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Product Obsolete or Under Obsolescence

XC4000E and XC4000X Series Field Programmable Gate Arrays XX"JNX@
Table 1: XC4000E and XC4000X Series Field Programmable Gate Arrays
Max Logic |Max. RAM Typical Number
Logic Gates Bits Gate Range CLB Total of Max.
Device Cells (No RAM) |(No Logic) |(Logic and RAM)* Matrix CLBs |Flip-Flops | User I/O

XC4002XL 152 1,600 2,048 1,000 - 3,000 8x8 64 256 64
XC4003E 238 3,000 3,200 2,000 - 5,000 10x 10 100 360 80
XC4005E/XL 466 5,000 6,272 3,000 - 9,000 14x 14 196 616 112
XC4006E 608 6,000 8,192 4,000 - 12,000 16 x 16 256 768 128
XC4008E 770 8,000 10,368 6,000 - 15,000 18 x 18 324 936 144
XC4010E/XL 950 10,000 12,800 7,000 - 20,000 20 x 20 400 1,120 160
XC4013E/XL 1368 13,000 18,432 10,000 - 30,000 24 x 24 576 1,536 192
XC4020E/XL 1862 20,000 25,088 13,000 - 40,000 28 x 28 784 2,016 224
XC4025E 2432 25,000 32,768 15,000 - 45,000 32x32 1,024 2,560 256
XC4028EX/XL 2432 28,000 32,768 18,000 - 50,000 32x32 1,024 2,560 256
XC4036EX/XL 3078 36,000 41,472 22,000 - 65,000 36 x 36 1,296 3,168 288
XC4044XL 3800 44,000 51,200 27,000 - 80,000 40 x 40 1,600 3,840 320
XC4052XL 4598 52,000 61,952 | 33,000 - 100,000 | 44x44 1,936 4,576 352
XC4062XL 5472 62,000 73,728 | 40,000 - 130,000 | 48x48 2,304 5,376 384
XC4085XL 7448 85,000 100,352 | 55,000 - 180,000 | 56 x 56 3,136 7,168 448

* Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

Note: All functionality in low-voltage families is the same as
in the corresponding 5-Volt family, except where numerical
references are made to timing or power.

Description

XC4000 Series devices are implemented with a regular,
flexible, programmable architecture of Configurable Logic
Blocks (CLBs), interconnected by a powerful hierarchy of
versatile routing resources, and surrounded by a perimeter
of programmable Input/Output Blocks (IOBs). They have
generous routing resources to accommodate the most
complex interconnect patterns.

The devices are customized by loading configuration data
into internal memory cells. The FPGA can either actively
read its configuration data from an external serial or
byte-parallel PROM (master modes), or the configuration
data can be written into the FPGA from an external device
(slave and peripheral modes).

XC4000 Series FPGAs are supported by powerful and
sophisticated software, covering every aspect of design
from schematic or behavioral entry, floor planning, simula-
tion, automatic block placement and routing of intercon-
nects, to the creation, downloading, and readback of the
configuration bit stream.

Because Xilinx FPGAs can be reprogrammed an unlimited
number of times, they can be used in innovative designs

where hardware is changed dynamically, or where hard-
ware must be adapted to different user applications.
FPGAs are ideal for shortening design and development
cycles, and also offer a cost-effective solution for produc-
tion rates well beyond 5,000 systems per month.

Taking Advantage of Re-configuration

FPGA devices can be re-configured to change logic func-
tion while resident in the system. This capability gives the
system designer a new degree of freedom not available
with any other type of logic.

Hardware can be changed as easily as software. Design
updates or modifications are easy, and can be made to
products already in the field. An FPGA can even be re-con-
figured dynamically to perform different functions at differ-
ent times.

Re-configurable logic can be used to implement system
self-diagnostics, create systems capable of being re-con-
figured for different environments or operations, or imple-
ment multi-purpose hardware for a given application. As an
added benefit, using re-configurable FPGA devices simpli-
fies hardware design and debugging and shortens product
time-to-market.
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Input Thresholds

The input thresholds of 5V devices can be globally config-
ured for either TTL (1.2 V threshold) or CMOS (2.5 V
threshold), just like XC2000 and XC3000 inputs. The two
global adjustments of input threshold and output level are
independent of each other. The XC4000XL family has an
input threshold of 1.6V, compatible with both 3.3V CMOS
and TTL levels.

Global Signal Access to Logic

There is additional access from global clocks to the F and
G function generator inputs.

Configuration Pin Pull-Up Resistors

During configuration, these pins have weak pull-up resis-
tors. For the most popular configuration mode, Slave
Serial, the mode pins can thus be left unconnected. The
three mode inputs can be individually configured with or
without weak pull-up or pull-down resistors. A pull-down
resistor value of 4.7 kQ is recommended.

The three mode inputs can be individually configured with
or without weak pull-up or pull-down resistors after configu-
ration.

The PROGRAM input pin has a permanent weak pull-up.

Soft Start-up

Like the XC3000A, XC4000 Series devices have “Soft
Start-up.” When the configuration process is finished and
the device starts up, the first activation of the outputs is
automatically slew-rate limited. This feature avoids poten-
tial ground bounce when all outputs are turned on simulta-
neously. Immediately after start-up, the slew rate of the
individual outputs is, as in the XC4000 family, determined
by the individual configuration option.

XC4000 and XC4000A Compatibility

Existing XC4000 bitstreams can be used to configure an
XC4000E device. XC4000A bitstreams must be recompiled
for use with the XC4000E due to improved routing
resources, although the devices are pin-for-pin compatible.

Additional Improvements in XC4000X Only

Increased Routing

New interconnect in the XC4000X includes twenty-two
additional vertical lines in each column of CLBs and twelve
new horizontal lines in each row of CLBs. The twelve “Quad
Lines” in each CLB row and column include optional repow-
ering buffers for maximum speed. Additional high-perfor-
mance routing near the I0Bs enhances pin flexibility.

Faster Input and Output

A fast, dedicated early clock sourced by global clock buffers
is available for the I0Bs. To ensure synchronization with the
regular global clocks, a Fast Capture latch driven by the
early clock is available. The input data can be initially
loaded into the Fast Capture latch with the early clock, then
transferred to the input flip-flop or latch with the low-skew
global clock. A programmable delay on the input can be
used to avoid hold-time requirements. See “IOB Input Sig-
nals” on page 20 for more information.

Latch Capability in CLBs

Storage elements in the XC4000X CLB can be configured
as either flip-flops or latches. This capability makes the
FPGA highly synthesis-compatible.

10B Output MUX From Output Clock

A multiplexer in the IOB allows the output clock to select
either the output data or the 10B clock enable as the output
to the pad. Thus, two different data signals can share a sin-
gle output pad, effectively doubling the number of device
outputs without requiring a larger, more expensive pack-
age. This multiplexer can also be configured as an
AND-gate to implement a very fast pin-to-pin path. See
“IOB Output Signals” on page 23 for more information.

Additional Address Bits

Larger devices require more bits of configuration data. A
daisy chain of several large XC4000X devices may require
a PROM that cannot be addressed by the eighteen address
bits supported in the XC4000E. The XC4000X Series
therefore extends the addressing in Master Parallel config-
uration mode to 22 bits.
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Figure 5: 32x1 Edge-Triggered Single-Port RAM (F and G addresses are identical)
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Figure 7: 16x1 Edge-Triggered Dual-Port RAM

Figure 8 shows the write timing for level-sensitive, sin- attached to the RAM or ROM symbol, as described in the
gle-port RAM. schematic library guide. If not defined, all RAM contents

The relationships between CLB pins and RAM inputs and are initialized to all zeros, by default.

outputs for single-port level-sensitive mode are shown in RAM initialization occurs only during configuration. The
Table 7. RAM content is not affected by Global Set/Reset.

Figure 9 and Figure 10 show block diagrams of a CLB con- Table 7: Single-Port Level-Sensitive RAM Signals
figured as 16x2 and 32x1 level-sensitive, single-port RAM.

RAM Signal CLB Pin Function

Initializing RAM at Configuration D DO or D1 Data In

. . A[3:0] F1-F4 or G1-G4 Address
Both RAM and ROM implementations of the XC4000 WE WE Write Enable
Series devices are initialized during configuration. The ini- 0 ForG Data Out
tial contents are defined via an INIT attribute or property

Twc
ADDRESS
Tas [ Twp | TAH —>|
WRITE ENABLE k #\ ‘
Tps —> <« TpH

-
DATA IN * REQUIRED

Figure 8: Level-Sensitive RAM Write Timing

X6462
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Figure 14: Detail of XC4000E Dedicated Carry Logic

Input/Output Blocks (IOBs)

User-configurable input/output blocks (IOBs) provide the
interface between external package pins and the internal
logic. Each I0B controls one package pin and can be con-
figured for input, output, or bidirectional signals.

Figure 15 shows a simplified block diagram of the
XC4000E IOB. A more complete diagram which includes
the boundary scan logic of the XC4000E IOB can be found
in Figure 40 on page 43, in the “Boundary Scan” section.

The XC4000X IOB contains some special features not
included in the XC4000E I0B. These features are high-
lighted in a simplified block diagram found in Figure 16, and
discussed throughout this section. When XC4000X special
features are discussed, they are clearly identified in the
text. Any feature not so identified is present in both
XC4000E and XC4000X devices.

10B Input Signals

Two paths, labeled I1 and 12 in Figure 15 and Figure 16,
bring input signals into the array. Inputs also connect to an
input register that can be programmed as either an
edge-triggered flip-flop or a level-sensitive latch.

C N DowN

The choice is made by placing the appropriate library sym-
bol. For example, IFD is the basic input flip-flop (rising edge
triggered), and ILD is the basic input latch (transpar-
ent-High). Variations with inverted clocks are available, and
some combinations of latches and flip-flops can be imple-
mented in a single 10B, as described in the XACT Libraries
Guide.

The XC4000E inputs can be globally configured for either
TTL (1.2V) or 5.0 volt CMOS thresholds, using an option in
the bitstream generation software. There is a slight input
hysteresis of about 300mV. The XC4000E output levels are
also configurable; the two global adjustments of input
threshold and output level are independent.

Inputs on the XC4000XL are TTL compatible and 3.3V
CMOS compatible. Outputs on the XC4000XL are pulled to
the 3.3V positive supply.

The inputs of XC4000 Series 5-Volt devices can be driven
by the outputs of any 3.3-Volt device, if the 5-Volt inputs are
in TTL mode.

Supported sources for XC4000 Series device inputs are
shown in Table 8.

6-20
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Additional Input Latch for Fast Capture (XC4000X only)

The XC4000X 10B has an additional optional latch on the
input. This latch, as shown in Figure 16, is clocked by the
output clock — the clock used for the output flip-flop —
rather than the input clock. Therefore, two different clocks
can be used to clock the two input storage elements. This
additional latch allows the very fast capture of input data,
which is then synchronized to the internal clock by the IOB
flip-flop or latch.

To use this Fast Capture technique, drive the output clock
pin (the Fast Capture latching signal) from the output of one
of the Global Early buffers supplied in the XC4000X. The
second storage element should be clocked by a Global
Low-Skew buffer, to synchronize the incoming data to the
internal logic. (See Figure 17.) These special buffers are
described in “Global Nets and Buffers (XC4000X only)” on
page 37.

The Fast Capture latch (FCL) is designed primarily for use
with a Global Early buffer. For Fast Capture, a single clock
signal is routed through both a Global Early buffer and a
Global Low-Skew buffer. (The two buffers share an input
pad.) The Fast Capture latch is clocked by the Global Early
buffer, and the standard IOB flip-flop or latch is clocked by
the Global Low-Skew buffer. This mode is the safest way to
use the Fast Capture latch, because the clock buffers on
both storage elements are driven by the same pad. There is
no external skew between clock pads to create potential
problems.

To place the Fast Capture latch in a design, use one of the
special library symbols, ILFFX or ILFLX. ILFFX s a trans-
parent-Low Fast Capture latch followed by an active-High
input flip-flop. ILFLX is a transparent-Low Fast Capture
latch followed by a transparent-High input latch. Any of the
clock inputs can be inverted before driving the library ele-
ment, and the inverter is absorbed into the 10B. If a single
BUFG output is used to drive both clock inputs, the soft-

the desired delay based on the discussion in the previous
subsection.

IOB Output Signals

Output signals can be optionally inverted within the 10B,
and can pass directly to the pad or be stored in an
edge-triggered flip-flop. The functionality of this flip-flop is
shown in Table 11.

An active-High 3-state signal can be used to place the out-
put buffer in a high-impedance state, implementing 3-state
outputs or bidirectional I/O. Under configuration control, the
output (OUT) and output 3-state (T) signals can be
inverted. The polarity of these signals is independently con-
figured for each IOB.

The 4-mA maximum output current specification of many
FPGAs often forces the user to add external buffers, which
are especially cumbersome on bidirectional 1/0O lines. The
XC4000E and XC4000EX/XL devices solve many of these
problems by providing a guaranteed output sink current of
12 mA. Two adjacent outputs can be interconnected exter-
nally to sink up to 24 mA. The XC4000E and XC4000EX/XL
FPGAs can thus directly drive buses on a printed circuit
board.

By default, the output pull-up structure is configured as a
TTL-like totem-pole. The High driver is an n-channel pull-up
transistor, pulling to a voltage one transistor threshold
below Vcc. Alternatively, the outputs can be globally config-
ured as CMOS drivers, with p-channel pull-up transistors
pulling to VVcc. This option, applied using the bitstream gen-
eration software, applies to all outputs on the device. It is
not individually programmable. In the XC4000XL, all out-
puts are pulled to the positive supply rail.

Table 11: Output Flip-Flop Functionality (active rising
edge is shown)

i Clock
ware automatically runs the clock through both a Global
Low-Skew buffer and a Global Early buffer, and clocks the Mode Clock Enable T* D Q
Fast Capture latch appropriately. POVGveSrI-?UF) X X 0 X SR
or

Figure 16 on page 21 also shows a two-tap delay on the X 0 o X Q
input. By default, if the Fast Capture latch is used, the Xilinx ' — " "
software assumes a Global Early buffer is driving the clock, Flip-Flop — 1 0 D D
and selects MEDDELAY to ensure a zero hold time. Select X X 1 X A

0 X 0* X Q

ILFFX Legend:
X D_or_l’t care
[lPAD> to internal _ Rising edge
[1PAD> P N |gglincema SR Set or Reset value. Reset is default.
0* Input is Low or unconnected (default value)
> 9 GF 1* Input is High or unconnected (default value)
BUFGE cE ( z 3-state
[1PAD> €
BUFGLS
X9013

Figure 17: Examples Using XC4000X FCL
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Figure 28: Single- and Double-Length Lines, with
Programmable Switch Matrices (PSMs)

Double-Length Lines

The double-length lines consist of a grid of metal segments,
each twice as long as the single-length lines: they run past
two CLBs before entering a switch matrix. Double-length
lines are grouped in pairs with the switch matrices stag-
gered, so that each line goes through a switch matrix at
every other row or column of CLBs (see Figure 28).

There are four vertical and four horizontal double-length
lines associated with each CLB. These lines provide faster
signal routing over intermediate distances, while retaining
routing flexibility. Double-length lines are connected by way
of the programmable switch matrices. Routing connectivity
is shown in Figure 27.

Quad Lines (XC4000X only)

XC4000X devices also include twelve vertical and twelve
horizontal quad lines per CLB row and column. Quad lines
are four times as long as the single-length lines. They are
interconnected via buffered switch matrices (shown as dia-
monds in Figure 27 on page 30). Quad lines run past four
CLBs before entering a buffered switch matrix. They are
grouped in fours, with the buffered switch matrices stag-
gered, so that each line goes through a buffered switch
matrix at every fourth CLB location in that row or column.
(See Figure 29.)

The buffered switch matrixes have four pins, one on each
edge. All of the pins are bidirectional. Any pin can drive any
or all of the other pins.

Each buffered switch matrix contains one buffer and six
pass transistors. It resembles the programmable switch
matrix shown in Figure 26, with the addition of a program-
mable buffer. There can be up to two independent inputs

CLB CLB CLB
Lt .
N
R ——
X
CLB cL| Ik CLB
R
CLB CLB| |,/ CLB
y

X9014
Figure 29: Quad Lines (XC4000X only)

and up to two independent outputs. Only one of the inde-
pendent inputs can be buffered.

The place and route software automatically uses the timing
requirements of the design to determine whether or not a
quad line signal should be buffered. A heavily loaded signal
is typically buffered, while a lightly loaded one is not. One
scenario is to alternate buffers and pass transistors. This
allows both vertical and horizontal quad lines to be buffered
at alternating buffered switch matrices.

Due to the buffered switch matrices, quad lines are very
fast. They provide the fastest available method of routing
heavily loaded signals for long distances across the device.

Longlines

Longlines form a grid of metal interconnect segments that
run the entire length or width of the array. Longlines are
intended for high fan-out, time-critical signal nets, or nets
that are distributed over long distances. In XC4000X
devices, quad lines are preferred for critical nets, because
the buffered switch matrices make them faster for high
fan-out nets.

Two horizontal longlines per CLB can be driven by 3-state
or open-drain drivers (TBUFs). They can therefore imple-
ment unidirectional or bidirectional buses, wide multiplex-
ers, or wired-AND functions. (See “Three-State Buffers” on
page 26 for more details.)

Each horizontal longline driven by TBUFs has either two
(XC4000E) or eight (XC4000X) pull-up resistors. To acti-
vate these resistors, attach a PULLUP symbol to the
long-line net. The software automatically activates the
appropriate number of pull-ups. There is also a weak
keeper at each end of these two horizontal longlines. This

May 14, 1999 (Version 1.6)
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Global Nets and Buffers (XC4000X only)

Eight vertical longlines in each CLB column are driven by
special global buffers. These longlines are in addition to the
vertical longlines used for standard interconnect. The glo-
bal lines are broken in the center of the array, to allow faster
distribution and to minimize skew across the whole array.
Each half-column global line has its own buffered multi-
plexer, as shown in Figure 35. The top and bottom global
lines cannot be connected across the center of the device,
as this connection might introduce unacceptable skew. The
top and bottom halves of the global lines must be sepa-
rately driven — although they can be driven by the same
global buffer.

The eight global lines in each CLB column can be driven by
either of two types of global buffers. They can also be
driven by internal logic, because they can be accessed by
single, double, and quad lines at the top, bottom, half, and
guarter points. Consequently, the number of different
clocks that can be used simultaneously in an XC4000X
device is very large.

There are four global lines feeding the 10Bs at the left edge
of the device. IOBs along the right edge have eight global
lines. There is a single global line along the top and bottom
edges with access to the IOBs. All IOB global lines are bro-
ken at the center. They cannot be connected across the
center of the device, as this connection might introduce
unacceptable skew.

IOB global lines can be driven from two types of global buff-
ers, or from local interconnect. Alternatively, top and bottom
IOBs can be clocked from the global lines in the adjacent
CLB column.

Two different types of clock buffers are available in the
XC4000X:

* Global Low-Skew Buffers (BUFGLS)
» Global Early Buffers (BUFGE)

Global Low-Skew Buffers are the standard clock buffers.
They should be used for most internal clocking, whenever a
large portion of the device must be driven.

Global Early Buffers are designed to provide a faster clock
access, but CLB access is limited to one-fourth of the
device. They also facilitate a faster 1/O interface.

Figure 35 is a conceptual diagram of the global net struc-
ture in the XC4000X.

Global Early buffers and Global Low-Skew buffers share a
single pad. Therefore, the same IPAD symbol can drive one
buffer of each type, in parallel. This configuration is particu-
larly useful when using the Fast Capture latches, as
described in “IOB Input Signals” on page 20. Paired Global

Early and Global Low-Skew buffers share a common input;
they cannot be driven by two different signals.

Choosing an XC4000X Clock Buffer

The clocking structure of the XC4000X provides a large
variety of features. However, it can be simple to use, with-
out understanding all the details. The software automati-
cally handles clocks, along with all other routing, when the
appropriate clock buffer is placed in the design. In fact, if a
buffer symbol called BUFG is placed, rather than a specific
type of buffer, the software even chooses the buffer most
appropriate for the design. The detailed information in this
section is provided for those users who want a finer level of
control over their designs.

If fine control is desired, use the following summary and
Table 15 on page 35 to choose an appropriate clock buffer.

* The simplest thing to do is to use a Global Low-Skew
buffer.

¢ If a faster clock path is needed, try a BUFG. The
software will first try to use a Global Low-Skew Buffer. If
timing requirements are not met, a faster buffer will
automatically be used.

« If a single quadrant of the chip is sufficient for the
clocked logic, and the timing requires a faster clock than
the Global Low-Skew buffer, use a Global Early buffer.

Global Low-Skew Buffers

Each corner of the XC4000X device has two Global
Low-Skew buffers. Any of the eight Global Low-Skew buff-
ers can drive any of the eight vertical Global lines in a col-
umn of CLBs. In addition, any of the buffers can drive any of
the four vertical lines accessing the IOBs on the left edge of
the device, and any of the eight vertical lines accessing the
IOBs on the right edge of the device. (See Figure 36 on
page 38.)

IOBs at the top and bottom edges of the device are
accessed through the vertical Global lines in the CLB array,
as in the XC4000E. Any Global Low-Skew buffer can,
therefore, access every IOB and CLB in the device.

The Global Low-Skew buffers can be driven by either
semi-dedicated pads or internal logic.

To use a Global Low-Skew buffer, instantiate a BUFGLS
element in a schematic or in HDL code. If desired, attach a
LOC attribute or property to direct placement to the desig-
nated location. For example, attach a LOC=T attribute or
property to direct that a BUFGLS be placed in one of the
two Global Low-Skew buffers on the top edge of the device,
or a LOC=TR to indicate the Global Low-Skew buffer on the
top edge of the device, on the right.

May 14, 1999 (Version 1.6)
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The top and bottom Global Early buffers are about 1 ns
slower clock to out than the left and right Global Early buff-
ers.

The Global Early buffers can be driven by either semi-ded-
icated pads or internal logic. They share pads with the Glo-
bal Low-Skew buffers, so a single net can drive both global
buffers, as described above.

To use a Global Early buffer, place a BUFGE element in a
schematic or in HDL code. If desired, attach a LOC
attribute or property to direct placement to the designated
location. For example, attach a LOC=T attribute or property
to direct that a BUFGE be placed in one of the two Global
Early buffers on the top edge of the device, ora LOC=TR to
indicate the Global Early buffer on the top edge of the
device, on the right.

Power Distribution

Power for the FPGA is distributed through a grid to achieve
high noise immunity and isolation between logic and I/O.
Inside the FPGA, a dedicated Vcc and Ground ring sur-
rounding the logic array provides power to the I/O drivers,
as shown in Figure 39. An independent matrix of Vcc and
Ground lines supplies the interior logic of the device.

This power distribution grid provides a stable supply and
ground for all internal logic, providing the external package
power pins are all connected and appropriately de-coupled.
Typically, a 0.1 pF capacitor connected between each Vcc
pin and the board’s Ground plane will provide adequate
de-coupling.

Output buffers capable of driving/sinking the specified 12
mA loads under specified worst-case conditions may be
capable of driving/sinking up to 10 times as much current
under best case conditions.

Noise can be reduced by minimizing external load capaci-
tance and reducing simultaneous output transitions in the
same direction. It may also be beneficial to locate heavily
loaded output buffers near the Ground pads. The 1/0O Block
output buffers have a slew-rate limited mode (default) which
should be used where output rise and fall times are not
speed-critical.

GND
1
< l.— Ground and
o Vcce Ring for
T T T T T T T T‘ 1/0 Drivers
i e S S i eintls sty S
| | | | | | | |
B U N S W
| | | | | | | |
B T T W T
vee 30 L1 e

I i
b e
Logic

|
|
e Rt EEE e Power Grid
| | | | | | | |
RN A
| | | | i | | | |
h
U]
GND X5422

Figure 39: XC4000 Series Power Distribution

Pin Descriptions

There are three types of pins in the XC4000 Series
devices:

e Permanently dedicated pins
e User I/O pins that can have special functions
e Unrestricted user-programmable I/O pins.

Before and during configuration, all outputs not used for the
configuration process are 3-stated with a 50 kQ - 100 kQ
pull-up resistor.

After configuration, if an IOB is unused it is configured as
an input with a 50 kQ - 100 kQ pull-up resistor.

XC4000 Series devices have no dedicated Reset input.
Any user 1/0O can be configured to drive the Global
Set/Reset net, GSR. See “Global Set/Reset” on page 11
for more information on GSR.

XC4000 Series devices have no Powerdown control input,
as the XC3000 and XC2000 families do. The
XC3000/XC2000 Powerdown control also 3-stated all of the
device

I/0 pins. For XC4000 Series devices, use the global 3-state
net, GTS, instead. This net 3-states all outputs, but does
not place the device in low-power mode. See “IOB Output
Signals” on page 23 for more information on GTS.

Device pins for XC4000 Series devices are described in
Table 16. Pin functions during configuration for each of the
seven configuration modes are summarized in Table 22 on
page 58, in the “Configuration Timing” section.
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Figure 41 on page 44 is a diagram of the XC4000 Series
boundary scan logic. It includes three bits of Data Register
per IOB, the IEEE 1149.1 Test Access Port controller, and
the Instruction Register with decodes.

XC4000 Series devices can also be configured through the
boundary scan logic. See “Readback” on page 55.

Data Registers

The primary data register is the boundary scan register. For
each 10B pin in the FPGA, bonded or not, it includes three
bits for In, Out and 3-State Control. Non-IOB pins have
appropriate partial bit population for In or Out only. PRO-
GRAM, CCLK and DONE are not included in the boundary
scan register. Each EXTEST CAPTURE-DR state captures
all In, Out, and 3-state pins.

The data register also includes the following non-pin bits:
TDO.T, and TDO.O, which are always bits 0 and 1 of the

3-State TS

Boundary
Scan
TS-update |

OUTPUT

INVERT

OUTPUT

TS INV
TSIOE 3
7i
TS - capture Vee
L

data register, respectively, and BSCANT.UPD, which is
always the last bit of the data register. These three bound-
ary scan bits are special-purpose Xilinx test signals.

The other standard data register is the single flip-flop
BYPASS register. It synchronizes data being passed
through the FPGA to the next downstream boundary scan
device.

The FPGA provides two additional data registers that can
be specified using the BSCAN macro. The FPGA provides
two user pins (BSCAN.SEL1 and BSCAN.SEL2) which are
the decodes of two user instructions. For these instructions,
two corresponding pins (BSCAN.TDO1 and
BSCAN.TDO?2) allow user scan data to be shifted out on
TDO. The data register clock (BSCAN.DRCK) is available
for control of test logic which the user may wish to imple-
ment with CLBs. The NAND of TCK and RUN-TEST-IDLE
is also provided (BSCAN.IDLE).
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Figure 40: Block Diagram of XC4000E IOB with Boundary Scan (some details not shown).

XC4000X Boundary Scan Logic is Identical.
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Figure 41: XC4000 Series Boundary Scan Logic

Instruction Set

The XC4000 Series boundary scan instruction set also
includes instructions to configure the device and read back
the configuration data. The instruction set is coded as
shown in Table 17.

Bit Sequence

The bit sequence within each 10B is: In, Out, 3-State. The
input-only MO and M2 mode pins contribute only the In bit
to the boundary scan I/O data register, while the out-
put-only M1 pin contributes all three bits.

The first two bits in the 1/0O data register are TDO.T and
TDO.O, which can be used for the capture of internal sig-
nals. The final bit is BSCANT.UPD, which can be used to
drive an internal net. These locations are primarily used by
Xilinx for internal testing.

From a cavity-up view of the chip (as shown in XDE or
Epic), starting in the upper right chip corner, the boundary
scan data-register bits are ordered as shown in Figure 42.
The device-specific pinout tables for the XC4000 Series
include the boundary scan locations for each I0B pin.

SHIFT/
CAPTURE

DATAOUT

CLOCK DATA
REGISTER

UPDATE EXTEST

X9016

BSDL (Boundary Scan Description Language) files for
XC4000 Series devices are available on the Xilinx FTP site.

Including Boundary Scan in a Schematic

If boundary scan is only to be used during configuration, no
special schematic elements need be included in the sche-
matic or HDL code. In this case, the special boundary scan
pins TDI, TMS, TCK and TDO can be used for user func-
tions after configuration.

To indicate that boundary scan remain enabled after config-
uration, place the BSCAN library symbol and connect the
TDI, TMS, TCK and TDO pad symbols to the appropriate
pins, as shown in Figure 43.

Even if the boundary scan symbol is used in a schematic,
the input pins TMS, TCK, and TDI can still be used as
inputs to be routed to internal logic. Care must be taken not
to force the chip into an undesired boundary scan state by
inadvertently applying boundary scan input patterns to
these pins. The simplest way to prevent this is to keep TMS
High, and then apply whatever signal is desired to TDI and
TCK.
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Configuration Modes

XC4000E devices have six configuration modes. XC4000X
devices have the same six modes, plus an additional con-
figuration mode. These modes are selected by a 3-bit input
code applied to the M2, M1, and MO inputs. There are three
self-loading Master modes, two Peripheral modes, and a
Serial Slave mode, which is used primarily for
daisy-chained devices. The coding for mode selection is
shown in Table 18.

Table 18: Configuration Modes

Mode M2 | M1 | MO | CCLK Data
Master Serial output Bit-Serial
Slave Serial 1 1 1 input Bit-Serial
Master 1 output | Byte-Wide,
Parallel Up increment

from 00000
Master 1 1 0 | output | Byte-Wide,
Parallel Down decrement
from 3FFFF
Peripheral 0 1 1 input Byte-Wide
Synchronous*
Peripheral 1 0 1 | output Byte-Wide
Asynchronous
Reserved 0 1 0 — —
Reserved 0 0 1 — —

* Can be considered byte-wide Slave Parallel

A detailed description of each configuration mode, with tim-
ing information, is included later in this data sheet. During
configuration, some of the 1/O pins are used temporarily for
the configuration process. All pins used during configura-
tion are shown in Table 22 on page 58.

Master Modes

The three Master modes use an internal oscillator to gener-
ate a Configuration Clock (CCLK) for driving potential slave
devices. They also generate address and timing for exter-
nal PROM(s) containing the configuration data.

Master Parallel (Up or Down) modes generate the CCLK
signal and PROM addresses and receive byte parallel data.
The data is internally serialized into the FPGA data-frame
format. The up and down selection generates starting
addresses at either zero or 3FFFF (3FFFFF when 22
address lines are used), for compatibility with different
microprocessor addressing conventions. The Master Serial
mode generates CCLK and receives the configuration data
in serial form from a Xilinx serial-configuration PROM.

CCLK speed is selectable as either 1 MHz (default) or 8
MHz. Configuration always starts at the default slow fre-
qguency, then can switch to the higher frequency during the
first frame. Frequency tolerance is -50% to +25%.

Additional Address lines in XC4000 devices

The XC4000X devices have additional address lines
(A18-A21) allowing the additional address space required
to daisy-chain several large devices.

The extra address lines are programmable in XC4000EX
devices. By default these address lines are not activated. In
the default mode, the devices are compatible with existing
XC4000 and XC4000E products. If desired, the extra
address lines can be used by specifying the address lines
option in bitgen as 22 (bitgen -g AddressLines:22). The
lines (A18-A21) are driven when a master device detects,
via the bitstream, that it should be using all 22 address
lines. Because these pins will initially be pulled high by
internal pull-ups, designers using Master Parallel Up mode
should use external pull down resistors on pins A18-A21. If
Master Parallel Down mode is used external resistors are
not necessary.

All 22 address lines are always active in Master Parallel
modes with XC4000XL devices. The additional address
lines behave identically to the lower order address lines. If
the Address Lines option in bitgen is set to 18, it will be
ignored by the XC4000XL device.

The additional address lines (A18-A21) are not available in
the PC84 package.

Peripheral Modes

The two Peripheral modes accept byte-wide data from a
bus. A RDY/BUSY status is available as a handshake sig-
nal. In Asynchronous Peripheral mode, the internal oscilla-
tor generates a CCLK burst signal that serializes the
byte-wide data. CCLK can also drive slave devices. In the
synchronous mode, an externally supplied clock input to
CCLK serializes the data.

Slave Serial Mode

In Slave Serial mode, the FPGA receives serial configura-
tion data on the rising edge of CCLK and, after loading its
configuration, passes additional data out, resynchronized
on the next falling edge of CCLK.

Multiple slave devices with identical configurations can be
wired with parallel DIN inputs. In this way, multiple devices
can be configured simultaneously.

Serial Daisy Chain

Multiple devices with different configurations can be con-
nected together in a “daisy chain,” and a single combined
bitstream used to configure the chain of slave devices.

To configure a daisy chain of devices, wire the CCLK pins
of all devices in parallel, as shown in Figure 51 on page
60. Connect the DOUT of each device to the DIN of the
next. The lead or master FPGA and following slaves each
passes resynchronized configuration data coming from a
single source. The header data, including the length count,
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Table 20: XC4000E Program Data

Device XC4003E | XC4005E | XC4006E | XC4008E | XC4010E | XC4013E | XC4020E | XC4025E
Max Logic Gates 3,000 5,000 6,000 8,000 10,000 13,000 20,000 25,000
CLBs 100 196 256 324 400 576 784 1,024
(Row x Col.) (10x10) | (14x14) | (16x16) | (18x18) | (20x20) | (24x24) | (28x28) | (32x32)
I0Bs 80 112 128 144 160 192 224 256
Flip-Flops 360 616 768 936 1,120 1,536 2,016 2,560
Bits per Frame 126 166 186 206 226 266 306 346
Frames 428 572 644 716 788 932 1,076 1,220
Program Data 53,936 94,960 119,792 147,504 178,096 247,920 329,264 422,128
PROM Size 53,984 95,008 119,840 147,552 178,144 247,968 329,312 422,176
(bits)

Notes: 1. Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits
Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1
Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits
PROM Size = Program Data + 40 (header) + 8
2. The user can add more “one” bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of
any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra “one”
bits, even for extra leading ones at the beginning of the header.

Table 21: XC4000EX/XL Program Data

Device XC4002XL | XC4005 |XC4010 |XC4013 |XC4020 [XC4028 |XC4036 | XC4044 | XC4052 | XC4062 | XC4085
Max Logic 2,000 5,000 10,000 | 13,000 | 20,000 | 28,000 | 36,000 44,000 52,000 62,000 85,000
Gates
CLBs 64 196 400 576 784 1,024 1,296 1,600 1,936 2,304 3,136
(Row x (8x8) |[(14x14)[(20x20)[(24x24)|(28x28)|(32x32)|(36x36)| (40x40) | (44x44) | (48x48) | (56 x 56)
Column)

I0Bs 64 112 160 192 224 256 288 320 352 384 448
Flip-Flops 256 616 1,120 1,536 2,016 2,560 3,168 3,840 4,576 5,376 7,168
Bits per 133 205 277 325 373 421 469 517 565 613 709
Frame

Frames 459 741 1,023 1,211 1,399 1,587 1,775 1,963 2,151 2,339 2,715
Program Data 61,052 | 151,910 | 283,376 | 393,580 | 521,832 | 668,124 | 832,480 | 1,014,876 | 1,215,320 | 1,433,804 | 1,924,940
PROM Size 61,104 | 151,960 | 283,424 | 393,632 | 521,880 | 668,172 | 832,528 | 1,014,924 | 1,215,368 | 1,433,852 | 1,924,992
(bits)

Notes: 1. Bits per frame = (13 x number of rows) + 9 for the top + 17 for the bottom + 8 + 1 start bit + 4 error check bits.
Frames = (47 x number of columns) + 27 for the left edge + 52 for the right edge + 4.
Program data = (bits per frame x number of frames) + 5 postamble bits.
PROM size = (program data + 40 header bits + 8 start bits) rounded up to the nearest byte.
2. The user can add more “one” bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end
of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra “one”
bits, even for extra leading “ones” at the beginning of the header.

Cyclic Redundancy Check (CRC) for figuration process with a potentially corrupted bitstream is
Configuration and Readback terminated. The FPGA pulls the INIT pin Low and goes into
a Wait state.

The Cyclic Redundancy Check is a method of error detec-
tion in data transmission applications. Generally, the trans-
mitting system performs a calculation on the serial
bitstream. The result of this calculation is tagged onto the
data stream as additional check bits. The receiving system
performs an identical calculation on the bitstream and com-
pares the result with the received checksum.

During Readback, 11 bits of the 16-bit checksum are added
to the end of the Readback data stream. The checksum is
computed using the CRC-16 CCITT polynomial, as shown
in Figure 45. The checksum consists of the 11 most signif-
icant bits of the 16-bit code. A change in the checksum indi-
cates a change in the Readback bitstream. A comparison
to a previous checksum is meaningful only if the readback
Each data frame of the configuration bitstream has four data is independent of the current device state. CLB out-

error bits at the end, as shown in Table 19. If a frame data puts should not be included (Read Capture Option not
error is detected during the loading of the FPGA, the con-
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used), and if RAM is present, the RAM content must be
unchanged.

Statistically, one error out of 2048 might go undetected.

Configuration Sequence

There are four major steps in the XC4000 Series power-up
configuration sequence.

» Configuration Memory Clear
 Initialization

» Configuration

e Start-Up

The full process is illustrated in Figure 46.

Configuration Memory Clear

When power is first applied or is reapplied to an FPGA, an
internal circuit forces initialization of the configuration logic.
When Vcc reaches an operational level, and the circuit
passes the write and read test of a sample pair of configu-
ration bits, a time delay is started. This time delay is nomi-
nally 16 ms, and up to 10% longer in the low-voltage
devices. The delay is four times as long when in Master
Modes (MO Low), to allow ample time for all slaves to reach
a stable Vcc. When all INIT pins are tied together, as rec-
ommended, the longest delay takes precedence. There-
fore, devices with different time delays can easily be mixed
and matched in a daisy chain.

This delay is applied only on power-up. It is not applied
when re-configuring an FPGA by pulsing the PROGRAM

pin

X2 X15
X16
D—{z [34]5]6]7]8] 9]10[11112]13114J:>

o 1]1[1]2]1 o 15[14[13[12[21]20[9 [ 8] 7] 6]5]

LAST DATA FRAME — @ |«—— CRC - CHECKSUM ——>

START BIT |©

X1789

Readback Data Stream

Figure 45: Circuit for Generating CRC-16
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Figure 46: Power-up Configuration Sequence
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Figure 47: Start-up Timing
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Table 22: Pin Functions During Configuration

CONFIGURATION MODE <M2:M1:M0>
SLAVE MASTER SYNCH. ASYNCH. MASTER MASTER USER
SERIAL SERIAL PERIPHERAL | PERIPHERAL |PARALLEL DOWN | PARALLEL UP OPERATION
<1:1:1> <0:0:0> <0:1:1> <1:0:1> <1:1:0> <1:0:0>
M2(HIGH) (1) M2(LOW) (1) M2(LOW) (1) M2(HIGH) (1) M2(HIGH) (1) M2(HIGH) (1) 0)
M1(HIGH) (1) M1(LOW) (1) M1(HIGH) (1) M1(LOW) (1) M1(HIGH) (1) M1(LOW) (1) (0)
MO(HIGH) (1) MO(LOW) (1) MO(HIGH) (1) MO(HIGH) (1) MO(LOW) (I) MO(LOW) (1) ()
HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) 110
LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) 110
INIT INIT INIT INIT INIT INIT 110
DONE DONE DONE DONE DONE DONE DONE
PROGRAM (I) | PROGRAM () | PROGRAM () | PROGRAM (I) PROGRAM (1) PROGRAM (I) PROGRAM
CCLK (l) CCLK (0) CCLK (1) CCLK (0) CCLK (0) CCLK (0) CCLK (l)
RDY/BUSY (O) | RDY/BUSY (O) RCLK (O) RCLK (0O) 110
RS (I) 110
CS0 (1) 110
DATA 7 (1) DATA 7 (1) DATA 7 (1) DATA 7 (1) 110
DATA 6 (1) DATA 6 (1) DATA 6 (1) DATA 6 (1) 110
DATA 5 (1) DATA 5 (1) DATA 5 (1) DATA 5 (1) 110
DATA 4 (1) DATA 4 (1) DATA 4 (1) DATA 4 (1) 1/0
DATA 3 (1) DATA 3 (1) DATA 3 (1) DATA 3 (1) 1/O
DATA 2 (1) DATA 2 (1) DATA 2 (1) DATA 2 (1) 11O
DATA 1 (1) DATA 1 (1) DATA 1 (1) DATA 1 (1) 110
DIN (1) DIN (1) DATA 0 (1) DATA 0 (1) DATA 0 (1) DATA 0 (1) 110
DOUT DOUT DOUT DOUT DOUT DOUT SGCK4-GCK6-1/0
TDI TDI TDI TDI TDI TDI TDI-I/O
TCK TCK TCK TCK TCK TCK TCK-/O
T™MS T™MS T™MS T™MS T™MS T™MS TMS-I/O
TDO TDO TDO TDO TDO TDO TDO-(0)
WS (1) A0 A0 110
Al Al PGCK4-GCK7-1/0
Ccs1 A2 A2 110
A3 A3 110
A4 A4 110
A5 A5 110
A6 A6 110
A7 A7 110
A8 A8 110
A9 A9 1/0
A10 A10 11O
All All 11O
Al12 Al12 110
Al13 Al13 110
Al4 Al4 110
A15 Al15 SGCK1-GCK8-1/0
Al16 Al6 PGCK1-GCK1-1/0
Al7 Al7 110
A18* A18* 110
A19* A19* 110
A20* A20* 11O
A21* A21* 110
ALL OTHERS
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éﬂtﬁ&é ><K Address for Byte n Address for Byte n + 1
\v et @ TrAC
DO0-D7
XRXKXXKXKRIN o X
(@D Tpre— «— (@ Trep
RCLK /
(output) / ‘e ]

|

CCLK

CCLK
(output)
DOUT
(output) X be \X o7
Byten-1 X6078
Description Symbol Min Max Units

Delay to Address valid 1 TrAC 0 200 ns

RCLK Data setup time 2 Tpre 60 ns

Data hold time 3 TreD 0 ns

Notes: 1. At power-up, Vcc must rise from 2.0 V to Vcec min in less than 25 ms, otherwise delay configuration by pulling PROGRAM
Low until Vcc is valid.

2. The first Data byte is loaded and CCLK starts at the end of the first RCLK active cycle (rising edge).
This timing diagram shows that the EPROM requirements are extremely relaxed. EPROM access time can be longer than
500 ns. EPROM data output has no hold-time requirements.

Figure 55: Master Parallel Mode Programming Switching Characteristics
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Product Availability

Table 24, Table 25, and Table 26 show the planned packages and speed grades for XC4000-Series devices. Call your local
sales office for the latest availability information, or see the Xilinx website at http://www.xilinx.com for the latest revision of
the specifications.

Table 24: Component Availability Chart for XC4000XL FPGAs

PINS 84 | 100 | 100 | 144 | 144 | 160 | 160 | 176 | 176 | 208 | 208 | 240 | 240 | 256 | 299 | 304 | 352 | 411 | 432 | 475 | 559 | 560
SO |l | s | |20 | O S0 | | 90 | O o | o PN T ) £ [} - £ i} £ £ o
I I I I I I
< 8 8 g [T [l |||l |l o [N [N || |O
o S [ | o~ | K|[O|lO|S S |w ||l |d|®m |~ | |O
CODE Sdla|lglg |2 [ |d |+ |N [N |N|N|[N[N[O| ™| [ || 0O |0
a ol o|Oo|lE|OQ|O|O|E|OQ|CC|O|IC|O[OICOIO|O O[O0 |O0|O
o > = I T o = I T o T o m o T m o m o o m
-3 cI | cr| cl
XC4002XL [ —ferfer et
-1 cl | ci Cl
0C g ¢ C c
3 clI | ci Cl cl cl cl
XC4005XL 2 cl [¢ cl | ci cl cl
-1 cit|ci|ci|cl Cl cl
ooc | C [& c c [& [
3 ci | ci cl cl | ci cl cl
2 c1 | ci cl cl | ci cl Cl
XC4010XL -1 ci | ci cl ci | ci cl cl
ooc | C [¢ c ¢ [¢ c [¢
-3 cl Cl cl cl cl | ci
2 cl cl cl cl ci | ci
XC4013XL | 1 cl cl cl cl ci | ci
09C c [ ¢ c ¢ ¢
08C [ [ c c c ¢
3 cl cl cl cl ci | ci
2 cl cl cl cl ci | ci
XC4020XL -1 cl cl cl cl ci | ci
09C c c [¢ c [ [
3 cl cl cl ct|ci|ci]ci
2 [ cl [ cit|ci|ci]cl
XCA4028XL -1 cl cl cl ct|ci|ci]cl
09C c o] [ [ c c c
3 [ cl cl ci|cit|ci]ci
2 cl cl c cli|ci|cri]ecl
XC4036XL | 1 cl cl cl ci|ci|ci]ci
09C [ c c c c c ¢
08C [ c [ c c [ ¢
3 cl cl cl ci|cit|ci]ci
2 cl cl cl ci|ci|ci]eci
XC4044XL El cl cl cl cl|ci|cri|ecl
09C c c c c c c [
3 cl cl cl | ci cl
2 cl cl cl | ci cl
XCA4052XL -1 [ cl cl | ci cl
09C c c [ c c
-3 cl cl c1 | ci cl
2 [ cl ci | ci cl
XC4062XL | -1 [ cl ci | ci cl
09C [ c [ c c
08C c c c ¢ c
3 cl cl | ci
2 cl cl | ci
XC4085XL —; o SRR
-09C c [¢ c

1/29/99
C = Commercial T;=0°to +85°C
I= Industrial T;=-40°C to +100°C
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S XILINX®

Product Obsolete or Under Obsolescence
XC4000E and XC4000X Series Field Programmable Gate Arrays

User I/O Per Package

Table 27, Table 28, and Table 29 show the number of user 1/0Os available in each package for XC4000-Series devices. Call
your local sales office for the latest availability information, or see the Xilinx website at http://www.xilinx.com for the latest
revision of the specifications.

Table 27: User I1/O Chart for XC4000XL FPGAs

Device

Max
110

Maximum User Accessible I/0O by E’ackage ?ype

TQ144

HT144

HQ160

TQ176

HT176

HQ208

HQ240

PQ240

BG256

PG299

HQ304

BG352

PG411

BG432

PG475

PG559

BG560

XC4002XL

64

2 [PO100

2 [VQ100

XC4005XL

112

=)
2
~
~

~
N

[
[
N

XC4010XL

160

XC4013XL

192

113

145

XC4020XL

224

113

145

192

205

XC4028XL

256

129

160

193

205

256

256

256

XC4036XL

288

129

160

193

256

288

288

288

XC4044XL

320

129

160

193

256

289

320

320

XC4052XL

352

193

256

352

352

352

XC4062XL

384

193

256

352

384

384

XC4085XL

448

352

448

448

1/29/99

Table 28: User I/0O Chart for XC4000E FPGAs

Device

Max

Maximum User Accessible /0 by

ackage ?ype

110

s |PQ100

s V@100

PG120

TQ144

PG156

PG191
|Ho208

PG223

BG225

|Ho240

PQ240

PG299

IHQ304

XC4003E

80

@
o

XC4005E

112

XC4006E

128

XC4008E

144

XC4010E

160

160 160

160

XC4013E

192

160

192

192

192

192

XC4020E

224

160

192

193

XC4025E

256

192

193

256

1/29/99

Table 29: User 1/O Chart for XC4000EX FPGAs

Device

Max

Maximum User Accessible I/0O by I-Dackage ?ype

I/0

HQ208

HQ240

PG299

HQ304

BG352

PG411

BG432

XC4028EX

256

160

193

256

256

256

XC4036EX

288

193

256

288

288

288

1/29/99
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