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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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XC4000E and XC4000X Series
Compared to the XC4000
For readers already familiar with the XC4000 family of Xil-
inx Field Programmable Gate Arrays, the major new fea-
tures in the XC4000 Series devices are listed in this
section. The biggest advantages of XC4000E and
XC4000X devices are significantly increased system
speed, greater capacity, and new architectural features,
particularly Select-RAM memory. The XC4000X devices
also offer many new routing features, including special
high-speed clock buffers that can be used to capture input
data with minimal delay.

Any XC4000E device is pinout- and bitstream-compatible
with the corresponding XC4000 device. An existing
XC4000 bitstream can be used to program an XC4000E
device. However, since the XC4000E includes many new
features, an XC4000E bitstream cannot be loaded into an
XC4000 device.

XC4000X Series devices are not bitstream-compatible with
equivalent array size devices in the XC4000 or XC4000E
families. However, equivalent array size devices, such as
the XC4025, XC4025E, XC4028EX, and XC4028XL, are
pinout-compatible.

Improvements in XC4000E and XC4000X

Increased System Speed

XC4000E and XC4000X devices can run at synchronous
system clock rates of up to 80 MHz, and internal perfor-
mance can exceed 150 MHz. This increase in performance
over the previous families stems from improvements in both
device processing and system architecture. XC4000
Series devices use a sub-micron multi-layer metal process.
In addition, many architectural improvements have been
made, as described below.

The XC4000XL family is a high performance 3.3V family
based on 0.35µ SRAM technology and supports system
speeds to 80 MHz.

PCI Compliance

XC4000 Series -2 and faster speed grades are fully PCI
compliant. XC4000E and XC4000X devices can be used to
implement a one-chip PCI solution.

Carry Logic

The speed of the carry logic chain has increased dramati-
cally. Some parameters, such as the delay on the carry
chain through a single CLB (TBYP), have improved by as

much as 50% from XC4000 values. See “Fast Carry Logic”
on page 18 for more information.

Select-RAM Memory: Edge-Triggered, Synchro-
nous RAM Modes

The RAM in any CLB can be configured for synchronous,
edge-triggered, write operation. The read operation is not
affected by this change to an edge-triggered write.

Dual-Port RAM

A separate option converts the 16x2 RAM in any CLB into a
16x1 dual-port RAM with simultaneous Read/Write.

The function generators in each CLB can be configured as
either level-sensitive (asynchronous) single-port RAM,
edge-triggered (synchronous) single-port RAM, edge-trig-
gered (synchronous) dual-port RAM, or as combinatorial
logic.

Configurable RAM Content

The RAM content can now be loaded at configuration time,
so that the RAM starts up with user-defined data.

H Function Generator

In current XC4000 Series devices, the H function generator
is more versatile than in the original XC4000. Its inputs can
come not only from the F and G function generators but
also from up to three of the four control input lines. The H
function generator can thus be totally or partially indepen-
dent of the other two function generators, increasing the
maximum capacity of the device.

IOB Clock Enable

The two flip-flops in each IOB have a common clock enable
input, which through configuration can be activated individ-
ually for the input or output flip-flop or both. This clock
enable operates exactly like the EC pin on the XC4000
CLB. This new feature makes the IOBs more versatile, and
avoids the need for clock gating.

Output Drivers

The output pull-up structure defaults to a TTL-like
totem-pole. This driver is an n-channel pull-up transistor,
pulling to a voltage one transistor threshold below Vcc, just
like the XC4000 family outputs. Alternatively, XC4000
Series devices can be globally configured with CMOS out-
puts, with p-channel pull-up transistors pulling to Vcc. Also,
the configurable pull-up resistor in the XC4000 Series is a
p-channel transistor that pulls to Vcc, whereas in the origi-
nal XC4000 family it is an n-channel transistor that pulls to
a voltage one transistor threshold below Vcc.
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Detailed Functional Description
XC4000 Series devices achieve high speed through
advanced semiconductor technology and improved archi-
tecture. The XC4000E and XC4000X support system clock
rates of up to 80 MHz and internal performance in excess
of 150 MHz. Compared to older Xilinx FPGA families,
XC4000 Series devices are more powerful. They offer
on-chip edge-triggered and dual-port RAM, clock enables
on I/O flip-flops, and wide-input decoders. They are more
versatile in many applications, especially those involving
RAM. Design cycles are faster due to a combination of
increased routing resources and more sophisticated soft-
ware.

Basic Building Blocks
Xilinx user-programmable gate arrays include two major
configurable elements: configurable logic blocks (CLBs)
and input/output blocks (IOBs).

• CLBs provide the functional elements for constructing
the user’s logic.

• IOBs provide the interface between the package pins
and internal signal lines.

Three other types of circuits are also available:

• 3-State buffers (TBUFs) driving horizontal longlines are
associated with each CLB.

• Wide edge decoders are available around the periphery
of each device.

• An on-chip oscillator is provided.

Programmable interconnect resources provide routing
paths to connect the inputs and outputs of these config-
urable elements to the appropriate networks.

The functionality of each circuit block is customized during
configuration by programming internal static memory cells.
The values stored in these memory cells determine the
logic functions and interconnections implemented in the
FPGA. Each of these available circuits is described in this
section.

Configurable Logic Blocks (CLBs)
Configurable Logic Blocks implement most of the logic in
an FPGA. The principal CLB elements are shown in
Figure 1. Two 4-input function generators (F and G) offer
unrestricted versatility. Most combinatorial logic functions
need four or fewer inputs. However, a third function gener-
ator (H) is provided. The H function generator has three
inputs. Either zero, one, or two of these inputs can be the
outputs of F and G; the other input(s) are from outside the
CLB. The CLB can, therefore, implement certain functions
of up to nine variables, like parity check or expand-
able-identity comparison of two sets of four inputs.

Each CLB contains two storage elements that can be used
to store the function generator outputs. However, the stor-
age elements and function generators can also be used
independently. These storage elements can be configured
as flip-flops in both XC4000E and XC4000X devices; in the
XC4000X they can optionally be configured as latches. DIN
can be used as a direct input to either of the two storage
elements. H1 can drive the other through the H function
generator. Function generator outputs can also drive two
outputs independent of the storage element outputs. This
versatility increases logic capacity and simplifies routing.

Thirteen CLB inputs and four CLB outputs provide access
to the function generators and storage elements. These
inputs and outputs connect to the programmable intercon-
nect resources outside the block.

Function Generators

Four independent inputs are provided to each of two func-
tion generators (F1 - F4 and G1 - G4). These function gen-
erators, with outputs labeled F’ and G’, are each capable of
implementing any arbitrarily defined Boolean function of
four inputs. The function generators are implemented as
memory look-up tables. The propagation delay is therefore
independent of the function implemented.

A third function generator, labeled H’, can implement any
Boolean function of its three inputs. Two of these inputs can
optionally be the F’ and G’ functional generator outputs.
Alternatively, one or both of these inputs can come from
outside the CLB (H2, H0). The third input must come from
outside the block (H1).

Signals from the function generators can exit the CLB on
two outputs. F’ or H’ can be connected to the X output. G’ or
H’ can be connected to the Y output.

A CLB can be used to implement any of the following func-
tions:

• any function of up to four variables, plus any second
function of up to four unrelated variables, plus any third

function of up to three unrelated variables1

• any single function of five variables
• any function of four variables together with some

functions of six variables
• some functions of up to nine variables.

Implementing wide functions in a single block reduces both
the number of blocks required and the delay in the signal
path, achieving both increased capacity and speed.

The versatility of the CLB function generators significantly
improves system speed. In addition, the design-software
tools can deal with each function generator independently.
This flexibility improves cell usage.

1.  When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two
unregistered function generator outputs are available from the CLB.
May 14, 1999 (Version 1.6) 6-9
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Set/Reset

An asynchronous storage element input (SR) can be con-
figured as either set or reset. This configuration option
determines the state in which each flip-flop becomes oper-
ational after configuration. It also determines the effect of a
Global Set/Reset pulse during normal operation, and the
effect of a pulse on the SR pin of the CLB. All three
set/reset functions for any single flip-flop are controlled by
the same configuration data bit.

The set/reset state can be independently specified for each
flip-flop. This input can also be independently disabled for
either flip-flop.

The set/reset state is specified by using the INIT attribute,
or by placing the appropriate set or reset flip-flop library
symbol.

SR is active High. It is not invertible within the CLB.

Global Set/Reset

A separate Global Set/Reset line (not shown in Figure 1)
sets or clears each storage element during power-up,
re-configuration, or when a dedicated Reset net is driven
active. This global net (GSR) does not compete with other
routing resources; it uses a dedicated distribution network.

Each flip-flop is configured as either globally set or reset in
the same way that the local set/reset (SR) is specified.
Therefore, if a flip-flop is set by SR, it is also set by GSR.
Similarly, a reset flip-flop is reset by both SR and GSR.

GSR can be driven from any user-programmable pin as a
global reset input. To use this global net, place an input pad
and input buffer in the schematic or HDL code, driving the
GSR pin of the STARTUP symbol. (See Figure 2.) A spe-
cific pin location can be assigned to this input using a LOC
attribute or property, just as with any other user-program-
mable pad. An inverter can optionally be inserted after the
input buffer to invert the sense of the Global Set/Reset sig-
nal.

Alternatively, GSR can be driven from any internal node.

Data Inputs and Outputs

The source of a storage element data input is programma-
ble. It is driven by any of the functions F’, G’, and H’, or by
the Direct In (DIN) block input. The flip-flops or latches drive
the XQ and YQ CLB outputs.

Two fast feed-through paths are available, as shown in
Figure 1. A two-to-one multiplexer on each of the XQ and
YQ outputs selects between a storage element output and
any of the control inputs. This bypass is sometimes used by
the automated router to repower internal signals.

Control Signals

Multiplexers in the CLB map the four control inputs (C1 - C4
in Figure 1) into the four internal control signals (H1,
DIN/H2, SR/H0, and EC). Any of these inputs can drive any
of the four internal control signals.

When the logic function is enabled, the four inputs are:

• EC — Enable Clock
• SR/H0 — Asynchronous Set/Reset or H function

generator Input 0
• DIN/H2 — Direct In or H function generator Input 2
• H1 — H function generator Input 1.

When the memory function is enabled, the four inputs are:

• EC — Enable Clock
• WE — Write Enable
• D0 — Data Input to F and/or G function generator
• D1 — Data input to G function generator (16x1 and

16x2 modes) or 5th Address bit (32x1 mode).

Using FPGA Flip-Flops and Latches

The abundance of flip-flops in the XC4000 Series invites
pipelined designs. This is a powerful way of increasing per-
formance by breaking the function into smaller subfunc-
tions and executing them in parallel, passing on the results
through pipeline flip-flops. This method should be seriously
considered wherever throughput is more important than
latency.

To include a CLB flip-flop, place the appropriate library
symbol. For example, FDCE is a D-type flip-flop with clock
enable and asynchronous clear. The corresponding latch
symbol (for the XC4000X only) is called LDCE.

In XC4000 Series devices, the flip flops can be used as reg-
isters or shift registers without blocking the function gener-
ators from performing a different, perhaps unrelated task.
This ability increases the functional capacity of the devices.

The CLB setup time is specified between the function gen-
erator inputs and the clock input K. Therefore, the specified
CLB flip-flop setup time includes the delay through the
function generator.

Using Function Generators as RAM

Optional modes for each CLB make the memory look-up
tables in the F’ and G’ function generators usable as an
array of Read/Write memory cells. Available modes are
level-sensitive (similar to the XC4000/A/H families),
edge-triggered, and dual-port edge-triggered. Depending
on the selected mode, a single CLB can be configured as
either a 16x2, 32x1, or 16x1 bit array.

PAD

IBUF

GSR
GTS

CLK DONEIN
Q1Q4

Q2
Q3

STARTUP

X5260

Figure 2:   Schematic Symbols for Global Set/Reset
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tions of the CLB, with the exception of the redefinition of the
control signals. In 16x2 and 16x1 modes, the H’ function
generator can be used to implement Boolean functions of
F’, G’, and D1, and the D flip-flops can latch the F’, G’, H’, or
D0 signals.

Single-Port Edge-Triggered Mode

Edge-triggered (synchronous) RAM simplifies timing
requirements. XC4000 Series edge-triggered RAM timing
operates like writing to a data register. Data and address
are presented. The register is enabled for writing by a logic
High on the write enable input, WE. Then a rising or falling
clock edge loads the data into the register, as shown in
Figure 3.

Complex timing relationships between address, data, and
write enable signals are not required, and the external write
enable pulse becomes a simple clock enable. The active
edge of WCLK latches the address, input data, and WE sig-

nals. An internal write pulse is generated that performs the
write. See Figure 4 and Figure 5 for block diagrams of a
CLB configured as 16x2 and 32x1 edge-triggered, sin-
gle-port RAM.

The relationships between CLB pins and RAM inputs and
outputs for single-port, edge-triggered mode are shown in
Table 5.

The Write Clock input (WCLK) can be configured as active
on either the rising edge (default) or the falling edge. It uses
the same CLB pin (K) used to clock the CLB flip-flops, but it
can be independently inverted. Consequently, the RAM
output can optionally be registered within the same CLB
either by the same clock edge as the RAM, or by the oppo-
site edge of this clock. The sense of WCLK applies to both
function generators in the CLB when both are configured
as RAM.

The WE pin is active-High and is not invertible within the
CLB.

Note: The pulse following the active edge of WCLK (TWPS
in Figure 3) must be less than one millisecond wide. For
most applications, this requirement is not overly restrictive;
however, it must not be forgotten. Stopping WCLK at this
point in the write cycle could result in excessive current and
even damage to the larger devices if many CLBs are con-
figured as edge-triggered RAM.

X6461

WCLK (K)

WE

ADDRESS

DATA IN

DATA OUT OLD NEW

TDSS
TDHS

TASS TAHS

TWSS

TWPS

TWHS

TWOS

TILOTILO

Figure 3:    Edge-Triggered RAM Write Timing

Table 5: Single-Port Edge-Triggered RAM Signals

RAM Signal CLB Pin Function
D D0 or D1 (16x2,

16x1), D0 (32x1)
Data In

A[3:0] F1-F4 or G1-G4 Address
A[4] D1 (32x1) Address
WE WE Write Enable
WCLK K Clock
SPO
(Data Out)

F’ or G’ Single Port Out
(Data Out)
May 14, 1999 (Version 1.6) 6-13
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Figure 8 shows the write timing for level-sensitive, sin-
gle-port RAM.

The relationships between CLB pins and RAM inputs and
outputs for single-port level-sensitive mode are shown in
Table 7.

Figure 9 and Figure 10 show block diagrams of a CLB con-
figured as 16x2 and 32x1 level-sensitive, single-port RAM.

Initializing RAM at Configuration

Both RAM and ROM implementations of the XC4000
Series devices are initialized during configuration. The ini-
tial contents are defined via an INIT attribute or property

attached to the RAM or ROM symbol, as described in the
schematic library guide. If not defined, all RAM contents
are initialized to all zeros, by default.

RAM initialization occurs only during configuration. The
RAM content is not affected by Global Set/Reset.

Table 7: Single-Port Level-Sensitive RAM Signals

G'

G1 • • • G4 

F1 • • • F4 

WRITE
DECODER


1 of 16

DIN

16-LATCH
ARRAY

X6748

4


4


MUX

F'
WRITE

DECODER


1 of 16

DIN

16-LATCH
ARRAY

READ
ADDRESS



READ
ADDRESS



WRITE PULSE

LATCH
ENABLE

LATCH
ENABLE

K
(CLOCK) WRITE PULSE

MUX
4


4


C1 • • • C4 
4


WE D1 D0 EC

Figure 7:   16x1 Edge-Triggered Dual-Port RAM

RAM Signal CLB Pin Function
D D0 or D1 Data In
A[3:0] F1-F4 or G1-G4 Address
WE WE Write Enable
O F’ or G’ Data Out

WCT

ADDRESS

WRITE ENABLE

DATA IN

AST WPT

DST DHT

REQUIRED

AHT

X6462

Figure 8:   Level-Sensitive RAM Write Timing
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Fast Carry Logic

Each CLB F and G function generator contains dedicated
arithmetic logic for the fast generation of carry and borrow
signals. This extra output is passed on to the function gen-
erator in the adjacent CLB. The carry chain is independent
of normal routing resources.

Dedicated fast carry logic greatly increases the efficiency
and performance of adders, subtractors, accumulators,
comparators and counters. It also opens the door to many
new applications involving arithmetic operation, where the
previous generations of FPGAs were not fast enough or too
inefficient. High-speed address offset calculations in micro-
processor or graphics systems, and high-speed addition in
digital signal processing are two typical applications.

The two 4-input function generators can be configured as a
2-bit adder with built-in hidden carry that can be expanded
to any length. This dedicated carry circuitry is so fast and
efficient that conventional speed-up methods like carry
generate/propagate are meaningless even at the 16-bit
level, and of marginal benefit at the 32-bit level.

This fast carry logic is one of the more significant features
of the XC4000 Series, speeding up arithmetic and counting
into the 70 MHz range.

The carry chain in XC4000E devices can run either up or
down. At the top and bottom of the columns where there
are no CLBs above or below, the carry is propagated to the
right. (See Figure 11.) In order to improve speed in the
high-capacity XC4000X devices, which can potentially
have very long carry chains, the carry chain travels upward
only, as shown in Figure 12. Additionally, standard intercon-
nect can be used to route a carry signal in the downward
direction.

Figure 13 on page 19 shows an XC4000E CLB with dedi-
cated fast carry logic. The carry logic in the XC4000X is
similar, except that COUT exits at the top only, and the sig-
nal CINDOWN does not exist. As shown in Figure 13, the
carry logic shares operand and control inputs with the func-
tion generators. The carry outputs connect to the function
generators, where they are combined with the operands to
form the sums.

Figure 14 on page 20 shows the details of the carry logic
for the XC4000E. This diagram shows the contents of the
box labeled “CARRY LOGIC” in Figure 13. The XC4000X
carry logic is very similar, but a multiplexer on the
pass-through carry chain has been eliminated to reduce
delay. Additionally, in the XC4000X the multiplexer on the
G4 path has a memory-programmable 0 input, which per-
mits G4 to directly connect to COUT. G4 thus becomes an
additional high-speed initialization path for carry-in.

The dedicated carry logic is discussed in detail in Xilinx
document XAPP 013: “Using the Dedicated Carry Logic in

XC4000.” This discussion also applies to XC4000E
devices, and to XC4000X devices when the minor logic
changes are taken into account.

The fast carry logic can be accessed by placing special
library symbols, or by using Xilinx Relationally Placed Mac-
ros (RPMs) that already include these symbols.

X6687

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

Figure 11:   Available XC4000E Carry Propagation
Paths

X6610

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

Figure 12:   Available XC4000X Carry Propagation
Paths   (dotted lines use general interconnect)
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Figure 15:   Simplified Block Diagram of XC4000E IOB

Q 

Flip-Flop/
Latch

Fast
Capture
Latch

D

Q 
Latch

D

G

D 

0 

1 

CE

CE

QOut

T

Output Clock

I

Input Clock

Clock Enable

Pad

Flip-Flop

Slew Rate
Control

Output
Buffer

Output MUX

Input
Buffer

Passive
Pull-Up/

Pull-Down

2

I1

X5984

Delay Delay

Figure 16:   Simplified Block Diagram of XC4000X IOB (shaded areas indicate differences from XC4000E)
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Output Multiplexer/2-Input Function Generator
(XC4000X only)

As shown in Figure 16 on page 21, the output path in the
XC4000X IOB contains an additional multiplexer not avail-
able in the XC4000E IOB. The multiplexer can also be con-
figured as a 2-input function generator, implementing a
pass-gate, AND-gate, OR-gate, or XOR-gate, with 0, 1, or 2
inverted inputs. The logic used to implement these func-
tions is shown in the upper gray area of Figure 16.

When configured as a multiplexer, this feature allows two
output signals to time-share the same output pad; effec-
tively doubling the number of device outputs without requir-
ing a larger, more expensive package.

When the MUX is configured as a 2-input function genera-
tor, logic can be implemented within the IOB itself. Com-
bined with a Global Early buffer, this arrangement allows
very high-speed gating of a single signal. For example, a
wide decoder can be implemented in CLBs, and its output
gated with a Read or Write Strobe Driven by a BUFGE
buffer, as shown in Figure 19. The critical-path pin-to-pin
delay of this circuit is less than 6 nanoseconds.

As shown in Figure 16, the IOB input pins Out, Output
Clock, and Clock Enable have different delays and different
flexibilities regarding polarity. Additionally, Output Clock
sources are more limited than the other inputs. Therefore,
the Xilinx software does not move logic into the IOB func-
tion generators unless explicitly directed to do so.

The user can specify that the IOB function generator be
used, by placing special library symbols beginning with the
letter “O.” For example, a 2-input AND-gate in the IOB func-
tion generator is called OAND2. Use the symbol input pin
labelled “F” for the signal on the critical path. This signal is
placed on the OK pin — the IOB input with the shortest
delay to the function generator. Two examples are shown in
Figure 20.

Other IOB Options

There are a number of other programmable options in the
XC4000 Series IOB.

Pull-up and Pull-down Resistors

Programmable pull-up and pull-down resistors are useful
for tying unused pins to Vcc or Ground to minimize power
consumption and reduce noise sensitivity. The configurable
pull-up resistor is a p-channel transistor that pulls to Vcc.
The configurable pull-down resistor is an n-channel transis-
tor that pulls to Ground.

The value of these resistors is 50 kΩ − 100 kΩ. This high
value makes them unsuitable as wired-AND pull-up resis-
tors.

The pull-up resistors for most user-programmable IOBs are
active during the configuration process. See Table 22 on
page 58 for a list of pins with pull-ups active before and dur-
ing configuration.

After configuration, voltage levels of unused pads, bonded
or un-bonded, must be valid logic levels, to reduce noise
sensitivity and avoid excess current. Therefore, by default,
unused pads are configured with the internal pull-up resis-
tor active. Alternatively, they can be individually configured
with the pull-down resistor, or as a driven output, or to be
driven by an external source. To activate the internal
pull-up, attach the PULLUP library component to the net
attached to the pad. To activate the internal pull-down,
attach the PULLDOWN library component to the net
attached to the pad.

Independent Clocks

Separate clock signals are provided for the input and output
flip-flops. The clock can be independently inverted for each
flip-flop within the IOB, generating either falling-edge or ris-
ing-edge triggered flip-flops. The clock inputs for each IOB
are independent, except that in the XC4000X, the Fast
Capture latch shares an IOB input with the output clock pin.

Early Clock for IOBs (XC4000X only)

Special early clocks are available for IOBs. These clocks
are sourced by the same sources as the Global Low-Skew
buffers, but are separately buffered. They have fewer loads
and therefore less delay. The early clock can drive either
the IOB output clock or the IOB input clock, or both. The
early clock allows fast capture of input data, and fast
clock-to-output on output data. The Global Early buffers
that drive these clocks are described in “Global Nets and
Buffers (XC4000X only)” on page 37.

Global Set/Reset

As with the CLB registers, the Global Set/Reset signal
(GSR) can be used to set or clear the input and output reg-
isters, depending on the value of the INIT attribute or prop-
erty. The two flip-flops can be individually configured to set

IPAD

F OPAD
FAST

BUFGE

OAND2
from
internal
logic

X9019

Figure 19:   Fast Pin-to-Pin Path in XC4000X
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Figure 20:   AND & MUX Symbols in XC4000X IOB
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circuit prevents undefined floating levels. However, it is
overridden by any driver, even a pull-up resistor.

Each XC4000E longline has a programmable splitter switch
at its center, as does each XC4000X longline driven by
TBUFs. This switch can separate the line into two indepen-
dent routing channels, each running half the width or height
of the array.

Each XC4000X longline not driven by TBUFs has a buff-
ered programmable splitter switch at the 1/4, 1/2, and 3/4
points of the array. Due to the buffering, XC4000X longline
performance does not deteriorate with the larger array
sizes. If the longline is split, the resulting partial longlines
are independent.

Routing connectivity of the longlines is shown in Figure 27
on page 30.

Direct Interconnect (XC4000X only)

The XC4000X offers two direct, efficient and fast connec-
tions between adjacent CLBs. These nets facilitate a data
flow from the left to the right side of the device, or from the
top to the bottom, as shown in Figure 30. Signals routed on
the direct interconnect exhibit minimum interconnect prop-
agation delay and use no general routing resources.

The direct interconnect is also present between CLBs and
adjacent IOBs. Each IOB on the left and top device edges
has a direct path to the nearest CLB. Each CLB on the right
and bottom edges of the array has a direct path to the near-
est two IOBs, since there are two IOBs for each row or col-
umn of CLBs.

The place and route software uses direct interconnect
whenever possible, to maximize routing resources and min-
imize interconnect delays.

I/O Routing
XC4000 Series devices have additional routing around the
IOB ring. This routing is called a VersaRing. The VersaRing
facilitates pin-swapping and redesign without affecting
board layout. Included are eight double-length lines span-
ning two CLBs (four IOBs), and four longlines. Global lines
and Wide Edge Decoder lines are provided. XC4000X
devices also include eight octal lines.

A high-level diagram of the VersaRing is shown in
Figure 31. The shaded arrows represent routing present
only in XC4000X devices.

Figure 33 on page 34 is a detailed diagram of the XC4000E
and XC4000X VersaRing. The area shown includes two
IOBs. There are two IOBs per CLB row or column, there-
fore this diagram corresponds to the CLB routing diagram
shown in Figure 27 on page 30. The shaded areas repre-
sent routing and routing connections present only in
XC4000X devices.

Octal I/O Routing (XC4000X only)

Between the XC4000X CLB array and the pad ring, eight
interconnect tracks provide for versatility in pin assignment
and fixed pinout flexibility. (See Figure 32 on page 33.)

These routing tracks are called octals, because they can be
broken every eight CLBs (sixteen IOBs) by a programma-
ble buffer that also functions as a splitter switch. The buffers
are staggered, so each line goes through a buffer at every
eighth CLB location around the device edge.

The octal lines bend around the corners of the device. The
lines cross at the corners in such a way that the segment
most recently buffered before the turn has the farthest dis-
tance to travel before the next buffer, as shown in
Figure 32.
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Figure 30:   XC4000X Direct Interconnect
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Table 16: Pin Descriptions

Pin Name

I/O
During
Config.

I/O
After

Config. Pin Description
Permanently Dedicated Pins

VCC I I
Eight or more (depending on package) connections to the nominal +5 V supply voltage
(+3.3 V for low-voltage devices). All must be connected, and each must be decoupled
with a 0.01 - 0.1 µF capacitor to Ground.

GND I I
Eight or more (depending on package type) connections to Ground. All must be con-
nected.

CCLK I or O I

During configuration, Configuration Clock (CCLK) is an output in Master modes or Asyn-
chronous Peripheral mode, but is an input in Slave mode and Synchronous Peripheral
mode. After configuration, CCLK has a weak pull-up resistor and can be selected as the
Readback Clock. There is no CCLK High or Low time restriction on XC4000 Series de-
vices, except during Readback. See “Violating the Maximum High and Low Time Spec-
ification for the Readback Clock” on page 56 for an explanation of this exception.

DONE I/O O

DONE is a bidirectional signal with an optional internal pull-up resistor. As an output, it
indicates the completion of the configuration process. As an input, a Low level on DONE
can be configured to delay the global logic initialization and the enabling of outputs.
The optional pull-up resistor is selected as an option in the XACTstep program that cre-
ates the configuration bitstream. The resistor is included by default.

PROGRAM I I

PROGRAM is an active Low input that forces the FPGA to clear its configuration mem-
ory. It is used to initiate a configuration cycle. When PROGRAM goes High, the FPGA
finishes the current clear cycle and executes another complete clear cycle, before it
goes into a WAIT state and releases INIT.
The PROGRAM pin has a permanent weak pull-up, so it need not be externally pulled
up to Vcc.

User I/O Pins That Can Have Special Functions

RDY/BUSY O I/O

During Peripheral mode configuration, this pin indicates when it is appropriate to write
another byte of data into the FPGA. The same status is also available on D7 in Asyn-
chronous Peripheral mode, if a read operation is performed when the device is selected.
After configuration, RDY/BUSY is a user-programmable I/O pin.
RDY/BUSY is pulled High with a high-impedance pull-up prior to INIT going High.

RCLK O I/O

During Master Parallel configuration, each change on the A0-A17 outputs (A0 - A21 for
XC4000X) is preceded by a rising edge on RCLK, a redundant output signal. RCLK is
useful for clocked PROMs. It is rarely used during configuration. After configuration,
RCLK is a user-programmable I/O pin.

M0, M1, M2 I
I (M0),
O (M1),
I (M2)

As Mode inputs, these pins are sampled after INIT goes High to determine the configu-
ration mode to be used. After configuration, M0 and M2 can be used as inputs, and M1
can be used as a 3-state output. These three pins have no associated input or output
registers.
During configuration, these pins have weak pull-up resistors. For the most popular con-
figuration mode, Slave Serial, the mode pins can thus be left unconnected. The three
mode inputs can be individually configured with or without weak pull-up or pull-down re-
sistors. A pull-down resistor value of 4.7 kΩ is recommended.
These pins can only be used as inputs or outputs when called out by special schematic
definitions. To use these pins, place the library components MD0, MD1, and MD2 in-
stead of the usual pad symbols. Input or output buffers must still be used.

TDO O O

If boundary scan is used, this pin is the Test Data Output. If boundary scan is not used,
this pin is a 3-state output without a register, after configuration is completed.
This pin can be user output only when called out by special schematic definitions. To
use this pin, place the library component TDO instead of the usual pad symbol. An out-
put buffer must still be used.
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is passed through and is captured by each FPGA when it
recognizes the 0010 preamble. Following the length-count
data, each FPGA outputs a High on DOUT until it has
received its required number of data frames.

After an FPGA has received its configuration data, it
passes on any additional frame start bits and configuration
data on DOUT. When the total number of configuration
clocks applied after memory initialization equals the value
of the 24-bit length count, the FPGAs begin the start-up
sequence and become operational together. FPGA I/O are
normally released two CCLK cycles after the last configura-
tion bit is received. Figure 47 on page 53 shows the
start-up timing for an XC4000 Series device.

The daisy-chained bitstream is not simply a concatenation
of the individual bitstreams. The PROM file formatter must
be used to combine the bitstreams for a daisy-chained con-
figuration.

Multi-Family Daisy Chain

All Xilinx FPGAs of the XC2000, XC3000, and XC4000
Series use a compatible bitstream format and can, there-
fore, be connected in a daisy chain in an arbitrary
sequence. There is, however, one limitation. The lead
device must belong to the highest family in the chain. If the
chain contains XC4000 Series devices, the master nor-
mally cannot be an XC2000 or XC3000 device.

The reason for this rule is shown in Figure 47 on page 53.
Since all devices in the chain store the same length count
value and generate or receive one common sequence of
CCLK pulses, they all recognize length-count match on the
same CCLK edge, as indicated on the left edge of
Figure 47. The master device then generates additional
CCLK pulses until it reaches its finish point F. The different
families generate or require different numbers of additional
CCLK pulses until they reach F. Not reaching F means that
the device does not really finish its configuration, although
DONE may have gone High, the outputs became active,
and the internal reset was released. For the XC4000 Series
device, not reaching F means that readback cannot be ini-

tiated and most boundary scan instructions cannot be
used.

The user has some control over the relative timing of these
events and can, therefore, make sure that they occur at the
proper time and the finish point F is reached. Timing is con-
trolled using options in the bitstream generation software.

XC3000 Master with an XC4000 Series Slave

Some designers want to use an inexpensive lead device in
peripheral mode and have the more precious I/O pins of the
XC4000 Series devices all available for user I/O. Figure 44
provides a solution for that case.

This solution requires one CLB, one IOB and pin, and an
internal oscillator with a frequency of up to 5 MHz as a
clock source. The XC3000 master device must be config-
ured with late Internal Reset, which is the default option.

One CLB and one IOB in the lead XC3000-family device
are used to generate the additional CCLK pulse required by
the XC4000 Series devices. When the lead device removes
the internal RESET signal, the 2-bit shift register responds
to its clock input and generates an active Low output signal
for the duration of the subsequent clock period. An external
connection between this output and CCLK thus creates the
extra CCLK pulse.

Output
Connected
to CCLK

OE/T

0
1
1
0
0
..

0
0
1
1
1
..

Reset

X5223
etc

Active Low Output
Active High Output

Figure 44:   CCLK Generation for XC3000 Master
Driving an XC4000 Series Slave
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Start-up from a User Clock (STARTUP.CLK)

When, instead of CCLK, a user-supplied start-up clock is
selected, Q1 is used to bridge the unknown phase relation-
ship between CCLK and the user clock. This arbitration
causes an unavoidable one-cycle uncertainty in the timing
of the rest of the start-up sequence.

DONE Goes High to Signal End of Configuration

XC4000 Series devices read the expected length count
from the bitstream and store it in an internal register. The
length count varies according to the number of devices and
the composition of the daisy chain. Each device also counts
the number of CCLKs during configuration.

Two conditions have to be met in order for the DONE pin to
go high:

• the chip's internal memory must be full, and
• the configuration length count must be met, exactly.

This is important because the counter that determines
when the length count is met begins with the very first
CCLK, not the first one after the preamble.

Therefore, if a stray bit is inserted before the preamble, or
the data source is not ready at the time of the first CCLK,
the internal counter that holds the number of CCLKs will be
one ahead of the actual number of data bits read. At the
end of configuration, the configuration memory will be full,
but the number of bits in the internal counter will not match
the expected length count.

As a consequence, a Master mode device will continue to
send out CCLKs until the internal counter turns over to
zero, and then reaches the correct length count a second
time. This will take several seconds [224 ∗ CCLK period] —
which is sometimes interpreted as the device not configur-
ing at all.

If it is not possible to have the data ready at the time of the
first CCLK, the problem can be avoided by increasing the
number in the length count by the appropriate value. The
XACT User Guide includes detailed information about man-
ually altering the length count.

Note that DONE is an open-drain output and does not go
High unless an internal pull-up is activated or an external
pull-up is attached. The internal pull-up is activated as the
default by the bitstream generation software.

Release of User I/O After DONE Goes High

By default, the user I/O are released one CCLK cycle after
the DONE pin goes High. If CCLK is not clocked after
DONE goes High, the outputs remain in their initial state —
3-stated, with a 50 kΩ - 100 kΩ pull-up. The delay from
DONE High to active user I/O is controlled by an option to
the bitstream generation software.

Release of Global Set/Reset After DONE Goes
High

By default, Global Set/Reset (GSR) is released two CCLK
cycles after the DONE pin goes High. If CCLK is not
clocked twice after DONE goes High, all flip-flops are held
in their initial set or reset state. The delay from DONE High
to GSR inactive is controlled by an option to the bitstream
generation software.

Configuration Complete After DONE Goes High

Three full CCLK cycles are required after the DONE pin
goes High, as shown in Figure 47 on page 53. If CCLK is
not clocked three times after DONE goes High, readback
cannot be initiated and most boundary scan instructions
cannot be used.

Configuration Through the Boundary Scan
Pins
XC4000 Series devices can be configured through the
boundary scan pins. The basic procedure is as follows:

• Power up the FPGA with INIT held Low (or drive the
PROGRAM pin Low for more than 300 ns followed by a
High while holding INIT Low). Holding INIT Low allows
enough time to issue the CONFIG command to the
FPGA. The pin can be used as I/O after configuration if
a resistor is used to hold INIT Low.

• Issue the CONFIG command to the TMS input
• Wait for INIT to go High
• Sequence the boundary scan Test Access Port to the

SHIFT-DR state
• Toggle TCK to clock data into TDI pin.

The user must account for all TCK clock cycles after INIT
goes High, as all of these cycles affect the Length Count
compare.

For more detailed information, refer to the Xilinx application
note XAPP017, “Boundary Scan in XC4000 Devices.” This
application note also applies to XC4000E and XC4000X
devices.
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Readback
The user can read back the content of configuration mem-
ory and the level of certain internal nodes without interfer-
ing with the normal operation of the device.

Readback not only reports the downloaded configuration
bits, but can also include the present state of the device,
represented by the content of all flip-flops and latches in
CLBs and IOBs, as well as the content of function genera-
tors used as RAMs.

Note that in XC4000 Series devices, configuration data is
not inverted with respect to configuration as it is in XC2000
and XC3000 families.

XC4000 Series Readback does not use any dedicated
pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA,
RDBK.RIP and RDBK.CLK) that can be routed to any IOB.
To access the internal Readback signals, place the READ-

BACK library symbol and attach the appropriate pad sym-
bols, as shown in Figure 49.

After Readback has been initiated by a High level on
RDBK.TRIG after configuration, the RDBK.RIP (Read In
Progress) output goes High on the next rising edge of
RDBK.CLK. Subsequent rising edges of this clock shift out
Readback data on the RDBK.DATA net.

Readback data does not include the preamble, but starts
with five dummy bits (all High) followed by the Start bit
(Low) of the first frame. The first two data bits of the first
frame are always High.

Each frame ends with four error check bits. They are read
back as High. The last seven bits of the last frame are also
read back as High. An additional Start bit (Low) and an
11-bit Cyclic Redundancy Check (CRC) signature follow,
before RDBK.RIP returns Low.
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Figure 48:   Start-up Logic
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Table 23: Pin Functions During Configuration

CONFIGURATION MODE <M2:M1:M0>
SLAVE
SERIAL
<1:1:1>

MASTER
SERIAL
<0:0:0>

SYNCH.
PERIPHERAL

<0:1:1>

ASYNCH.
PERIPHERAL

<1:0:1>

MASTER
PARALLEL DOWN

<1:1:0>

MASTER
PARALLEL UP

<1:0:0>

USER
OPERATION

M2(HIGH) (I) M2(LOW) (I) M2(LOW) (I) M2(HIGH) (I) M2(HIGH) (I) M2(HIGH) (I) (I)
M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) (O)
M0(HIGH) (I) M0(LOW) (I) M0(HIGH) (I) M0(HIGH) (I) M0(LOW) (I) M0(LOW) (I) (I)
HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) I/O
LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) I/O

INIT INIT INIT INIT INIT INIT I/O
DONE DONE DONE DONE DONE DONE DONE

PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM
CCLK (I) CCLK (O) CCLK (I) CCLK (O) CCLK (O) CCLK (O) CCLK (I)

RDY/BUSY (O) RDY/BUSY (O) RCLK (O) RCLK (O) I/O
RS (I) I/O

CS0 (I) I/O
DATA 7 (I) DATA 7 (I) DATA 7 (I) DATA 7 (I) I/O
DATA 6 (I) DATA 6 (I) DATA 6 (I) DATA 6 (I) I/O
DATA 5 (I) DATA 5 (I) DATA 5 (I) DATA 5 (I) I/O
DATA 4 (I) DATA 4 (I) DATA 4 (I) DATA 4 (I) I/O
DATA 3 (I) DATA 3 (I) DATA 3 (I) DATA 3 (I) I/O
DATA 2 (I) DATA 2 (I) DATA 2 (I) DATA 2 (I) I/O
DATA 1 (I) DATA 1 (I) DATA 1 (I) DATA 1 (I) I/O

DIN (I) DIN (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) I/O
DOUT DOUT DOUT DOUT DOUT DOUT SGCK4-GCK6-I/O

TDI TDI TDI TDI TDI TDI TDI-I/O
TCK TCK TCK TCK TCK TCK TCK-I/O
TMS TMS TMS TMS TMS TMS TMS-I/O
TDO TDO TDO TDO TDO TDO TDO-(O)

WS (I) A0 A0 I/O
A1 A1 PGCK4-GCK7-I/O

CS1 A2 A2 I/O
A3 A3 I/O
A4 A4 I/O
A5 A5 I/O
A6 A6 I/O
A7 A7 I/O
A8 A8 I/O
A9 A9 I/O

A10 A10 I/O
A11 A11 I/O
A12 A12 I/O
A13 A13 I/O
A14 A14 I/O
A15 A15 SGCK1-GCK8-I/O
A16 A16 PGCK1-GCK1-I/O
A17 A17 I/O
A18* A18* I/O
A19* A19* I/O
A20* A20* I/O
A21* A21* I/O

ALL OTHERS
* XC4000X only
Notes 1. A shaded table cell represents a 50 kΩ - 100 kΩ pull-up before and during configuration.

2. (I) represents an input; (O) represents an output.
3. INIT is an open-drain output during configuration.
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Master Parallel Modes
In the two Master Parallel modes, the lead FPGA directly
addresses an industry-standard byte-wide EPROM, and
accepts eight data bits just before incrementing or decre-
menting the address outputs.

The eight data bits are serialized in the lead FPGA, which
then presents the preamble data—and all data that over-
flows the lead device—on its DOUT pin. There is an inter-
nal delay of 1.5 CCLK periods, after the rising CCLK edge
that accepts a byte of data (and also changes the EPROM
address) until the falling CCLK edge that makes the LSB
(D0) of this byte appear at DOUT. This means that DOUT
changes on the falling CCLK edge, and the next FPGA in
the daisy chain accepts data on the subsequent rising
CCLK edge.

The PROM address pins can be incremented or decre-
mented, depending on the mode pin settings. This option
allows the FPGA to share the PROM with a wide variety of
microprocessors and micro controllers. Some processors
must boot from the bottom of memory (all zeros) while oth-
ers must boot from the top. The FPGA is flexible and can
load its configuration bitstream from either end of the mem-
ory.

Master Parallel Up mode is selected by a <100> on the
mode pins (M2, M1, M0). The EPROM addresses start at
00000 and increment.

Master Parallel Down mode is selected by a <110> on the
mode pins. The EPROM addresses start at 3FFFF and
decrement.

Additional Address lines in XC4000 devices

The XC4000X devices have additional address lines
(A18-A21) allowing the additional address space required
to daisy-chain several large devices.

The extra address lines are programmable in XC4000EX
devices. By default these address lines are not activated. In
the default mode, the devices are compatible with existing
XC4000 and XC4000E products. If desired, the extra
address lines can be used by specifying the address lines
option in bitgen as 22 (bitgen -g AddressLines:22). The
lines (A18-A21) are driven when a master device detects,
via the bitstream, that it should be using all 22 address
lines. Because these pins will initially be pulled high by
internal pull-ups, designers using Master Parallel Up mode
should use external pull down resistors on pins A18-A21. If
Master Parallel Down mode is used external resistors are
not necessary.

All 22 address lines are always active in Master Parallel
modes with XC4000XL devices. The additional address
lines behave identically to the lower order address lines. If
the Address Lines option in bitgen is set to 18, it will be
ignored by the XC4000XL device.

The additional address lines (A18-A21) are not available in
the PC84 package.
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Figure 54:   Master Parallel Mode Circuit Diagram
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Asynchronous Peripheral Mode

Write to FPGA

Asynchronous Peripheral mode uses the trailing edge of
the logic AND condition of WS and CS0 being Low and RS
and CS1 being High to accept byte-wide data from a micro-
processor bus. In the lead FPGA, this data is loaded into a
double-buffered UART-like parallel-to-serial converter and
is serially shifted into the internal logic.

The lead FPGA presents the preamble data (and all data
that overflows the lead device) on its DOUT pin. The
RDY/BUSY output from the lead FPGA acts as a hand-
shake signal to the microprocessor. RDY/BUSY goes Low
when a byte has been received, and goes High again when
the byte-wide input buffer has transferred its information
into the shift register, and the buffer is ready to receive new
data. A new write may be started immediately, as soon as
the RDY/BUSY output has gone Low, acknowledging
receipt of the previous data. Write may not be terminated
until RDY/BUSY is High again for one CCLK period. Note
that RDY/BUSY is pulled High with a high-impedance
pull-up prior to INIT going High.

The length of the BUSY signal depends on the activity in
the UART. If the shift register was empty when the new byte
was received, the BUSY signal lasts for only two CCLK
periods. If the shift register was still full when the new byte
was received, the BUSY signal can be as long as nine
CCLK periods.

Note that after the last byte has been entered, only seven of
its bits are shifted out. CCLK remains High with DOUT
equal to bit 6 (the next-to-last bit) of the last byte entered.

The READY/BUSY handshake can be ignored if the delay
from any one Write to the end of the next Write is guaran-
teed to be longer than 10 CCLK periods.

Status Read

The logic AND condition of the CS0, CS1and RS inputs
puts the device status on the Data bus.

• D7 High indicates Ready
• D7 Low indicates Busy
• D0 through D6 go unconditionally High

It is mandatory that the whole start-up sequence be started
and completed by one byte-wide input. Otherwise, the pins
used as Write Strobe or Chip Enable might become active
outputs and interfere with the final byte transfer. If this
transfer does not occur, the start-up sequence is not com-
pleted all the way to the finish (point F in Figure 47 on page
53).

In this case, at worst, the internal reset is not released. At
best, Readback and Boundary Scan are inhibited. The
length-count value, as generated by the XACTstep soft-
ware, ensures that these problems never occur.

Although RDY/BUSY is brought out as a separate signal,
microprocessors can more easily read this information on
one of the data lines. For this purpose, D7 represents the
RDY/BUSY status when RS is Low, WS is High, and the
two chip select lines are both active.

Asynchronous Peripheral mode is selected by a <101> on
the mode pins (M2, M1, M0).
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CS0...

RDY/BUSY

WS
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DOUT DIN
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CS1
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INIT

REPROGRAM
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Figure 58:    Asynchronous Peripheral Mode Circuit Diagram
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Configuration Switching Characteristics

Master Modes (XC4000E/EX)

Master Modes (XC4000XL)

Slave and Peripheral Modes (All)

Description Symbol Min Max Units

Power-On Reset
M0 = High TPOR 10 40 ms
M0 = Low TPOR 40 130 ms

Program Latency TPI 30 200 µs per
CLB column

CCLK (output) Delay TICCK 40 250 µs
CCLK (output) Period, slow TCCLK 640 2000 ns
CCLK (output) Period, fast TCCLK 80 250 ns

Description Symbol Min Max Units

Power-On Reset
M0 = High TPOR 10 40 ms
M0 = Low TPOR 40 130 ms

Program Latency TPI 30 200 µs per
CLB column

CCLK (output) Delay TICCK 40 250 µs
CCLK (output) Period, slow TCCLK 540 1600 ns
CCLK (output) Period, fast TCCLK 67 200 ns

Description Symbol Min Max Units
Power-On Reset TPOR 10 33 ms
Program Latency TPI 30 200 µs per

CLB column
CCLK (input) Delay (required) TICCK 4 µs
CCLK (input) Period (required) TCCLK 100 ns

VALID

PROGRAM

INIT

Vcc

PIT

PORT

ICCKT CCLKT

CCLK OUTPUT or INPUT

M0, M1, M2 DONE RESPONSE

<300 ns

<300 ns

>300 ns

RE-PROGRAM

X1532

(Required)

I /O
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User I/O Per Package
Table 27, Table 28, and Table 29 show the number of user I/Os available in each package for XC4000-Series devices. Call
your local sales office for the latest availability information, or see the Xilinx website at http://www.xilinx.com for the latest
revision of the specifications.

Table 27: User I/O Chart for XC4000XL FPGAs

Max
I/O

Maximum User Accessible I/O by Package Type

Device P
C

84

P
Q

10
0

V
Q

10
0

T
Q

14
4

H
T

14
4

H
Q

16
0

P
Q

16
0

T
Q

17
6

H
T

17
6

H
Q

20
8

P
Q

20
8

H
Q

24
0

P
Q

24
0

B
G

25
6

P
G

29
9

H
Q

30
4

B
G

35
2

P
G

41
1

B
G

43
2

P
G

47
5

P
G

55
9

B
G

56
0

XC4002XL 64 61 64 64

XC4005XL 112 61 77 77 112 112 112

XC4010XL 160 61 77 113 129 145 160 160

XC4013XL 192 113 129 145 160 192 192

XC4020XL 224 113 129 145 160 192 205

XC4028XL 256 129 160 193 205 256 256 256

XC4036XL 288 129 160 193 256 288 288 288

XC4044XL 320 129 160 193 256 289 320 320

XC4052XL 352 193 256 352 352 352

XC4062XL 384 193 256 352 384 384

XC4085XL 448 352 448 448

1/29/99

Table 28: User I/O Chart for XC4000E FPGAs

Max
I/O

Maximum User Accessible I/O by Package Type

Device P
C

84

P
Q

10
0

V
Q

10
0

P
G

12
0

T
Q

14
4

P
G

15
6

P
Q

16
0

P
G

19
1

H
Q

20
8

P
Q

20
8

P
G

22
3

B
G

22
5

H
Q

24
0

P
Q

24
0

P
G

29
9

H
Q

30
4

XC4003E 80 61 77 77 80

XC4005E 112 61 77 112 112 112 112

XC4006E 128 61 113 125 128 128

XC4008E 144 61 129 144 144

XC4010E 160 61 129 160 160 160 160

XC4013E 192 129 160 160 192 192 192 192

XC4020E 224 160 192 193

XC4025E 256 192 193 256 256

1/29/99

Table 29: User I/O Chart for XC4000EX FPGAs

Max
I/O

Maximum User Accessible I/O by Package Type
Device HQ208 HQ240 PG299 HQ304 BG352 PG411 BG432

XC4028EX 256 160 193 256 256 256

XC4036EX 288 193 256 288 288 288

1/29/99
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