same Quadrant (GCK8 is
shown. GCK3, GCK4 and GCK7 are similar.)
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Table 16: Pin Descriptions

Pin Name

I/O
During
Config.

I/O
After

Config. Pin Description
Permanently Dedicated Pins

VCC I I
Eight or more (depending on package) connections to the nominal +5 V supply voltage
(+3.3 V for low-voltage devices). All must be connected, and each must be decoupled
with a 0.01 - 0.1 µF capacitor to Ground.

GND I I
Eight or more (depending on package type) connections to Ground. All must be con-
nected.

CCLK I or O I

During configuration, Configuration Clock (CCLK) is an output in Master modes or Asyn-
chronous Peripheral mode, but is an input in Slave mode and Synchronous Peripheral
mode. After configuration, CCLK has a weak pull-up resistor and can be selected as the
Readback Clock. There is no CCLK High or Low time restriction on XC4000 Series de-
vices, except during Readback. See “Violating the Maximum High and Low Time Spec-
ification for the Readback Clock” on page 56 for an explanation of this exception.

DONE I/O O

DONE is a bidirectional signal with an optional internal pull-up resistor. As an output, it
indicates the completion of the configuration process. As an input, a Low level on DONE
can be configured to delay the global logic initialization and the enabling of outputs.
The optional pull-up resistor is selected as an option in the XACTstep program that cre-
ates the configuration bitstream. The resistor is included by default.

PROGRAM I I

PROGRAM is an active Low input that forces the FPGA to clear its configuration mem-
ory. It is used to initiate a configuration cycle. When PROGRAM goes High, the FPGA
finishes the current clear cycle and executes another complete clear cycle, before it
goes into a WAIT state and releases INIT.
The PROGRAM pin has a permanent weak pull-up, so it need not be externally pulled
up to Vcc.

User I/O Pins That Can Have Special Functions

RDY/BUSY O I/O

During Peripheral mode configuration, this pin indicates when it is appropriate to write
another byte of data into the FPGA. The same status is also available on D7 in Asyn-
chronous Peripheral mode, if a read operation is performed when the device is selected.
After configuration, RDY/BUSY is a user-programmable I/O pin.
RDY/BUSY is pulled High with a high-impedance pull-up prior to INIT going High.

RCLK O I/O

During Master Parallel configuration, each change on the A0-A17 outputs (A0 - A21 for
XC4000X) is preceded by a rising edge on RCLK, a redundant output signal. RCLK is
useful for clocked PROMs. It is rarely used during configuration. After configuration,
RCLK is a user-programmable I/O pin.

M0, M1, M2 I
I (M0),
O (M1),
I (M2)

As Mode inputs, these pins are sampled after INIT goes High to determine the configu-
ration mode to be used. After configuration, M0 and M2 can be used as inputs, and M1
can be used as a 3-state output. These three pins have no associated input or output
registers.
During configuration, these pins have weak pull-up resistors. For the most popular con-
figuration mode, Slave Serial, the mode pins can thus be left unconnected. The three
mode inputs can be individually configured with or without weak pull-up or pull-down re-
sistors. A pull-down resistor value of 4.7 kΩ is recommended.
These pins can only be used as inputs or outputs when called out by special schematic
definitions. To use these pins, place the library components MD0, MD1, and MD2 in-
stead of the usual pad symbols. Input or output buffers must still be used.

TDO O O

If boundary scan is used, this pin is the Test Data Output. If boundary scan is not used,
this pin is a 3-state output without a register, after configuration is completed.
This pin can be user output only when called out by special schematic definitions. To
use this pin, place the library component TDO instead of the usual pad symbol. An out-
put buffer must still be used.
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TDI, TCK,
TMS

I
I/O
or I

(JTAG)

If boundary scan is used, these pins are Test Data In, Test Clock, and Test Mode Select
inputs respectively. They come directly from the pads, bypassing the IOBs. These pins
can also be used as inputs to the CLB logic after configuration is completed.
If the BSCAN symbol is not placed in the design, all boundary scan functions are inhib-
ited once configuration is completed, and these pins become user-programmable I/O.
The pins can be used automatically or user-constrained. To use them, use "LOC=" or
place the library components TDI, TCK, and TMS instead of the usual pad symbols. In-
put or output buffers must still be used.

HDC O I/O
High During Configuration (HDC) is driven High until the I/O go active. It is available as
a control output indicating that configuration is not yet completed. After configuration,
HDC is a user-programmable I/O pin.

LDC O I/O
Low During Configuration (LDC) is driven Low until the I/O go active. It is available as a
control output indicating that configuration is not yet completed. After configuration,
LDC is a user-programmable I/O pin.

INIT I/O I/O

Before and during configuration, INIT is a bidirectional signal. A 1 kΩ - 10 kΩ external
pull-up resistor is recommended.
As an active-Low open-drain output, INIT is held Low during the power stabilization and
internal clearing of the configuration memory.   As an active-Low input, it can be used
to hold the FPGA in the internal WAIT state before the start of configuration.   Master
mode devices stay in a WAIT state an additional 30 to 300 µs after INIT has gone High.
During configuration, a Low on this output indicates that a configuration data error has
occurred. After the I/O go active, INIT is a user-programmable I/O pin.

PGCK1 -
PGCK4

(XC4000E
only)

Weak
Pull-up

I or I/O

Four Primary Global inputs each drive a dedicated internal global net with short delay
and minimal skew. If not used to drive a global buffer, any of these pins is a user-pro-
grammable I/O.
The PGCK1-PGCK4 pins drive the four Primary Global Buffers. Any input pad symbol
connected directly to the input of a BUFGP symbol is automatically placed on one of
these pins.

SGCK1 -
SGCK4

(XC4000E
only)

Weak
Pull-up

I or I/O

Four Secondary Global inputs each drive a dedicated internal global net with short delay
and minimal skew. These internal global nets can also be driven from internal logic. If
not used to drive a global net, any of these pins is a user-programmable I/O pin.
The SGCK1-SGCK4 pins provide the shortest path to the four Secondary Global Buff-
ers. Any input pad symbol connected directly to the input of a BUFGS symbol is auto-
matically placed on one of these pins.

GCK1 -
GCK8

(XC4000X
only)

Weak
Pull-up

I or I/O

Eight inputs can each drive a Global Low-Skew buffer. In addition, each can drive a Glo-
bal Early buffer. Each pair of global buffers can also be driven from internal logic, but
must share an input signal. If not used to drive a global buffer, any of these pins is a
user-programmable I/O.
Any input pad symbol connected directly to the input of a BUFGLS or BUFGE symbol
is automatically placed on one of these pins.

FCLK1 -
FCLK4

(XC4000XLA
and

XC4000XV
only)

Weak
Pull-up

I or I/O

Four inputs can each drive a Fast Clock (FCLK) buffer which can deliver a clock signal
to any IOB clock input in the octant of the die served by the Fast Clock buffer. Two Fast
Clock buffers serve the two IOB octants on the left side of the die and the other two Fast
Clock buffers serve the two IOB octants on the right side of the die. On each side of the
die, one Fast Clock buffer serves the upper octant and the other serves the lower octant.
If not used to drive a Fast Clock buffer, any of these pins is a user-programmable I/O.

Table 16: Pin Descriptions (Continued)

Pin Name

I/O
During
Config.

I/O
After

Config. Pin Description
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Instruction Set
The XC4000 Series boundary scan instruction set also
includes instructions to configure the device and read back
the configuration data. The instruction set is coded as
shown in Table 17.

Bit Sequence
The bit sequence within each IOB is: In, Out, 3-State. The
input-only M0 and M2 mode pins contribute only the In bit
to the boundary scan I/O data register, while the out-
put-only M1 pin contributes all three bits.

The first two bits in the I/O data register are TDO.T and
TDO.O, which can be used for the capture of internal sig-
nals. The final bit is BSCANT.UPD, which can be used to
drive an internal net. These locations are primarily used by
Xilinx for internal testing.

From a cavity-up view of the chip (as shown in XDE or
Epic), starting in the upper right chip corner, the boundary
scan data-register bits are ordered as shown in Figure 42.
The device-specific pinout tables for the XC4000 Series
include the boundary scan locations for each IOB pin.

BSDL (Boundary Scan Description Language) files for
XC4000 Series devices are available on the Xilinx FTP site.

Including Boundary Scan in a Schematic
If boundary scan is only to be used during configuration, no
special schematic elements need be included in the sche-
matic or HDL code. In this case, the special boundary scan
pins TDI, TMS, TCK and TDO can be used for user func-
tions after configuration.

To indicate that boundary scan remain enabled after config-
uration, place the BSCAN library symbol and connect the
TDI, TMS, TCK and TDO pad symbols to the appropriate
pins, as shown in Figure 43.

Even if the boundary scan symbol is used in a schematic,
the input pins TMS, TCK, and TDI can still be used as
inputs to be routed to internal logic. Care must be taken not
to force the chip into an undesired boundary scan state by
inadvertently applying boundary scan input patterns to
these pins. The simplest way to prevent this is to keep TMS
High, and then apply whatever signal is desired to TDI and
TCK.
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Figure 41:   XC4000 Series Boundary Scan Logic
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Table 17: Boundary Scan Instructions

Avoiding Inadvertent Boundary Scan
If TMS or TCK is used as user I/O, care must be taken to
ensure that at least one of these pins is held constant dur-
ing configuration. In some applications, a situation may
occur where TMS or TCK is driven during configuration.
This may cause the device to go into boundary scan mode
and disrupt the configuration process.

To prevent activation of boundary scan during configura-
tion, do either of the following:

• TMS: Tie High to put the Test Access Port controller
in a benign RESET state

• TCK: Tie High or Low—don't toggle this clock input.

For more information regarding boundary scan, refer to the
Xilinx Application Note XAPP 017.001, “Boundary Scan in
XC4000E Devices.“

Configuration
Configuration is the process of loading design-specific pro-
gramming data into one or more FPGAs to define the func-
tional operation of the internal blocks and their
interconnections. This is somewhat like loading the com-
mand registers of a programmable peripheral chip. XC4000
Series devices use several hundred bits of configuration
data per CLB and its associated interconnects. Each con-
figuration bit defines the state of a static memory cell that
controls either a function look-up table bit, a multiplexer
input, or an interconnect pass transistor. The XACTstep
development system translates the design into a netlist file.
It automatically partitions, places and routes the logic and
generates the configuration data in PROM format.

Special Purpose Pins
Three configuration mode pins (M2, M1, M0) are sampled
prior to configuration to determine the configuration mode.
After configuration, these pins can be used as auxiliary
connections. M2 and M0 can be used as inputs, and M1
can be used as an output. The XACTstep development sys-
tem does not use these resources unless they are explicitly
specified in the design entry. This is done by placing a spe-
cial pad symbol called MD2, MD1, or MD0 instead of the
input or output pad symbol.

In XC4000 Series devices, the mode pins have weak
pull-up resistors during configuration. With all three mode
pins High, Slave Serial mode is selected, which is the most
popular configuration mode. Therefore, for the most com-
mon configuration mode, the mode pins can be left uncon-
nected. (Note, however, that the internal pull-up resistor
value can be as high as 100 kΩ.) After configuration, these
pins can individually have weak pull-up or pull-down resis-
tors, as specified in the design. A pull-down resistor value
of 4.7 kΩ is recommended.

These pins are located in the lower left chip corner and are
near the readback nets. This location allows convenient
routing if compatibility with the XC2000 and XC3000 family
conventions of M0/RT, M1/RD is desired.

Instruction I2
I1      I0

Test
Selected

TDO Source
I/O Data
Source

0 0 0 EXTEST DR DR
0 0 1 SAMPLE/PR

ELOAD
DR Pin/Logic

0 1 0 USER 1 BSCAN.
TDO1

User Logic

0 1 1 USER 2 BSCAN.
TDO2

User Logic

1 0 0 READBACK Readback
Data

Pin/Logic

1 0 1 CONFIGURE DOUT Disabled
1 1 0 Reserved — —
1 1 1 BYPASS Bypass

Register
—

Bit 0 ( TDO end)

Bit 1

Bit 2

TDO.T

TDO.O



Top-edge IOBs (Right to Left)





Left-edge IOBs (Top to Bottom)



MD1.T

MD1.O

MD1.I

MD0.I

MD2.I



Bottom-edge IOBs (Left to Right)





Right-edge IOBs (Bottom to Top)



B SCANT.UPD(TDI end)




X6075

Figure 42:    Boundary Scan Bit Sequence
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Figure 43:   Boundary Scan Schematic Example
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Configuration Modes
XC4000E devices have six configuration modes. XC4000X
devices have the same six modes, plus an additional con-
figuration mode. These modes are selected by a 3-bit input
code applied to the M2, M1, and M0 inputs. There are three
self-loading Master modes, two Peripheral modes, and a
Serial Slave mode, which is used primarily for
daisy-chained devices. The coding for mode selection is
shown in Table 18.

A detailed description of each configuration mode, with tim-
ing information, is included later in this data sheet. During
configuration, some of the I/O pins are used temporarily for
the configuration process. All pins used during configura-
tion are shown in Table 22 on page 58.

Master Modes

The three Master modes use an internal oscillator to gener-
ate a Configuration Clock (CCLK) for driving potential slave
devices. They also generate address and timing for exter-
nal PROM(s) containing the configuration data.

Master Parallel (Up or Down) modes generate the CCLK
signal and PROM addresses and receive byte parallel data.
The data is internally serialized into the FPGA data-frame
format. The up and down selection generates starting
addresses at either zero or 3FFFF (3FFFFF when 22
address lines are used), for compatibility with different
microprocessor addressing conventions. The Master Serial
mode generates CCLK and receives the configuration data
in serial form from a Xilinx serial-configuration PROM.

CCLK speed is selectable as either 1 MHz (default) or 8
MHz. Configuration always starts at the default slow fre-
quency, then can switch to the higher frequency during the
first frame. Frequency tolerance is -50% to +25%.

Additional Address lines in XC4000 devices

The XC4000X devices have additional address lines
(A18-A21) allowing the additional address space required
to daisy-chain several large devices.

The extra address lines are programmable in XC4000EX
devices. By default these address lines are not activated. In
the default mode, the devices are compatible with existing
XC4000 and XC4000E products. If desired, the extra
address lines can be used by specifying the address lines
option in bitgen as 22 (bitgen -g AddressLines:22). The
lines (A18-A21) are driven when a master device detects,
via the bitstream, that it should be using all 22 address
lines. Because these pins will initially be pulled high by
internal pull-ups, designers using Master Parallel Up mode
should use external pull down resistors on pins A18-A21. If
Master Parallel Down mode is used external resistors are
not necessary.

All 22 address lines are always active in Master Parallel
modes with XC4000XL devices. The additional address
lines behave identically to the lower order address lines. If
the Address Lines option in bitgen is set to 18, it will be
ignored by the XC4000XL device.

The additional address lines (A18-A21) are not available in
the PC84 package.

Peripheral Modes

The two Peripheral modes accept byte-wide data from a
bus. A RDY/BUSY status is available as a handshake sig-
nal. In Asynchronous Peripheral mode, the internal oscilla-
tor generates a CCLK burst signal that serializes the
byte-wide data. CCLK can also drive slave devices. In the
synchronous mode, an externally supplied clock input to
CCLK serializes the data.

Slave Serial Mode

In Slave Serial mode, the FPGA receives serial configura-
tion data on the rising edge of CCLK and, after loading its
configuration, passes additional data out, resynchronized
on the next falling edge of CCLK.

Multiple slave devices with identical configurations can be
wired with parallel DIN inputs. In this way, multiple devices
can be configured simultaneously.

Serial Daisy Chain

Multiple devices with different configurations can be con-
nected together in a “daisy chain,” and a single combined
bitstream used to configure the chain of slave devices.

To configure a daisy chain of devices, wire the CCLK pins
of all devices in parallel, as shown in Figure 51 on page
60. Connect the DOUT of each device to the DIN of the
next. The lead or master FPGA and following slaves each
passes resynchronized configuration data coming from a
single source. The header data, including the length count,

Table 18: Configuration Modes

Mode M2 M1 M0 CCLK Data
Master Serial 0 0 0 output Bit-Serial
Slave Serial 1 1 1 input Bit-Serial
Master
Parallel Up

1 0 0 output Byte-Wide,
increment

from 00000
Master
Parallel Down

1 1 0 output Byte-Wide,
decrement

from 3FFFF
Peripheral
Synchronous*

0 1 1 input Byte-Wide

Peripheral
Asynchronous

1 0 1 output Byte-Wide

Reserved 0 1 0 — —
Reserved 0 0 1 — —
* Can be considered byte-wide Slave Parallel
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Notes: 1. Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits
Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1
Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits
PROM Size = Program Data + 40 (header) + 8

2. The user can add more “one” bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of
any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra “one”
bits, even for extra leading ones at the beginning of the header.

Cyclic Redundancy Check (CRC) for
Configuration and Readback
The Cyclic Redundancy Check is a method of error detec-
tion in data transmission applications. Generally, the trans-
mitting system performs a calculation on the serial
bitstream. The result of this calculation is tagged onto the
data stream as additional check bits. The receiving system
performs an identical calculation on the bitstream and com-
pares the result with the received checksum.

Each data frame of the configuration bitstream has four
error bits at the end, as shown in Table 19. If a frame data
error is detected during the loading of the FPGA, the con-

figuration process with a potentially corrupted bitstream is
terminated. The FPGA pulls the INIT pin Low and goes into
a Wait state.

During Readback, 11 bits of the 16-bit checksum are added
to the end of the Readback data stream. The checksum is
computed using the CRC-16 CCITT polynomial, as shown
in Figure 45. The checksum consists of the 11 most signif-
icant bits of the 16-bit code. A change in the checksum indi-
cates a change in the Readback bitstream. A comparison
to a previous checksum is meaningful only if the readback
data is independent of the current device state. CLB out-
puts should not be included (Read Capture option not

Table 20: XC4000E Program Data

Device XC4003E XC4005E XC4006E XC4008E XC4010E XC4013E XC4020E XC4025E
Max Logic Gates 3,000 5,000 6,000 8,000 10,000 13,000 20,000 25,000
CLBs
(Row x Col.)

100
(10 x 10)

196
(14 x 14)

256
(16 x 16)

324
(18 x 18)

400
(20 x 20)

576
(24 x 24)

784
(28 x 28)

1,024
(32 x 32)

IOBs 80 112 128 144 160 192 224 256
Flip-Flops 360 616 768 936 1,120 1,536 2,016 2,560
Bits per Frame 126 166 186 206 226 266 306 346
Frames 428 572 644 716 788 932 1,076 1,220
Program Data 53,936 94,960 119,792 147,504 178,096 247,920 329,264 422,128
PROM Size
(bits)

53,984 95,008 119,840 147,552 178,144 247,968 329,312 422,176

Table 21: XC4000EX/XL Program Data

Device XC4002XL XC4005 XC4010 XC4013 XC4020 XC4028 XC4036 XC4044 XC4052 XC4062 XC4085

Max Logic
Gates

2,000 5,000 10,000 13,000 20,000 28,000 36,000 44,000 52,000 62,000 85,000

CLBs
(Row x
Column)

64
(8 x 8)

196
(14 x 14)

400
(20 x 20)

576
(24 x 24)

784
(28 x 28)

1,024
(32 x 32)

1,296
(36 x 36)

1,600
(40 x 40)

1,936
(44 x 44)

2,304
(48 x 48)

3,136
(56 x 56)

IOBs 64 112 160 192 224 256 288 320 352 384 448

Flip-Flops 256 616 1,120 1,536 2,016 2,560 3,168 3,840 4,576 5,376 7,168

Bits per
Frame

133 205 277 325 373 421 469 517 565 613 709

Frames 459 741 1,023 1,211 1,399 1,587 1,775 1,963 2,151 2,339 2,715

Program Data 61,052 151,910 283,376 393,580 521,832 668,124 832,480 1,014,876 1,215,320 1,433,804 1,924,940

PROM Size
(bits)

61,104 151,960 283,424 393,632 521,880 668,172 832,528 1,014,924 1,215,368 1,433,852 1,924,992

Notes: 1. Bits per frame = (13 x number of rows) + 9 for the top + 17 for the bottom + 8 + 1 start bit + 4 error check bits.
Frames = (47 x number of columns) + 27 for the left edge + 52 for the right edge + 4.

 Program data = (bits per frame x number of frames) + 5 postamble bits.
 PROM size = (program data + 40 header bits + 8 start bits) rounded up to the nearest byte.
2. The user can add more “one” bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end

of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra “one”
bits, even for extra leading “ones” at the beginning of the header.
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XC4000E/X
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Figure 47:   Start-up Timing
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Readback
The user can read back the content of configuration mem-
ory and the level of certain internal nodes without interfer-
ing with the normal operation of the device.

Readback not only reports the downloaded configuration
bits, but can also include the present state of the device,
represented by the content of all flip-flops and latches in
CLBs and IOBs, as well as the content of function genera-
tors used as RAMs.

Note that in XC4000 Series devices, configuration data is
not inverted with respect to configuration as it is in XC2000
and XC3000 families.

XC4000 Series Readback does not use any dedicated
pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA,
RDBK.RIP and RDBK.CLK) that can be routed to any IOB.
To access the internal Readback signals, place the READ-

BACK library symbol and attach the appropriate pad sym-
bols, as shown in Figure 49.

After Readback has been initiated by a High level on
RDBK.TRIG after configuration, the RDBK.RIP (Read In
Progress) output goes High on the next rising edge of
RDBK.CLK. Subsequent rising edges of this clock shift out
Readback data on the RDBK.DATA net.

Readback data does not include the preamble, but starts
with five dummy bits (all High) followed by the Start bit
(Low) of the first frame. The first two data bits of the first
frame are always High.

Each frame ends with four error check bits. They are read
back as High. The last seven bits of the last frame are also
read back as High. An additional Start bit (Low) and an
11-bit Cyclic Redundancy Check (CRC) signature follow,
before RDBK.RIP returns Low.

DONE

*

*

*

*

* *

Q S

R

1

0

0

1

1

0

1

0

1

0

0

1

GSR ENABLE
GSR INVERT
STARTUP.GSR

STARTUP.GTS
GTS INVERT
GTS ENABLE

CONTROLLED BY STARTUP SYMBOL

IN THE USER SCHEMATIC (SEE

LIBRARIES GUIDE)

GLOBAL SET/RESET OF

ALL CLB AND IOB FLIP-FLOP 

IOBs OPERATIONAL PER CONFIGURATION

GLOBAL 3-STATE OF ALL IOBs

Q2

Q3 Q1/Q4
DONE

IN

STARTUP

Q0 Q1 Q2 Q3 Q4

M

M

" FINISHED "

ENABLES BOUNDARY

SCAN, READBACK AND

CONTROLS THE OSCILLATOR

K

S Q

K

D Q

K

D Q

K

D Q

K

D Q
FULL


LENGTH COUNT

CLEAR MEMORY

CCLK
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USER NET

CONFIGURATION BIT OPTIONS SELECTED BY USER IN "MAKEBITS"
X1528

Figure 48:   Start-up Logic
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Readback Options
Readback options are: Read Capture, Read Abort, and
Clock Select. They are set with the bitstream generation
software.

Read Capture

When the Read Capture option is selected, the readback
data stream includes sampled values of CLB and IOB sig-
nals. The rising edge of RDBK.TRIG latches the inverted
values of the four CLB outputs, the IOB output flip-flops and
the input signals I1 and I2. Note that while the bits describ-
ing configuration (interconnect, function generators, and
RAM content) are not inverted, the CLB and IOB output sig-
nals are inverted.

When the Read Capture option is not selected, the values
of the capture bits reflect the configuration data originally
written to those memory locations.

If the RAM capability of the CLBs is used, RAM data are
available in readback, since they directly overwrite the F
and G function-table configuration of the CLB.

RDBK.TRIG is located in the lower-left corner of the device,
as shown in Figure 50.

Read Abort

When the Read Abort option is selected, a High-to-Low
transition on RDBK.TRIG terminates the readback opera-
tion and prepares the logic to accept another trigger.

After an aborted readback, additional clocks (up to one
readback clock per configuration frame) may be required to
re-initialize the control logic. The status of readback is indi-
cated by the output control net RDBK.RIP. RDBK.RIP is
High whenever a readback is in progress.

Clock Select

CCLK is the default clock. However, the user can insert
another clock on RDBK.CLK. Readback control and data
are clocked on rising edges of RDBK.CLK. If readback
must be inhibited for security reasons, the readback control
nets are simply not connected.

RDBK.CLK is located in the lower right chip corner, as
shown in Figure 50.

Violating the Maximum High and Low Time
Specification for the Readback Clock
The readback clock has a maximum High and Low time
specification. In some cases, this specification cannot be
met. For example, if a processor is controlling readback, an
interrupt may force it to stop in the middle of a readback.
This necessitates stopping the clock, and thus violating the
specification.

The specification is mandatory only on clocking data at the
end of a frame prior to the next start bit. The transfer mech-
anism will load the data to a shift register during the last six
clock cycles of the frame, prior to the start bit of the follow-
ing frame. This loading process is dynamic, and is the
source of the maximum High and Low time requirements.

Therefore, the specification only applies to the six clock
cycles prior to and including any start bit, including the
clocks before the first start bit in the readback data stream.
At other times, the frame data is already in the register and
the register is not dynamic. Thus, it can be shifted out just
like a regular shift register.

The user must precisely calculate the location of the read-
back data relative to the frame. The system must keep track
of the position within a data frame, and disable interrupts
before frame boundaries. Frame lengths and data formats
are listed in Table 19, Table 20 and Table 21.

Readback with the XChecker Cable
The XChecker Universal Download/Readback Cable and
Logic Probe uses the readback feature for bitstream verifi-
cation. It can also display selected internal signals on the
PC or workstation screen, functioning as a low-cost in-cir-
cuit emulator.

READBACK

DATA

RIPTRIG

CLK READ_DATA

OBUF

MD1

MD0
READ_TRIGGER

IBUF X1786

IF UNCONNECTED,

DEFAULT IS CCLK

Figure 49:   Readback Schematic Example

I/O I/O I/Ordbk

PROGRAMMABLE

INTERCONNECT

rdclk

I/O I/O

X1787

T
R

IG
D

A
T

A
R

IP I

Figure 50:   READBACK Symbol in Graphical Editor
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Table 22: Pin Functions During Configuration

CONFIGURATION MODE <M2:M1:M0>
SLAVE
SERIAL
<1:1:1>

MASTER
SERIAL
<0:0:0>

SYNCH.
PERIPHERAL

<0:1:1>

ASYNCH.
PERIPHERAL

<1:0:1>

MASTER
PARALLEL DOWN

<1:1:0>

MASTER
PARALLEL UP

<1:0:0>

USER
OPERATION

M2(HIGH) (I) M2(LOW) (I) M2(LOW) (I) M2(HIGH) (I) M2(HIGH) (I) M2(HIGH) (I) (I)
M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) (O)
M0(HIGH) (I) M0(LOW) (I) M0(HIGH) (I) M0(HIGH) (I) M0(LOW) (I) M0(LOW) (I) (I)
HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) I/O
LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) I/O

INIT INIT INIT INIT INIT INIT I/O
DONE DONE DONE DONE DONE DONE DONE

PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM
CCLK (I) CCLK (O) CCLK (I) CCLK (O) CCLK (O) CCLK (O) CCLK (I)

RDY/BUSY (O) RDY/BUSY (O) RCLK (O) RCLK (O) I/O
RS (I) I/O

CS0 (I) I/O
DATA 7 (I) DATA 7 (I) DATA 7 (I) DATA 7 (I) I/O
DATA 6 (I) DATA 6 (I) DATA 6 (I) DATA 6 (I) I/O
DATA 5 (I) DATA 5 (I) DATA 5 (I) DATA 5 (I) I/O
DATA 4 (I) DATA 4 (I) DATA 4 (I) DATA 4 (I) I/O
DATA 3 (I) DATA 3 (I) DATA 3 (I) DATA 3 (I) I/O
DATA 2 (I) DATA 2 (I) DATA 2 (I) DATA 2 (I) I/O
DATA 1 (I) DATA 1 (I) DATA 1 (I) DATA 1 (I) I/O

DIN (I) DIN (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) I/O
DOUT DOUT DOUT DOUT DOUT DOUT SGCK4-GCK6-I/O

TDI TDI TDI TDI TDI TDI TDI-I/O
TCK TCK TCK TCK TCK TCK TCK-I/O
TMS TMS TMS TMS TMS TMS TMS-I/O
TDO TDO TDO TDO TDO TDO TDO-(O)

WS (I) A0 A0 I/O
A1 A1 PGCK4-GCK7-I/O

CS1 A2 A2 I/O
A3 A3 I/O
A4 A4 I/O
A5 A5 I/O
A6 A6 I/O
A7 A7 I/O
A8 A8 I/O
A9 A9 I/O

A10 A10 I/O
A11 A11 I/O
A12 A12 I/O
A13 A13 I/O
A14 A14 I/O
A15 A15 SGCK1-GCK8-I/O
A16 A16 PGCK1-GCK1-I/O
A17 A17 I/O
A18* A18* I/O
A19* A19* I/O
A20* A20* I/O
A21* A21* I/O

ALL OTHERS
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Table 23: Pin Functions During Configuration

CONFIGURATION MODE <M2:M1:M0>
SLAVE
SERIAL
<1:1:1>

MASTER
SERIAL
<0:0:0>

SYNCH.
PERIPHERAL

<0:1:1>

ASYNCH.
PERIPHERAL

<1:0:1>

MASTER
PARALLEL DOWN

<1:1:0>

MASTER
PARALLEL UP

<1:0:0>

USER
OPERATION

M2(HIGH) (I) M2(LOW) (I) M2(LOW) (I) M2(HIGH) (I) M2(HIGH) (I) M2(HIGH) (I) (I)
M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) (O)
M0(HIGH) (I) M0(LOW) (I) M0(HIGH) (I) M0(HIGH) (I) M0(LOW) (I) M0(LOW) (I) (I)
HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) I/O
LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) I/O

INIT INIT INIT INIT INIT INIT I/O
DONE DONE DONE DONE DONE DONE DONE

PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM
CCLK (I) CCLK (O) CCLK (I) CCLK (O) CCLK (O) CCLK (O) CCLK (I)

RDY/BUSY (O) RDY/BUSY (O) RCLK (O) RCLK (O) I/O
RS (I) I/O

CS0 (I) I/O
DATA 7 (I) DATA 7 (I) DATA 7 (I) DATA 7 (I) I/O
DATA 6 (I) DATA 6 (I) DATA 6 (I) DATA 6 (I) I/O
DATA 5 (I) DATA 5 (I) DATA 5 (I) DATA 5 (I) I/O
DATA 4 (I) DATA 4 (I) DATA 4 (I) DATA 4 (I) I/O
DATA 3 (I) DATA 3 (I) DATA 3 (I) DATA 3 (I) I/O
DATA 2 (I) DATA 2 (I) DATA 2 (I) DATA 2 (I) I/O
DATA 1 (I) DATA 1 (I) DATA 1 (I) DATA 1 (I) I/O

DIN (I) DIN (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) I/O
DOUT DOUT DOUT DOUT DOUT DOUT SGCK4-GCK6-I/O

TDI TDI TDI TDI TDI TDI TDI-I/O
TCK TCK TCK TCK TCK TCK TCK-I/O
TMS TMS TMS TMS TMS TMS TMS-I/O
TDO TDO TDO TDO TDO TDO TDO-(O)

WS (I) A0 A0 I/O
A1 A1 PGCK4-GCK7-I/O

CS1 A2 A2 I/O
A3 A3 I/O
A4 A4 I/O
A5 A5 I/O
A6 A6 I/O
A7 A7 I/O
A8 A8 I/O
A9 A9 I/O

A10 A10 I/O
A11 A11 I/O
A12 A12 I/O
A13 A13 I/O
A14 A14 I/O
A15 A15 SGCK1-GCK8-I/O
A16 A16 PGCK1-GCK1-I/O
A17 A17 I/O
A18* A18* I/O
A19* A19* I/O
A20* A20* I/O
A21* A21* I/O

ALL OTHERS
* XC4000X only
Notes 1. A shaded table cell represents a 50 kΩ - 100 kΩ pull-up before and during configuration.

2. (I) represents an input; (O) represents an output.
3. INIT is an open-drain output during configuration.
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