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Figure 1: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown)

Flip-Flops

The CLB can pass the combinatorial output(s) to the inter-
connect network, but can also store the combinatorial
results or other incoming data in one or two flip-flops, and
connect their outputs to the interconnect network as well.

The two edge-triggered D-type flip-flops have common
clock (K) and clock enable (EC) inputs. Either or both clock
inputs can also be permanently enabled. Storage element
functionality is described in Table 2.

Latches (XC4000X only)

The CLB storage elements can also be configured as
latches. The two latches have common clock (K) and clock
enable (EC) inputs. Storage element functionality is
described in Table 2.

Clock Input

Each flip-flop can be triggered on either the rising or falling
clock edge. The clock pin is shared by both storage ele-
ments. However, the clock is individually invertible for each
storage element. Any inverter placed on the clock input is
automatically absorbed into the CLB.

Clock Enable

The clock enable signal (EC) is active High. The EC pin is
shared by both storage elements. If left unconnected for
either, the clock enable for that storage element defaults to
the active state. EC is not invertible within the CLB.

Table 2: CLB Storage Element Functionality
(active rising edge is shown)

Mode K EC SR D Q
Power-Up or
GSR X X X X SR
X X 1 X SR
Flip-Flop ] 1 0* D D
0 X 0* X Q
1 1* 0* X Q
Latch
0 1* 0* D D
Both X 0 0* X Q
Legend:
X Don’t care
! Rising edge
SR Set or Reset value. Reset is default.
0* Input is Low or unconnected (default value)
1* Input is High or unconnected (default value)
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Supported CLB memory configurations and timing modes
for single- and dual-port modes are shown in Table 3.

XC4000 Series devices are the first programmable logic
devices with edge-triggered (synchronous) and dual-port
RAM accessible to the user. Edge-triggered RAM simpli-
fies system timing. Dual-port RAM doubles the effective
throughput of FIFO applications. These features can be
individually programmed in any XC4000 Series CLB.

Advantages of On-Chip and Edge-Triggered RAM

The on-chip RAM is extremely fast. The read access time is
the same as the logic delay. The write access time is
slightly slower. Both access times are much faster than
any off-chip solution, because they avoid I/0O delays.

Edge-triggered RAM, also called synchronous RAM, is a
feature never before available in a Field Programmable
Gate Array. The simplicity of designing with edge-triggered
RAM, and the markedly higher achievable performance,
add up to a significant improvement over existing devices
with on-chip RAM.

Three application notes are available from Xilinx that dis-
cuss edge-triggered RAM: “XC4000E Edge-Triggered and
Dual-Port RAM Capability; “Implementing FIFOs in
XC4000E RAM, and “Synchronous and Asynchronous
FIFO Designs” All three application notes apply to both
XC4000E and XC4000X RAM.

Table 3: Supported RAM Modes

16 | 16 | 32 Edge- Level-

X X X | Triggered | Sensitive

1 2 1 Timing Timing
Single-Port v v v v v
Dual-Port v v

RAM Configuration Options

The function generators in any CLB can be configured as
RAM arrays in the following sizes:

» Two 16x1 RAMSs: two data inputs and two data outputs
with identical or, if preferred, different addressing for
each RAM

* One 32x1 RAM: one data input and one data output.

One F or G function generator can be configured as a 16x1
RAM while the other function generators are used to imple-
ment any function of up to 5 inputs.

Additionally, the XC4000 Series RAM may have either of
two timing modes:

» Edge-Triggered (Synchronous): data written by the
designated edge of the CLB clock. WE acts as a true
clock enable.

* Level-Sensitive (Asynchronous): an external WE signal
acts as the write strobe.

The selected timing mode applies to both function genera-
tors within a CLB when both are configured as RAM.

The number of read ports is also programmable:

¢ Single Port: each function generator has a common
read and write port

e Dual Port: both function generators are configured
together as a single 16x1 dual-port RAM with one write
port and two read ports. Simultaneous read and write
operations to the same or different addresses are
supported.

RAM configuration options are selected by placing the
appropriate library symbol.

Choosing a RAM Configuration Mode

The appropriate choice of RAM mode for a given design
should be based on timing and resource requirements,
desired functionality, and the simplicity of the design pro-
cess. Recommended usage is shown in Table 4.

The difference between level-sensitive, edge-triggered,
and dual-port RAM is only in the write operation. Read
operation and timing is identical for all modes of operation.

Table 4: RAM Mode Selection

Dual-Port
Level-Sens | Edge-Trigg | Edge-Trigg
itive ered ered
Use_for New No Yes Yes
Designs?
Size (16x1, 1/2CLB | 1/2CLB 1CLB
Registered)
Simultaneous
Read/Write No No Yes
Relative 2X (4X
Performance X 2X effective)

RAM Inputs and Outputs

The F1-F4 and G1-G4 inputs to the function generators act
as address lines, selecting a particular memory cell in each
look-up table.

The functionality of the CLB control signals changes when
the function generators are configured as RAM. The
DIN/H2, H1, and SR/HO lines become the two data inputs
(DO, D1) and the Write Enable (WE) input for the 16x2
memory. When the 32x1 configuration is selected, D1 acts
as the fifth address bit and DO is the data input.

The contents of the memory cell(s) being addressed are
available at the F’ and G’ function-generator outputs. They
can exit the CLB through its X and Y outputs, or can be cap-
tured in the CLB flip-flop(s).

Configuring the CLB function generators as Read/Write
memory does not affect the functionality of the other por-
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Figure 5: 32x1 Edge-Triggered Single-Port RAM (F and G addresses are identical)
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Figure 7: 16x1 Edge-Triggered Dual-Port RAM

Figure 8 shows the write timing for level-sensitive, sin- attached to the RAM or ROM symbol, as described in the
gle-port RAM. schematic library guide. If not defined, all RAM contents

The relationships between CLB pins and RAM inputs and are initialized to all zeros, by default.

outputs for single-port level-sensitive mode are shown in RAM initialization occurs only during configuration. The
Table 7. RAM content is not affected by Global Set/Reset.

Figure 9 and Figure 10 show block diagrams of a CLB con- Table 7: Single-Port Level-Sensitive RAM Signals
figured as 16x2 and 32x1 level-sensitive, single-port RAM.

RAM Signal CLB Pin Function

Initializing RAM at Configuration D DO or D1 Data In

. . A[3:0] F1-F4 or G1-G4 Address
Both RAM and ROM implementations of the XC4000 WE WE Write Enable
Series devices are initialized during configuration. The ini- 0 ForG Data Out
tial contents are defined via an INIT attribute or property

Twc
ADDRESS
Tas [ Twp | TAH —>|
WRITE ENABLE k #\ ‘
Tps —> <« TpH

-
DATA IN * REQUIRED

Figure 8: Level-Sensitive RAM Write Timing

X6462
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Figure 10: 32x1 Level-Sensitive Single-Port RAM (F and G addresses are identical)
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Fast Carry Logic

Each CLB F and G function generator contains dedicated
arithmetic logic for the fast generation of carry and borrow
signals. This extra output is passed on to the function gen-
erator in the adjacent CLB. The carry chain is independent
of normal routing resources.

Dedicated fast carry logic greatly increases the efficiency
and performance of adders, subtractors, accumulators,
comparators and counters. It also opens the door to many
new applications involving arithmetic operation, where the
previous generations of FPGAs were not fast enough or too
inefficient. High-speed address offset calculations in micro-
processor or graphics systems, and high-speed addition in
digital signal processing are two typical applications.

The two 4-input function generators can be configured as a
2-bit adder with built-in hidden carry that can be expanded
to any length. This dedicated carry circuitry is so fast and
efficient that conventional speed-up methods like carry
generate/propagate are meaningless even at the 16-bit
level, and of marginal benefit at the 32-bit level.

This fast carry logic is one of the more significant features
of the XC4000 Series, speeding up arithmetic and counting
into the 70 MHz range.

The carry chain in XC4000E devices can run either up or
down. At the top and bottom of the columns where there
are no CLBs above or below, the carry is propagated to the
right. (See Figure 11.) In order to improve speed in the
high-capacity XC4000X devices, which can potentially
have very long carry chains, the carry chain travels upward
only, as shown in Figure 12. Additionally, standard intercon-
nect can be used to route a carry signal in the downward
direction.

Figure 13 on page 19 shows an XC4000E CLB with dedi-
cated fast carry logic. The carry logic in the XC4000X is
similar, except that COUT exits at the top only, and the sig-
nal CINDOWN does not exist. As shown in Figure 13, the
carry logic shares operand and control inputs with the func-
tion generators. The carry outputs connect to the function
generators, where they are combined with the operands to
form the sums.

Figure 14 on page 20 shows the details of the carry logic
for the XC4000E. This diagram shows the contents of the
box labeled “CARRY LOGIC” in Figure 13. The XC4000X
carry logic is very similar, but a multiplexer on the
pass-through carry chain has been eliminated to reduce
delay. Additionally, in the XC4000X the multiplexer on the
G4 path has a memory-programmable O input, which per-
mits G4 to directly connect to COUT. G4 thus becomes an
additional high-speed initialization path for carry-in.

The dedicated carry logic is discussed in detail in Xilinx
document XAPP 013: “Using the Dedicated Carry Logic in

XC4000" This discussion also applies to XC4000E
devices, and to XC4000X devices when the minor logic
changes are taken into account.

The fast carry logic can be accessed by placing special
library symbols, or by using Xilinx Relationally Placed Mac-
ros (RPMs) that already include these symbols.

CLB > CLB %%+ CLB ——=| CLB
CLB CLB CLB CLB
Ff T 1% 73
CLB CLB CLB CLB
CLB » CLB [+ CLB »( CLB
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Figure 11: Available XC4000E Carry Propagation
Paths
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Figure 12: Available XC4000X Carry Propagation
Paths (dotted lines use general interconnect)

6-18

May 14, 1999 (Version 1.6)



S XILINX®

Product Obsolete or Under Obsolescence
XC4000E and XC4000X Series Field Programmable Gate Arrays

Additional Input Latch for Fast Capture (XC4000X only)

The XC4000X 10B has an additional optional latch on the
input. This latch, as shown in Figure 16, is clocked by the
output clock — the clock used for the output flip-flop —
rather than the input clock. Therefore, two different clocks
can be used to clock the two input storage elements. This
additional latch allows the very fast capture of input data,
which is then synchronized to the internal clock by the IOB
flip-flop or latch.

To use this Fast Capture technique, drive the output clock
pin (the Fast Capture latching signal) from the output of one
of the Global Early buffers supplied in the XC4000X. The
second storage element should be clocked by a Global
Low-Skew buffer, to synchronize the incoming data to the
internal logic. (See Figure 17.) These special buffers are
described in “Global Nets and Buffers (XC4000X only)” on
page 37.

The Fast Capture latch (FCL) is designed primarily for use
with a Global Early buffer. For Fast Capture, a single clock
signal is routed through both a Global Early buffer and a
Global Low-Skew buffer. (The two buffers share an input
pad.) The Fast Capture latch is clocked by the Global Early
buffer, and the standard IOB flip-flop or latch is clocked by
the Global Low-Skew buffer. This mode is the safest way to
use the Fast Capture latch, because the clock buffers on
both storage elements are driven by the same pad. There is
no external skew between clock pads to create potential
problems.

To place the Fast Capture latch in a design, use one of the
special library symbols, ILFFX or ILFLX. ILFFX s a trans-
parent-Low Fast Capture latch followed by an active-High
input flip-flop. ILFLX is a transparent-Low Fast Capture
latch followed by a transparent-High input latch. Any of the
clock inputs can be inverted before driving the library ele-
ment, and the inverter is absorbed into the 10B. If a single
BUFG output is used to drive both clock inputs, the soft-

the desired delay based on the discussion in the previous
subsection.

IOB Output Signals

Output signals can be optionally inverted within the 10B,
and can pass directly to the pad or be stored in an
edge-triggered flip-flop. The functionality of this flip-flop is
shown in Table 11.

An active-High 3-state signal can be used to place the out-
put buffer in a high-impedance state, implementing 3-state
outputs or bidirectional I/O. Under configuration control, the
output (OUT) and output 3-state (T) signals can be
inverted. The polarity of these signals is independently con-
figured for each IOB.

The 4-mA maximum output current specification of many
FPGAs often forces the user to add external buffers, which
are especially cumbersome on bidirectional 1/0O lines. The
XC4000E and XC4000EX/XL devices solve many of these
problems by providing a guaranteed output sink current of
12 mA. Two adjacent outputs can be interconnected exter-
nally to sink up to 24 mA. The XC4000E and XC4000EX/XL
FPGAs can thus directly drive buses on a printed circuit
board.

By default, the output pull-up structure is configured as a
TTL-like totem-pole. The High driver is an n-channel pull-up
transistor, pulling to a voltage one transistor threshold
below Vcc. Alternatively, the outputs can be globally config-
ured as CMOS drivers, with p-channel pull-up transistors
pulling to VVcc. This option, applied using the bitstream gen-
eration software, applies to all outputs on the device. It is
not individually programmable. In the XC4000XL, all out-
puts are pulled to the positive supply rail.

Table 11: Output Flip-Flop Functionality (active rising
edge is shown)

i Clock
ware automatically runs the clock through both a Global
Low-Skew buffer and a Global Early buffer, and clocks the Mode Clock Enable T* D Q
Fast Capture latch appropriately. POVGveSrI-?UF) X X 0 X SR
or

Figure 16 on page 21 also shows a two-tap delay on the X 0 o X Q
input. By default, if the Fast Capture latch is used, the Xilinx ' — " "
software assumes a Global Early buffer is driving the clock, Flip-Flop — 1 0 D D
and selects MEDDELAY to ensure a zero hold time. Select X X 1 X A

0 X 0* X Q

ILFFX Legend:
X D_or_l’t care
[lPAD> to internal _ Rising edge
[1PAD> P N |gglincema SR Set or Reset value. Reset is default.
0* Input is Low or unconnected (default value)
> 9 GF 1* Input is High or unconnected (default value)
BUFGE cE ( z 3-state
[1PAD> €
BUFGLS
X9013

Figure 17: Examples Using XC4000X FCL
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Output Multiplexer/2-Input Function Generator
(XC4000X only)

As shown in Figure 16 on page 21, the output path in the
XC4000X 10B contains an additional multiplexer not avail-
able in the XC4000E 10B. The multiplexer can also be con-
figured as a 2-input function generator, implementing a
pass-gate, AND-gate, OR-gate, or XOR-gate, with O, 1, or 2
inverted inputs. The logic used to implement these func-
tions is shown in the upper gray area of Figure 16.

When configured as a multiplexer, this feature allows two
output signals to time-share the same output pad; effec-
tively doubling the number of device outputs without requir-
ing a larger, more expensive package.

When the MUX is configured as a 2-input function genera-
tor, logic can be implemented within the IOB itself. Com-
bined with a Global Early buffer, this arrangement allows
very high-speed gating of a single signal. For example, a
wide decoder can be implemented in CLBs, and its output
gated with a Read or Write Strobe Driven by a BUFGE
buffer, as shown in Figure 19. The critical-path pin-to-pin
delay of this circuit is less than 6 nanoseconds.

As shown in Figure 16, the IOB input pins Out, Output
Clock, and Clock Enable have different delays and different
flexibilities regarding polarity. Additionally, Output Clock
sources are more limited than the other inputs. Therefore,
the Xilinx software does not move logic into the 10B func-
tion generators unless explicitly directed to do so.

The user can specify that the IOB function generator be
used, by placing special library symbols beginning with the
letter “O.” For example, a 2-input AND-gate in the 0B func-
tion generator is called OAND2. Use the symbol input pin
labelled “F” for the signal on the critical path. This signal is
placed on the OK pin — the IOB input with the shortest
delay to the function generator. Two examples are shown in
Figure 20.

[ 1IPAD I
BUFGE L

i

from
internal OAND2 FAST
logic

X9019

Figure 19: Fast Pin-to-Pin Path in XC4000X

OMUX2

—F DO
— 0]
OAND2 s |

Figure 20: AND & MUX Symbols in XC4000X |0OB

Other IOB Options

There are a number of other programmable options in the
XC4000 Series 10B.

Pull-up and Pull-down Resistors

Programmable pull-up and pull-down resistors are useful
for tying unused pins to Vcc or Ground to minimize power
consumption and reduce noise sensitivity. The configurable
pull-up resistor is a p-channel transistor that pulls to Vcc.
The configurable pull-down resistor is an n-channel transis-
tor that pulls to Ground.

The value of these resistors is 50 kQ - 100 kQ. This high
value makes them unsuitable as wired-AND pull-up resis-
tors.

The pull-up resistors for most user-programmable I0Bs are
active during the configuration process. See Table 22 on
page 58 for a list of pins with pull-ups active before and dur-
ing configuration.

After configuration, voltage levels of unused pads, bonded
or un-bonded, must be valid logic levels, to reduce noise
sensitivity and avoid excess current. Therefore, by default,
unused pads are configured with the internal pull-up resis-
tor active. Alternatively, they can be individually configured
with the pull-down resistor, or as a driven output, or to be
driven by an external source. To activate the internal
pull-up, attach the PULLUP library component to the net
attached to the pad. To activate the internal pull-down,
attach the PULLDOWN library component to the net
attached to the pad.

Independent Clocks

Separate clock signals are provided for the input and output
flip-flops. The clock can be independently inverted for each
flip-flop within the I0B, generating either falling-edge or ris-
ing-edge triggered flip-flops. The clock inputs for each 10B
are independent, except that in the XC4000X, the Fast
Capture latch shares an 10B input with the output clock pin.

Early Clock for IOBs (XC4000X only)

Special early clocks are available for IOBs. These clocks
are sourced by the same sources as the Global Low-Skew
buffers, but are separately buffered. They have fewer loads
and therefore less delay. The early clock can drive either
the 10B output clock or the 10B input clock, or both. The
early clock allows fast capture of input data, and fast
clock-to-output on output data. The Global Early buffers
that drive these clocks are described in “Global Nets and
Buffers (XC4000X only)” on page 37.

Global Set/Reset

As with the CLB registers, the Global Set/Reset signal
(GSR) can be used to set or clear the input and output reg-
isters, depending on the value of the INIT attribute or prop-
erty. The two flip-flops can be individually configured to set

May 14, 1999 (Version 1.6)
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circuit prevents undefined floating levels. However, it is
overridden by any driver, even a pull-up resistor.

Each XC4000E longline has a programmable splitter switch
at its center, as does each XC4000X longline driven by
TBUFs. This switch can separate the line into two indepen-
dent routing channels, each running half the width or height
of the array.

Each XC4000X longline not driven by TBUFs has a buff-
ered programmable splitter switch at the 1/4, 1/2, and 3/4
points of the array. Due to the buffering, XC4000X longline
performance does not deteriorate with the larger array
sizes. If the longline is split, the resulting partial longlines
are independent.

Routing connectivity of the longlines is shown in Figure 27
on page 30.

Direct Interconnect (XC4000X only)

The XC4000X offers two direct, efficient and fast connec-
tions between adjacent CLBs. These nets facilitate a data
flow from the left to the right side of the device, or from the
top to the bottom, as shown in Figure 30. Signals routed on
the direct interconnect exhibit minimum interconnect prop-
agation delay and use no general routing resources.

The direct interconnect is also present between CLBs and
adjacent IOBs. Each IOB on the left and top device edges
has a direct path to the nearest CLB. Each CLB on the right
and bottom edges of the array has a direct path to the near-
est two IOBs, since there are two I0Bs for each row or col-
umn of CLBs.

The place and route software uses direct interconnect
whenever possible, to maximize routing resources and min-
imize interconnect delays.

o| |o ol |o ol |O
@ @ © vy} @ vy}

10B > 10B
CLB CLB CLB

10B 1> I0B
L L L L L L

10B 1> 0B
CLB CLB CLB

10B 1> 0B

N
il Bk

Figure 30: XC4000X Direct Interconnect

dol
a0l

I/0 Routing

XC4000 Series devices have additional routing around the
IOB ring. This routing is called a VersaRing. The VersaRing
facilitates pin-swapping and redesign without affecting
board layout. Included are eight double-length lines span-
ning two CLBs (four 10Bs), and four longlines. Global lines
and Wide Edge Decoder lines are provided. XC4000X
devices also include eight octal lines.

A high-level diagram of the VersaRing is shown in
Figure 31. The shaded arrows represent routing present
only in XC4000X devices.

Figure 33 on page 34 is a detailed diagram of the XC4000E
and XC4000X VersaRing. The area shown includes two
IOBs. There are two 10Bs per CLB row or column, there-
fore this diagram corresponds to the CLB routing diagram
shown in Figure 27 on page 30. The shaded areas repre-
sent routing and routing connections present only in
XC4000X devices.

Octal I/0O Routing (XC4000X only)

Between the XC4000X CLB array and the pad ring, eight
interconnect tracks provide for versatility in pin assignment
and fixed pinout flexibility. (See Figure 32 on page 33.)

These routing tracks are called octals, because they can be
broken every eight CLBs (sixteen 10Bs) by a programma-
ble buffer that also functions as a splitter switch. The buffers
are staggered, so each line goes through a buffer at every
eighth CLB location around the device edge.

The octal lines bend around the corners of the device. The
lines cross at the corners in such a way that the segment
most recently buffered before the turn has the farthest dis-
tance to travel before the next buffer, as shown in
Figure 32.
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Table 16: Pin Descriptions (Continued)

Pin Description

These four inputs are used in Asynchronous Peripheral mode. The chip is selected

when CS0 is Low and CS1 is High. While the chip is selected, a Low on Write Strobe
(WS) loads the data present on the DO - D7 inputs into the internal data buffer. A Low
on Read Strobe (RS) changes D7 into a status output — High if Ready, Low if Busy —

Expreimode, CSl1is used as a serial-enable signal for daisy-chaining.
WS and RS should be mutually exclusive, but if both are Low simultaneously, the Write
Strobe overrides. After configuration, these are user-programmable 1/O pins.

During Master Parallel configuration, these 18 output pins address the configuration
EPROM. After configuration, they are user-programmable /O pins.

During Master Parallel configuration with an XC4000X master, these 4 output pins add
4 more bits to address the configuration EPROM. After configuration, they are user-pro-
grammable 1/O pins. (See Master Parallel Configuration section for additional details.)

During Master Parallel and Peripheral configuration, these eight input pins receive con-
figuration data. After configuration, they are user-programmable I/O pins.

During Slave Serial or Master Serial configuration, DIN is the serial configuration data
input receiving data on the rising edge of CCLK. During Parallel configuration, DIN is
the DO input. After configuration, DIN is a user-programmable 1/O pin.

During configuration in any mode but Express mode, DOUT is the serial configuration
data output that can drive the DIN of daisy-chained slave FPGAs. DOUT data changes
on the falling edge of CCLK, one-and-a-half CCLK periods after it was received at the

In Express modefor XC4000E and XC4000X only, DOUT is the status output that can
drive the CS1 of daisy-chained FPGAs, to enable and disable downstream devices.

I/0 I/0
During | After
Pin Name | Config. | Config.
CS0, CS1, | o
WS, RS and drives DO - D6 High.
AO - A17 o I/O
Al18 - A21
(XC4003XL to O I/O
XC4085XL)
DO - D7 1/0
DIN 1/0
DOUT 0] /O |DIN input.
After configuration, DOUT is a user-programmable /O pin.
Unrestricted User-Programmable I/O Pins
o o ﬁik 1o
P tor (25 kQ - 100 kQ) that defines the logic level as High.

These pins can be configured to be input and/or output after configuration is completed.
Before configuration is completed, these pins have an internal high-value pull-up resis-

Boundary Scan

The ‘bed of nails’ has been the traditional method of testing
electronic assemblies. This approach has become less
appropriate, due to closer pin spacing and more sophisti-
cated assembly methods like surface-mount technology
and multi-layer boards. The IEEE Boundary Scan Standard
1149.1 was developed to facilitate board-level testing of
electronic assemblies. Design and test engineers can
imbed a standard test logic structure in their device to
achieve high fault coverage for I/O and internal logic. This
structure is easily implemented with a four-pin interface on
any boundary scan-compatible IC. IEEE 1149.1-compati-
ble devices may be serial daisy-chained together, con-
nected in parallel, or a combination of the two.

The XC4000 Series implements IEEE 1149.1-compatible
BYPASS, PRELOAD/SAMPLE and EXTEST boundary
scan instructions. When the boundary scan configuration
option is selected, three normal user 1/O pins become ded-
icated inputs for these functions. Another user output pin
becomes the dedicated boundary scan output. The details

of how to enable this circuitry are covered later in this sec-
tion.

By exercising these input signals, the user can serially load
commands and data into these devices to control the driv-
ing of their outputs and to examine their inputs. This
method is an improvement over bed-of-nails testing. It
avoids the need to over-drive device outputs, and it reduces
the user interface to four pins. An optional fifth pin, a reset
for the control logic, is described in the standard but is not
implemented in Xilinx devices.

The dedicated on-chip logic implementing the IEEE 1149.1
functions includes a 16-state machine, an instruction regis-
ter and a number of data registers. The functional details
can be found in the IEEE 1149.1 specification and are also
discussed in the Xilinx application note XAPP 017: “Bound-
ary Scan in XC4000 Devices."

Figure 40 on page 43 shows a simplified block diagram of
the XC4000E Input/Output Block with boundary scan
implemented. XC4000X boundary scan logic is identical.
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Figure 41: XC4000 Series Boundary Scan Logic

Instruction Set

The XC4000 Series boundary scan instruction set also
includes instructions to configure the device and read back
the configuration data. The instruction set is coded as
shown in Table 17.

Bit Sequence

The bit sequence within each 10B is: In, Out, 3-State. The
input-only MO and M2 mode pins contribute only the In bit
to the boundary scan I/O data register, while the out-
put-only M1 pin contributes all three bits.

The first two bits in the 1/0O data register are TDO.T and
TDO.O, which can be used for the capture of internal sig-
nals. The final bit is BSCANT.UPD, which can be used to
drive an internal net. These locations are primarily used by
Xilinx for internal testing.

From a cavity-up view of the chip (as shown in XDE or
Epic), starting in the upper right chip corner, the boundary
scan data-register bits are ordered as shown in Figure 42.
The device-specific pinout tables for the XC4000 Series
include the boundary scan locations for each I0B pin.

SHIFT/
CAPTURE

DATAOUT

CLOCK DATA
REGISTER

UPDATE EXTEST

X9016

BSDL (Boundary Scan Description Language) files for
XC4000 Series devices are available on the Xilinx FTP site.

Including Boundary Scan in a Schematic

If boundary scan is only to be used during configuration, no
special schematic elements need be included in the sche-
matic or HDL code. In this case, the special boundary scan
pins TDI, TMS, TCK and TDO can be used for user func-
tions after configuration.

To indicate that boundary scan remain enabled after config-
uration, place the BSCAN library symbol and connect the
TDI, TMS, TCK and TDO pad symbols to the appropriate
pins, as shown in Figure 43.

Even if the boundary scan symbol is used in a schematic,
the input pins TMS, TCK, and TDI can still be used as
inputs to be routed to internal logic. Care must be taken not
to force the chip into an undesired boundary scan state by
inadvertently applying boundary scan input patterns to
these pins. The simplest way to prevent this is to keep TMS
High, and then apply whatever signal is desired to TDI and
TCK.
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is passed through and is captured by each FPGA when it
recognizes the 0010 preamble. Following the length-count
data, each FPGA outputs a High on DOUT until it has
received its required number of data frames.

After an FPGA has received its configuration data, it
passes on any additional frame start bits and configuration
data on DOUT. When the total number of configuration
clocks applied after memory initialization equals the value
of the 24-bit length count, the FPGAs begin the start-up
sequence and become operational together. FPGA I/O are
normally released two CCLK cycles after the last configura-
tion bit is received. Figure 47 on page 53 shows the
start-up timing for an XC4000 Series device.

The daisy-chained bitstream is not simply a concatenation
of the individual bitstreams. The PROM file formatter must
be used to combine the bitstreams for a daisy-chained con-
figuration.

Multi-Family Daisy Chain

All Xilinx FPGAs of the XC2000, XC3000, and XC4000
Series use a compatible bitstream format and can, there-
fore, be connected in a daisy chain in an arbitrary
sequence. There is, however, one limitation. The lead
device must belong to the highest family in the chain. If the
chain contains XC4000 Series devices, the master nor-
mally cannot be an XC2000 or XC3000 device.

The reason for this rule is shown in Figure 47 on page 53.
Since all devices in the chain store the same length count
value and generate or receive one common sequence of
CCLK pulses, they all recognize length-count match on the
same CCLK edge, as indicated on the left edge of
Figure 47. The master device then generates additional
CCLK pulses until it reaches its finish point F. The different
families generate or require different numbers of additional
CCLK pulses until they reach F. Not reaching F means that
the device does not really finish its configuration, although
DONE may have gone High, the outputs became active,
and the internal reset was released. For the XC4000 Series
device, not reaching F means that readback cannot be ini-

tiated and most boundary scan instructions cannot be
used.

The user has some control over the relative timing of these
events and can, therefore, make sure that they occur at the
proper time and the finish point F is reached. Timing is con-
trolled using options in the bitstream generation software.

XC3000 Master with an XC4000 Series Slave

Some designers want to use an inexpensive lead device in
peripheral mode and have the more precious I/O pins of the
XC4000 Series devices all available for user 1/0O. Figure 44
provides a solution for that case.

This solution requires one CLB, one IOB and pin, and an
internal oscillator with a frequency of up to 5 MHz as a
clock source. The XC3000 master device must be config-
ured with late Internal Reset, which is the default option.

One CLB and one IOB in the lead XC3000-family device
are used to generate the additional CCLK pulse required by
the XC4000 Series devices. When the lead device removes
the internal RESET signal, the 2-bit shift register responds
to its clock input and generates an active Low output signal
for the duration of the subsequent clock period. An external
connection between this output and CCLK thus creates the
extra CCLK pulse.

OEIT
Output
Connected
Reset to CCLK

Active Low Output
Active High Output

>

corro
PrRrPROO

L etc
X5223

Figure 44: CCLK Generation for XC3000 Master
Driving an XC4000 Series Slave
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used), and if RAM is present, the RAM content must be
unchanged.

Statistically, one error out of 2048 might go undetected.

Configuration Sequence

There are four major steps in the XC4000 Series power-up
configuration sequence.

» Configuration Memory Clear
 Initialization

» Configuration

e Start-Up

The full process is illustrated in Figure 46.

Configuration Memory Clear

When power is first applied or is reapplied to an FPGA, an
internal circuit forces initialization of the configuration logic.
When Vcc reaches an operational level, and the circuit
passes the write and read test of a sample pair of configu-
ration bits, a time delay is started. This time delay is nomi-
nally 16 ms, and up to 10% longer in the low-voltage
devices. The delay is four times as long when in Master
Modes (MO Low), to allow ample time for all slaves to reach
a stable Vcc. When all INIT pins are tied together, as rec-
ommended, the longest delay takes precedence. There-
fore, devices with different time delays can easily be mixed
and matched in a daisy chain.

This delay is applied only on power-up. It is not applied
when re-configuring an FPGA by pulsing the PROGRAM

pin

X2 X15
X16
D—{z [34]5]6]7]8] 9]10[11112]13114J:>

o 1]1[1]2]1 o 15[14[13[12[21]20[9 [ 8] 7] 6]5]

LAST DATA FRAME — @ |«—— CRC - CHECKSUM ——>

START BIT |©

X1789

Readback Data Stream

Figure 45: Circuit for Generating CRC-16

Boundary Scan
Instructions

Available:
Yes
Test MO Generate [
One Time-Out Pulse PROGRAM
of 16 or 64 ms =Llow
Yes
Keep Clearing
Configuration Memory
EXTEST*
SAMPLE/PRELOAD Completely Clear
BYPASS Configuration Memory ) ~1.3 us per Frame
CONFIGURE* Once More

(*if PROGRAM = High)

INIT
High? if
Master

Master Waits 50 to 250 ps
' Before Sampling Mode Lines

Sample
Mode Lines

Master CCLK

Goes Active

Load One
Configuration
Data Frame

Pull INIT Low
and Stop

SAMPLE/PRELOAD
BYPASS

Config-
uration

memory

Configuration
Data to DOUT

CCLK
Count Equals
Length
Count

Start-Up
Sequence

=H

L, HDC Output

LDC Output

Operational
EXTEST

SAMPLE PRELOAD

BYPASS
USER1 \ If Boundary Scan

USER 2 is Selected
CONFIGURE
READBACK

Figure 46: Power-up Configuration Sequence
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The default option, and the most practical one, is for DONE
to go High first, disconnecting the configuration data source
and avoiding any contention when the I/Os become active
one clock later. Reset/Set is then released another clock
period later to make sure that user-operation starts from
stable internal conditions. This is the most common
sequence, shown with heavy lines in Figure 47, but the
designer can modify it to meet particular requirements.

Normally, the start-up sequence is controlled by the internal
device oscillator output (CCLK), which is asynchronous to
the system clock.

XC4000 Series offers another start-up clocking option,
UCLK_NOSYNC. The three events described above need
not be triggered by CCLK. They can, as a configuration
option, be triggered by a user clock. This means that the
device can wake up in synchronism with the user system.

When the UCLK_SYNC option is enabled, the user can
externally hold the open-drain DONE output Low, and thus
stall all further progress in the start-up sequence until
DONE is released and has gone High. This option can be
used to force synchronization of several FPGAs to a com-
mon user clock, or to guarantee that all devices are suc-
cessfully configured before any I/Os go active.

If either of these two options is selected, and no user clock
is specified in the design or attached to the device, the chip
could reach a point where the configuration of the device is
complete and the Done pin is asserted, but the outputs do
not become active. The solution is either to recreate the bit-
stream specifying the start-up clock as CCLK, or to supply
the appropriate user clock.

Start-up Sequence

The Start-up sequence begins when the configuration
memory is full, and the total number of configuration clocks

received since INIT went High equals the loaded value of
the length count.

The next rising clock edge sets a flip-flop QO, shown in
Figure 48. QO is the leading bit of a 5-bit shift register. The
outputs of this register can be programmed to control three
events.

¢ The release of the open-drain DONE output

e The change of configuration-related pins to the user
function, activating all IOBs.

« The termination of the global Set/Reset initialization of
all CLB and IOB storage elements.

The DONE pin can also be wire-ANDed with DONE pins of
other FPGAs or with other external signals, and can then
be used as input to bit Q3 of the start-up register. This is
called “Start-up Timing Synchronous to Done In” and is
selected by either CCLK_SYNC or UCLK_SYNC.

When DONE is not used as an input, the operation is called
“Start-up Timing Not Synchronous to DONE In,” and is
selected by either CCLK_NOSYNC or UCLK_NOSYNC.

As a configuration option, the start-up control register
beyond QO can be clocked either by subsequent CCLK
pulses or from an on-chip user net called STARTUR.CLK.
These signals can be accessed by placing the STARTUP
library symbol.

Start-up from CCLK

If CCLK is used to drive the start-up, QO through Q3 pro-
vide the timing. Heavy lines in Figure 47 show the default
timing, which is compatible with XC2000 and XC3000
devices using early DONE and late Reset. The thin lines
indicate all other possible timing options.
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Figure 48: Start-up Logic

Readback

The user can read back the content of configuration mem-
ory and the level of certain internal nodes without interfer-
ing with the normal operation of the device.

Readback not only reports the downloaded configuration
bits, but can also include the present state of the device,
represented by the content of all flip-flops and latches in
CLBs and 10Bs, as well as the content of function genera-
tors used as RAMs.

Note that in XC4000 Series devices, configuration data is
not inverted with respect to configuration as it is in XC2000
and XC3000 families.

XC4000 Series Readback does not use any dedicated
pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA,
RDBK.RIP and RDBK.CLK) that can be routed to any IOB.
To access the internal Readback signals, place the READ-

% CONFIGURATION BIT OPTIONS SELECTED BY USER IN "MAKEBITS"

X1528

BACK library symbol and attach the appropriate pad sym-
bols, as shown in Figure 49.

After Readback has been initiated by a High level on
RDBK.TRIG after configuration, the RDBK.RIP (Read In
Progress) output goes High on the next rising edge of
RDBK.CLK. Subsequent rising edges of this clock shift out
Readback data on the RDBK.DATA net.

Readback data does not include the preamble, but starts
with five dummy bits (all High) followed by the Start bit
(Low) of the first frame. The first two data bits of the first
frame are always High.

Each frame ends with four error check bits. They are read
back as High. The last seven bits of the last frame are also
read back as High. An additional Start bit (Low) and an
11-bit Cyclic Redundancy Check (CRC) signature follow,
before RDBK.RIP returns Low.

May 14, 1999 (Version 1.6)
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Figure 49: Readback Schematic Example

Readback Options

Readback options are: Read Capture, Read Abort, and
Clock Select. They are set with the bitstream generation
software.

Read Capture

When the Read Capture option is selected, the readback
data stream includes sampled values of CLB and IOB sig-
nals. The rising edge of RDBK.TRIG latches the inverted
values of the four CLB outputs, the IOB output flip-flops and
the input signals |1 and 12. Note that while the bits describ-
ing configuration (interconnect, function generators, and
RAM content) are notinverted, the CLB and 10B output sig-
nals are inverted.

When the Read Capture option is not selected, the values
of the capture bits reflect the configuration data originally
written to those memory locations.

If the RAM capability of the CLBs is used, RAM data are
available in readback, since they directly overwrite the F
and G function-table configuration of the CLB.

RDBK.TRIG is located in the lower-left corner of the device,
as shown in Figure 50.

Read Abort

When the Read Abort option is selected, a High-to-Low
transition on RDBK.TRIG terminates the readback opera-
tion and prepares the logic to accept another trigger.

After an aborted readback, additional clocks (up to one
readback clock per configuration frame) may be required to
re-initialize the control logic. The status of readback is indi-
cated by the output control net RDBK.RIP. RDBK.RIP is
High whenever a readback is in progress.

Clock Select

CCLK is the default clock. However, the user can insert
another clock on RDBK.CLK. Readback control and data
are clocked on rising edges of RDBK.CLK. If readback
must be inhibited for security reasons, the readback control
nets are simply not connected.

RDBK.CLK is located in the lower right chip corner, as
shown in Figure 50.

X1786

110

PROGRAMMABLE
/ INTERCONNECT

—

[¢
7

(
)

X1787

Figure 50: READBACK Symbol in Graphical Editor

Violating the Maximum High and Low Time
Specification for the Readback Clock

The readback clock has a maximum High and Low time
specification. In some cases, this specification cannot be
met. For example, if a processor is controlling readback, an
interrupt may force it to stop in the middle of a readback.
This necessitates stopping the clock, and thus violating the
specification.

The specification is mandatory only on clocking data at the
end of a frame prior to the next start bit. The transfer mech-
anism will load the data to a shift register during the last six
clock cycles of the frame, prior to the start bit of the follow-
ing frame. This loading process is dynamic, and is the
source of the maximum High and Low time requirements.

Therefore, the specification only applies to the six clock
cycles prior to and including any start bit, including the
clocks before the first start bit in the readback data stream.
At other times, the frame data is already in the register and
the register is not dynamic. Thus, it can be shifted out just
like a regular shift register.

The user must precisely calculate the location of the read-
back data relative to the frame. The system must keep track
of the position within a data frame, and disable interrupts
before frame boundaries. Frame lengths and data formats
are listed in Table 19, Table 20 and Table 21.

Readback with the XChecker Cable

The XChecker Universal Download/Readback Cable and
Logic Probe uses the readback feature for bitstream verifi-
cation. It can also display selected internal signals on the
PC or workstation screen, functioning as a low-cost in-cir-
cuit emulator.
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Table 23: Pin Functions During Configuration

CONFIGURATION MODE <M2:M1:M0>
SLAVE MASTER SYNCH. ASYNCH. MASTER MASTER USER
SERIAL SERIAL PERIPHERAL PERIPHERAL | PARALLEL DOWN PARALLEL UP OPERATION
<1:1:1> <0:0:0> <0:1:1> <1:0:1> <1:1:0> <1:0:0>
M2(HIGH) (1) M2(LOW) (1) M2(LOW) (1) M2(HIGH) (1) M2(HIGH) (1) M2(HIGH) (1) ()
M1(HIGH) (1) M1(LOW) (1) M1(HIGH) (1) M1(LOW) (1) M1(HIGH) (1) M1(LOW) (1) (0)
MO(HIGH) (1) MO(LOW) (1) MO(HIGH) (1) MO(HIGH) (1) MO(LOW) (1) MO(LOW) (1) ()
HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) 1/O
LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) 110
INIT INIT INIT INIT INIT INIT 110
DONE DONE DONE DONE DONE DONE DONE
PROGRAM (I) | PROGRAM (I) | PROGRAM (I) | PROGRAM (I) PROGRAM (1) PROGRAM (1) PROGRAM
CCLK (1) CCLK (O) CCLK (I) CCLK (O) CCLK (O) CCLK (O) CCLK (1)
RDY/BUSY (O) | RDY/BUSY (O) RCLK (O) RCLK (0O) 110
RS (I) 110
CS0 (1) 110
DATA 7 (1) DATA 7 (1) DATA 7 (1) DATA 7 (1) 1/O
DATA 6 (1) DATA 6 (I) DATA 6 (1) DATA 6 (1) 110
DATA 5 (I) DATA 5 (I) DATA 5 (I) DATA 5 (I) 110
DATA 4 (I) DATA 4 (I) DATA 4 (I) DATA 4 (I) 110
DATA 3 (1) DATA 3 (I) DATA 3 (1) DATA 3 (1) I/0
DATA 2 (1) DATA 2 (I) DATA 2 (1) DATA 2 (1) I/0
DATA 1 (1) DATA 1 (1) DATA 1 (1) DATA 1 (1) 1/O
DIN (1) DIN (1) DATA 0 (1) DATA 0 (1) DATA 0 (1) DATA 0 (1) I/
DOUT DOUT DOUT DOUT DOUT DOUT SGCK4-GCK6-1/0
TDI TDI TDI TDI TDI TDI TDI-I/O
TCK TCK TCK TCK TCK TCK TCK-I/O
TMS TMS TMS TMS TMS TMS TMS-I/O
TDO TDO TDO TDO TDO TDO TDO-(O)
WS (I) A0 AO I/0
Al Al PGCK4-GCK7-1/0
Cs1 A2 A2 I/0
A3 A3 I/0
A4 A4 110
A5 A5 /0
A6 A6 /0
A7 A7 110
A8 A8 I/0
A9 A9 I/0
Al10 Al10 1/0
All All 1/0
Al2 Al2 1/0
Al13 Al3 110
Al4d Al4d 110
Al15 Al5 SGCK1-GCK8-I/0
Al6 Al6 PGCK1-GCK1-1/0
Al7 Al7 110
A18* A18* 110
AL19* A19* I/0
A20* A20* I/0
A21* A21* 1/0
ALL OTHERS
* XC4000X only
Notes 1. A shaded table cell represents a 50 kQ - 100 kQ pull-up before and during configuration.

2. (1) represents an input; (O) represents an output.
3. INIT is an open-drain output during configuration.
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Synchronous Peripheral Mode

Synchronous Peripheral mode can also be considered
Slave Parallel mode. An external signal drives the CCLK
input(s) of the FPGA(s). The first byte of parallel configura-
tion data must be available at the Data inputs of the lead
FPGA a short setup time before the rising CCLK edge.
Subsequent data bytes are clocked in on every eighth con-
secutive rising CCLK edge.

The same CCLK edge that accepts data, also causes the
RDY/BUSY output to go High for one CCLK period. The pin
name is a misnomer. In Synchronous Peripheral mode it is
really an ACKNOWLEDGE signal. Synchronous operation
does not require this response, but it is a meaningful signal
for test purposes. Note that RDY/BUSY is pulled High with
a high-impedance pullup prior to INIT going High.

NOTE:

The lead FPGA serializes the data and presents the pre-
amble data (and all data that overflows the lead device) on
its DOUT pin. There is an internal delay of 1.5 CCLK peri-
ods, which means that DOUT changes on the falling CCLK
edge, and the next FPGA in the daisy chain accepts data
on the subsequent rising CCLK edge.

In order to complete the serial shift operation, 10 additional
CCLK rising edges are required after the last data byte has
been loaded, plus one more CCLK cycle for each
daisy-chained device.

Synchronous Peripheral mode is selected by a <011> on
the mode pins (M2, M1, MO).

M2 can be shorted to Ground
if not used as 1/0

N/C 4.7 kQ N/C
— ’_/\/\/\,j ——
MO M1 M2 MO M1 M2
CLOCK CCLK CCLK
OPTIONAL
DAISY-CHAINED
DATA BUS D0-7 FPGAs
DOUT DIN DOUT |—
vee XC4000E/X XC4000E/X
SYNCHRO- SLAVE
47K0 NOUS
PERIPHERAL
CONTROL { I @/BUSY e
SIGNALS INIT DONE INIT DONE
4.7 kQ%
PROGRAM . PROGRAM PROGRAM

Figure 56: Synchronous Peripheral Mode Circuit Diagram
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Product Obsolete or Under Obsolescence

XC4000E and XC4000X Series Field Programmable Gate Arrays

S XILINX®

Table 25: Component Availability Chart for XC4000E FPGAs

PINS 84 100 100 120 144 156 160 191 208 208 223 225 240 240 299 304
= O = = £ « s £« o £« Ea s £ < = %& o £« %
78S [Z QTS 0 W a 0w < 0 0w a a 0 0w a 7] o @ 0w < Qo

PRl 22 | 29 | 22 | 58 | &2 | 89 | £9 | 32 | 56 |29 | 38 | £8 | £6 | &9 | 82 | &©
I I I
< o o o <t © o \—| %) ) ™ L0 o o o} <
0 (=] o ~N < 0 © o o o N N < < o2} o
CODE O — — — ‘—| — — — IN N N N N N N ™
o o o O] o O] (@4 O o (@4 O Q o (04 ) o
o > [a = o [a o T [a N o m T o o T
-4 cl Cl Cl cl
-3
XC4003E cl cl cl cl
2 cl cl Cl cl
-1 [ c c c
-4 cl cl cl cl cl cl
3 cl cl cl cl cl [
XC4005E 2 cl cl cl cl cl [
-1 c c c c c c
-4 cl cl cl cl [
3 cl cl cl cl [
XC4006E 2 cl cl cl cl cl
-1 [ [¢ c [ 9
-4 cl cl cl [
3 cl cl cl cl
XC4008E 2 cl cl cl [
-1 [ c [¢ c
-4 cl cl cl cl cl cl
3 cl cl cl cl cl cl
XC4010E 2 cl cl Cl cl cl cl
-1 c [ [& c c c
-4 cl cl cl cl cl [ cl
3 cl cl [ Cl cl cl cl
XC4013E 2 cl cl cl cl cl cl cl
-1 c c [§ [¢ c c [¢
2 cl Cl cl
3 cl cl [
XC4020E - o = o
-1 c [¢ c
-4 cl cl cl cl
XC4025E -3 cl [ Cl Cl
2 [¢ c [ ¢
1/29/99

C = Commercial T;=0°to +85°C

I= Industrial T;=-40°C to +100°C

Table 26: Component Availability Chart for XC4000EX FPGAs

PINS 208 240 299 304 352 411 432
TYPE High-Perf. High-Perf. Ceram. High-Perf. Plast. Ceram. Plast.
QFP QFP PGA QFP BGA PGA BGA
CODE HQ208 HQ240 PG299 HQ304 BG352 PG411 BG432
-4 Cl Cl Cl cl Cl
XC4028EX | =3 Cl cl Cl cl Cl
2 [J [ c [¢ [¢
-4 cl cl cl cl cl
XC4036EX | -3 cl cl cl cl cl
2 c [¢ c [ c

1/29/99

C = Commercial T;=0°to +85°C
I= Industrial T; =-40°C to +100°C
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