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Product Obsolete or Under Obsolescence

XC4000E and XC4000X Series Field Programmable Gate Arrays XX"JNX@
Table 1: XC4000E and XC4000X Series Field Programmable Gate Arrays
Max Logic |Max. RAM Typical Number
Logic Gates Bits Gate Range CLB Total of Max.
Device Cells (No RAM) |(No Logic) |(Logic and RAM)* Matrix CLBs |Flip-Flops | User I/O

XC4002XL 152 1,600 2,048 1,000 - 3,000 8x8 64 256 64
XC4003E 238 3,000 3,200 2,000 - 5,000 10x 10 100 360 80
XC4005E/XL 466 5,000 6,272 3,000 - 9,000 14x 14 196 616 112
XC4006E 608 6,000 8,192 4,000 - 12,000 16 x 16 256 768 128
XC4008E 770 8,000 10,368 6,000 - 15,000 18 x 18 324 936 144
XC4010E/XL 950 10,000 12,800 7,000 - 20,000 20 x 20 400 1,120 160
XC4013E/XL 1368 13,000 18,432 10,000 - 30,000 24 x 24 576 1,536 192
XC4020E/XL 1862 20,000 25,088 13,000 - 40,000 28 x 28 784 2,016 224
XC4025E 2432 25,000 32,768 15,000 - 45,000 32x32 1,024 2,560 256
XC4028EX/XL 2432 28,000 32,768 18,000 - 50,000 32x32 1,024 2,560 256
XC4036EX/XL 3078 36,000 41,472 22,000 - 65,000 36 x 36 1,296 3,168 288
XC4044XL 3800 44,000 51,200 27,000 - 80,000 40 x 40 1,600 3,840 320
XC4052XL 4598 52,000 61,952 | 33,000 - 100,000 | 44x44 1,936 4,576 352
XC4062XL 5472 62,000 73,728 | 40,000 - 130,000 | 48x48 2,304 5,376 384
XC4085XL 7448 85,000 100,352 | 55,000 - 180,000 | 56 x 56 3,136 7,168 448

* Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

Note: All functionality in low-voltage families is the same as
in the corresponding 5-Volt family, except where numerical
references are made to timing or power.

Description

XC4000 Series devices are implemented with a regular,
flexible, programmable architecture of Configurable Logic
Blocks (CLBs), interconnected by a powerful hierarchy of
versatile routing resources, and surrounded by a perimeter
of programmable Input/Output Blocks (IOBs). They have
generous routing resources to accommodate the most
complex interconnect patterns.

The devices are customized by loading configuration data
into internal memory cells. The FPGA can either actively
read its configuration data from an external serial or
byte-parallel PROM (master modes), or the configuration
data can be written into the FPGA from an external device
(slave and peripheral modes).

XC4000 Series FPGAs are supported by powerful and
sophisticated software, covering every aspect of design
from schematic or behavioral entry, floor planning, simula-
tion, automatic block placement and routing of intercon-
nects, to the creation, downloading, and readback of the
configuration bit stream.

Because Xilinx FPGAs can be reprogrammed an unlimited
number of times, they can be used in innovative designs

where hardware is changed dynamically, or where hard-
ware must be adapted to different user applications.
FPGAs are ideal for shortening design and development
cycles, and also offer a cost-effective solution for produc-
tion rates well beyond 5,000 systems per month.

Taking Advantage of Re-configuration

FPGA devices can be re-configured to change logic func-
tion while resident in the system. This capability gives the
system designer a new degree of freedom not available
with any other type of logic.

Hardware can be changed as easily as software. Design
updates or modifications are easy, and can be made to
products already in the field. An FPGA can even be re-con-
figured dynamically to perform different functions at differ-
ent times.

Re-configurable logic can be used to implement system
self-diagnostics, create systems capable of being re-con-
figured for different environments or operations, or imple-
ment multi-purpose hardware for a given application. As an
added benefit, using re-configurable FPGA devices simpli-
fies hardware design and debugging and shortens product
time-to-market.
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tions of the CLB, with the exception of the redefinition of the
control signals. In 16x2 and 16x1 modes, the H’' function
generator can be used to implement Boolean functions of
F’, G, and D1, and the D flip-flops can latch the F’, G’, H’, or
DO signals.

Single-Port Edge-Triggered Mode

Edge-triggered (synchronous) RAM simplifies timing
requirements. XC4000 Series edge-triggered RAM timing
operates like writing to a data register. Data and address
are presented. The register is enabled for writing by a logic
High on the write enable input, WE. Then a rising or falling
clock edge loads the data into the register, as shown in
Figure 3.

nals. An internal write pulse is generated that performs the
write. See Figure 4 and Figure 5 for block diagrams of a
CLB configured as 16x2 and 32x1 edge-triggered, sin-
gle-port RAM.

The relationships between CLB pins and RAM inputs and
outputs for single-port, edge-triggered mode are shown in
Table 5.

The Write Clock input (WCLK) can be configured as active
on either the rising edge (default) or the falling edge. It uses
the same CLB pin (K) used to clock the CLB flip-flops, but it
can be independently inverted. Consequently, the RAM
output can optionally be registered within the same CLB
either by the same clock edge as the RAM, or by the oppo-
site edge of this clock. The sense of WCLK applies to both

function generators in the CLB when both are configured
WCLK (K) as RAM.
The WE pin is active-High and is not invertible within the
CLB.
WE
J Note: The pulse following the active edge of WCLK (Ty\yps
Toss Tons in Figure 3) must be less than one millisecond wide. For
| most applications, this requirement is not overly restrictive;
DATAIN * however, it must not be forgotten. Stopping WCLK at this
point in the write cycle could result in excessive current and
Tass Tans even damage to the larger devices if many CLBs are con-
ADDRESS figured as edge-triggered RAM.
Table 5: Single-Port Edge-Triggered RAM Signals
-
To Toos 2 RAM Signal CLB Pin Function
D DO or D1 (16x2, Data In
DATA OUT oLD NEW 16x1), DO (32x1)
ois A[3:0] F1-F4 or G1-G4 Address
Figure 3: Edge-Triggered RAM Write Timing Al4] D1 (32x1) Address
WE WE Write Enable
Complex timing relationships between address, data, and WCLK K Clock
write enable signals are not required, and the external write SPO F or G Single Port Out
enable pulse becomes a simple clock enable. The active (Data Out) (Data Out)
edge of WCLK latches the address, input data, and WE sig-
May 14, 1999 (Version 1.6) 6-13
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Additional Input Latch for Fast Capture (XC4000X only)

The XC4000X 10B has an additional optional latch on the
input. This latch, as shown in Figure 16, is clocked by the
output clock — the clock used for the output flip-flop —
rather than the input clock. Therefore, two different clocks
can be used to clock the two input storage elements. This
additional latch allows the very fast capture of input data,
which is then synchronized to the internal clock by the IOB
flip-flop or latch.

To use this Fast Capture technique, drive the output clock
pin (the Fast Capture latching signal) from the output of one
of the Global Early buffers supplied in the XC4000X. The
second storage element should be clocked by a Global
Low-Skew buffer, to synchronize the incoming data to the
internal logic. (See Figure 17.) These special buffers are
described in “Global Nets and Buffers (XC4000X only)” on
page 37.

The Fast Capture latch (FCL) is designed primarily for use
with a Global Early buffer. For Fast Capture, a single clock
signal is routed through both a Global Early buffer and a
Global Low-Skew buffer. (The two buffers share an input
pad.) The Fast Capture latch is clocked by the Global Early
buffer, and the standard IOB flip-flop or latch is clocked by
the Global Low-Skew buffer. This mode is the safest way to
use the Fast Capture latch, because the clock buffers on
both storage elements are driven by the same pad. There is
no external skew between clock pads to create potential
problems.

To place the Fast Capture latch in a design, use one of the
special library symbols, ILFFX or ILFLX. ILFFX s a trans-
parent-Low Fast Capture latch followed by an active-High
input flip-flop. ILFLX is a transparent-Low Fast Capture
latch followed by a transparent-High input latch. Any of the
clock inputs can be inverted before driving the library ele-
ment, and the inverter is absorbed into the 10B. If a single
BUFG output is used to drive both clock inputs, the soft-

the desired delay based on the discussion in the previous
subsection.

IOB Output Signals

Output signals can be optionally inverted within the 10B,
and can pass directly to the pad or be stored in an
edge-triggered flip-flop. The functionality of this flip-flop is
shown in Table 11.

An active-High 3-state signal can be used to place the out-
put buffer in a high-impedance state, implementing 3-state
outputs or bidirectional I/O. Under configuration control, the
output (OUT) and output 3-state (T) signals can be
inverted. The polarity of these signals is independently con-
figured for each IOB.

The 4-mA maximum output current specification of many
FPGAs often forces the user to add external buffers, which
are especially cumbersome on bidirectional 1/0O lines. The
XC4000E and XC4000EX/XL devices solve many of these
problems by providing a guaranteed output sink current of
12 mA. Two adjacent outputs can be interconnected exter-
nally to sink up to 24 mA. The XC4000E and XC4000EX/XL
FPGAs can thus directly drive buses on a printed circuit
board.

By default, the output pull-up structure is configured as a
TTL-like totem-pole. The High driver is an n-channel pull-up
transistor, pulling to a voltage one transistor threshold
below Vcc. Alternatively, the outputs can be globally config-
ured as CMOS drivers, with p-channel pull-up transistors
pulling to VVcc. This option, applied using the bitstream gen-
eration software, applies to all outputs on the device. It is
not individually programmable. In the XC4000XL, all out-
puts are pulled to the positive supply rail.

Table 11: Output Flip-Flop Functionality (active rising
edge is shown)

i Clock
ware automatically runs the clock through both a Global
Low-Skew buffer and a Global Early buffer, and clocks the Mode Clock Enable T* D Q
Fast Capture latch appropriately. POVGveSrI-?UF) X X 0 X SR
or

Figure 16 on page 21 also shows a two-tap delay on the X 0 o X Q
input. By default, if the Fast Capture latch is used, the Xilinx ' — " "
software assumes a Global Early buffer is driving the clock, Flip-Flop — 1 0 D D
and selects MEDDELAY to ensure a zero hold time. Select X X 1 X A

0 X 0* X Q

ILFFX Legend:
X D_or_l’t care
[lPAD> to internal _ Rising edge
[1PAD> P N |gglincema SR Set or Reset value. Reset is default.
0* Input is Low or unconnected (default value)
> 9 GF 1* Input is High or unconnected (default value)
BUFGE cE ( z 3-state
[1PAD> €
BUFGLS
X9013

Figure 17: Examples Using XC4000X FCL
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Figure 25: High-Level Routing Diagram of XC4000 Series CLB (shaded arrows indicate XC4000X only)

Table 14: Routing per CLB in XC4000 Series Devices

XC4000E XC4000X
Vertical [Horizontal Vertical Horizontal

Singles 8 8 8 8
Doubles 4 4 4 4
Quads 0 0 12 12
Longlines 6 6 10 6
Direct 0 0 2 2
Connects

Globals 4 0 8 0
Carry Logic 2 0 1 0
Total 24 18 45 32

Programmable Switch Matrices

The horizontal and vertical single- and double-length lines
intersect at a box called a programmable switch matrix
(PSM). Each switch matrix consists of programmable pass
transistors used to establish connections between the lines
(see Figure 26).

For example, a single-length signal entering on the right
side of the switch matrix can be routed to a single-length
line on the top, left, or bottom sides, or any combination
thereof, if multiple branches are required. Similarly, a dou-
ble-length signal can be routed to a double-length line on
any or all of the other three edges of the programmable
switch matrix.

1 ‘
Double : b

T T 3

1

Singles ] 1 {

T

1 ; Six Pass Transistors

: 5 Per Switch Matrix
Double : : Interconnect Point

| R N N [ Y d=1

X6600
Figure 26: Programmable Switch Matrix (PSM)

Single-Length Lines

Single-length lines provide the greatest interconnect flexi-
bility and offer fast routing between adjacent blocks. There
are eight vertical and eight horizontal single-length lines
associated with each CLB. These lines connect the switch-
ing matrices that are located in every row and a column of
CLBs.

Single-length lines are connected by way of the program-
mable switch matrices, as shown in Figure 28. Routing
connectivity is shown in Figure 27.

Single-length lines incur a delay whenever they go through
a switching matrix. Therefore, they are not suitable for rout-
ing signals for long distances. They are normally used to
conduct signals within a localized area and to provide the
branching for nets with fanout greater than one.

May 14, 1999 (Version 1.6)
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Figure 35: XC4000X Global Net Distribution
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Global Nets and Buffers (XC4000X only)

Eight vertical longlines in each CLB column are driven by
special global buffers. These longlines are in addition to the
vertical longlines used for standard interconnect. The glo-
bal lines are broken in the center of the array, to allow faster
distribution and to minimize skew across the whole array.
Each half-column global line has its own buffered multi-
plexer, as shown in Figure 35. The top and bottom global
lines cannot be connected across the center of the device,
as this connection might introduce unacceptable skew. The
top and bottom halves of the global lines must be sepa-
rately driven — although they can be driven by the same
global buffer.

The eight global lines in each CLB column can be driven by
either of two types of global buffers. They can also be
driven by internal logic, because they can be accessed by
single, double, and quad lines at the top, bottom, half, and
guarter points. Consequently, the number of different
clocks that can be used simultaneously in an XC4000X
device is very large.

There are four global lines feeding the 10Bs at the left edge
of the device. IOBs along the right edge have eight global
lines. There is a single global line along the top and bottom
edges with access to the IOBs. All IOB global lines are bro-
ken at the center. They cannot be connected across the
center of the device, as this connection might introduce
unacceptable skew.

IOB global lines can be driven from two types of global buff-
ers, or from local interconnect. Alternatively, top and bottom
IOBs can be clocked from the global lines in the adjacent
CLB column.

Two different types of clock buffers are available in the
XC4000X:

* Global Low-Skew Buffers (BUFGLS)
» Global Early Buffers (BUFGE)

Global Low-Skew Buffers are the standard clock buffers.
They should be used for most internal clocking, whenever a
large portion of the device must be driven.

Global Early Buffers are designed to provide a faster clock
access, but CLB access is limited to one-fourth of the
device. They also facilitate a faster 1/O interface.

Figure 35 is a conceptual diagram of the global net struc-
ture in the XC4000X.

Global Early buffers and Global Low-Skew buffers share a
single pad. Therefore, the same IPAD symbol can drive one
buffer of each type, in parallel. This configuration is particu-
larly useful when using the Fast Capture latches, as
described in “IOB Input Signals” on page 20. Paired Global

Early and Global Low-Skew buffers share a common input;
they cannot be driven by two different signals.

Choosing an XC4000X Clock Buffer

The clocking structure of the XC4000X provides a large
variety of features. However, it can be simple to use, with-
out understanding all the details. The software automati-
cally handles clocks, along with all other routing, when the
appropriate clock buffer is placed in the design. In fact, if a
buffer symbol called BUFG is placed, rather than a specific
type of buffer, the software even chooses the buffer most
appropriate for the design. The detailed information in this
section is provided for those users who want a finer level of
control over their designs.

If fine control is desired, use the following summary and
Table 15 on page 35 to choose an appropriate clock buffer.

* The simplest thing to do is to use a Global Low-Skew
buffer.

¢ If a faster clock path is needed, try a BUFG. The
software will first try to use a Global Low-Skew Buffer. If
timing requirements are not met, a faster buffer will
automatically be used.

« If a single quadrant of the chip is sufficient for the
clocked logic, and the timing requires a faster clock than
the Global Low-Skew buffer, use a Global Early buffer.

Global Low-Skew Buffers

Each corner of the XC4000X device has two Global
Low-Skew buffers. Any of the eight Global Low-Skew buff-
ers can drive any of the eight vertical Global lines in a col-
umn of CLBs. In addition, any of the buffers can drive any of
the four vertical lines accessing the IOBs on the left edge of
the device, and any of the eight vertical lines accessing the
IOBs on the right edge of the device. (See Figure 36 on
page 38.)

IOBs at the top and bottom edges of the device are
accessed through the vertical Global lines in the CLB array,
as in the XC4000E. Any Global Low-Skew buffer can,
therefore, access every IOB and CLB in the device.

The Global Low-Skew buffers can be driven by either
semi-dedicated pads or internal logic.

To use a Global Low-Skew buffer, instantiate a BUFGLS
element in a schematic or in HDL code. If desired, attach a
LOC attribute or property to direct placement to the desig-
nated location. For example, attach a LOC=T attribute or
property to direct that a BUFGLS be placed in one of the
two Global Low-Skew buffers on the top edge of the device,
or a LOC=TR to indicate the Global Low-Skew buffer on the
top edge of the device, on the right.

May 14, 1999 (Version 1.6)
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Figure 41 on page 44 is a diagram of the XC4000 Series
boundary scan logic. It includes three bits of Data Register
per IOB, the IEEE 1149.1 Test Access Port controller, and
the Instruction Register with decodes.

XC4000 Series devices can also be configured through the
boundary scan logic. See “Readback” on page 55.

Data Registers

The primary data register is the boundary scan register. For
each 10B pin in the FPGA, bonded or not, it includes three
bits for In, Out and 3-State Control. Non-IOB pins have
appropriate partial bit population for In or Out only. PRO-
GRAM, CCLK and DONE are not included in the boundary
scan register. Each EXTEST CAPTURE-DR state captures
all In, Out, and 3-state pins.

The data register also includes the following non-pin bits:
TDO.T, and TDO.O, which are always bits 0 and 1 of the

3-State TS

Boundary
Scan
TS-update |

OUTPUT

INVERT

OUTPUT

TS INV
TSIOE 3
7i
TS - capture Vee
L

data register, respectively, and BSCANT.UPD, which is
always the last bit of the data register. These three bound-
ary scan bits are special-purpose Xilinx test signals.

The other standard data register is the single flip-flop
BYPASS register. It synchronizes data being passed
through the FPGA to the next downstream boundary scan
device.

The FPGA provides two additional data registers that can
be specified using the BSCAN macro. The FPGA provides
two user pins (BSCAN.SEL1 and BSCAN.SEL2) which are
the decodes of two user instructions. For these instructions,
two corresponding pins (BSCAN.TDO1 and
BSCAN.TDO?2) allow user scan data to be shifted out on
TDO. The data register clock (BSCAN.DRCK) is available
for control of test logic which the user may wish to imple-
ment with CLBs. The NAND of TCK and RUN-TEST-IDLE
is also provided (BSCAN.IDLE).
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Figure 40: Block Diagram of XC4000E IOB with Boundary Scan (some details not shown).

XC4000X Boundary Scan Logic is Identical.
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Configuration Modes

XC4000E devices have six configuration modes. XC4000X
devices have the same six modes, plus an additional con-
figuration mode. These modes are selected by a 3-bit input
code applied to the M2, M1, and MO inputs. There are three
self-loading Master modes, two Peripheral modes, and a
Serial Slave mode, which is used primarily for
daisy-chained devices. The coding for mode selection is
shown in Table 18.

Table 18: Configuration Modes

Mode M2 | M1 | MO | CCLK Data
Master Serial output Bit-Serial
Slave Serial 1 1 1 input Bit-Serial
Master 1 output | Byte-Wide,
Parallel Up increment

from 00000
Master 1 1 0 | output | Byte-Wide,
Parallel Down decrement
from 3FFFF
Peripheral 0 1 1 input Byte-Wide
Synchronous*
Peripheral 1 0 1 | output Byte-Wide
Asynchronous
Reserved 0 1 0 — —
Reserved 0 0 1 — —

* Can be considered byte-wide Slave Parallel

A detailed description of each configuration mode, with tim-
ing information, is included later in this data sheet. During
configuration, some of the 1/O pins are used temporarily for
the configuration process. All pins used during configura-
tion are shown in Table 22 on page 58.

Master Modes

The three Master modes use an internal oscillator to gener-
ate a Configuration Clock (CCLK) for driving potential slave
devices. They also generate address and timing for exter-
nal PROM(s) containing the configuration data.

Master Parallel (Up or Down) modes generate the CCLK
signal and PROM addresses and receive byte parallel data.
The data is internally serialized into the FPGA data-frame
format. The up and down selection generates starting
addresses at either zero or 3FFFF (3FFFFF when 22
address lines are used), for compatibility with different
microprocessor addressing conventions. The Master Serial
mode generates CCLK and receives the configuration data
in serial form from a Xilinx serial-configuration PROM.

CCLK speed is selectable as either 1 MHz (default) or 8
MHz. Configuration always starts at the default slow fre-
qguency, then can switch to the higher frequency during the
first frame. Frequency tolerance is -50% to +25%.

Additional Address lines in XC4000 devices

The XC4000X devices have additional address lines
(A18-A21) allowing the additional address space required
to daisy-chain several large devices.

The extra address lines are programmable in XC4000EX
devices. By default these address lines are not activated. In
the default mode, the devices are compatible with existing
XC4000 and XC4000E products. If desired, the extra
address lines can be used by specifying the address lines
option in bitgen as 22 (bitgen -g AddressLines:22). The
lines (A18-A21) are driven when a master device detects,
via the bitstream, that it should be using all 22 address
lines. Because these pins will initially be pulled high by
internal pull-ups, designers using Master Parallel Up mode
should use external pull down resistors on pins A18-A21. If
Master Parallel Down mode is used external resistors are
not necessary.

All 22 address lines are always active in Master Parallel
modes with XC4000XL devices. The additional address
lines behave identically to the lower order address lines. If
the Address Lines option in bitgen is set to 18, it will be
ignored by the XC4000XL device.

The additional address lines (A18-A21) are not available in
the PC84 package.

Peripheral Modes

The two Peripheral modes accept byte-wide data from a
bus. A RDY/BUSY status is available as a handshake sig-
nal. In Asynchronous Peripheral mode, the internal oscilla-
tor generates a CCLK burst signal that serializes the
byte-wide data. CCLK can also drive slave devices. In the
synchronous mode, an externally supplied clock input to
CCLK serializes the data.

Slave Serial Mode

In Slave Serial mode, the FPGA receives serial configura-
tion data on the rising edge of CCLK and, after loading its
configuration, passes additional data out, resynchronized
on the next falling edge of CCLK.

Multiple slave devices with identical configurations can be
wired with parallel DIN inputs. In this way, multiple devices
can be configured simultaneously.

Serial Daisy Chain

Multiple devices with different configurations can be con-
nected together in a “daisy chain,” and a single combined
bitstream used to configure the chain of slave devices.

To configure a daisy chain of devices, wire the CCLK pins
of all devices in parallel, as shown in Figure 51 on page
60. Connect the DOUT of each device to the DIN of the
next. The lead or master FPGA and following slaves each
passes resynchronized configuration data coming from a
single source. The header data, including the length count,
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Setting CCLK Frequency

For Master modes, CCLK can be generated in either of two
frequencies. In the default slow mode, the frequency
ranges from 0.5 MHz to 1.25 MHz for XC4000E and
XC4000EX devices and from 0.6 MHz to 1.8 MHz for
XC4000XL devices. In fast CCLK mode, the frequency

ranges from 4 MHz to 10 MHz for XC4000E/EX devices and

from 5 MHz to 15 MHz for XC4000XL devices. The fre-
guency is selected by an option when running the bitstream
generation software. If an XC4000 Series Master is driving
an XC3000- or XC2000-family slave, slow CCLK mode
must be used. In addition, an XC4000XL device driving a
XC4000E or XC4000EX should use slow mode. Slow mode
is the default.

Table 19: XC4000 Series Data Stream Formats

Data Stream Format

The data stream (“bitstream”) format is identical for all con-
figuration modes.

The data stream formats are shown in Table 19. Bit-serial
data is read from left to right, and byte-parallel data is effec-
tively assembled from this serial bitstream, with the first bit
in each byte assigned to DO.

The configuration data stream begins with a string of eight
ones, a preamble code, followed by a 24-bit length count
and a separator field of ones. This header is followed by the
actual configuration data in frames. The length and number
of frames depends on the device type (see Table 20 and
Table 21). Each frame begins with a start field and ends
with an error check. A postamble code is required to signal
the end of data for a single device. In all cases, additional
start-up bytes of data are required to provide four clocks for
the startup sequence at the end of configuration. Long
daisy chains require additional startup bytes to shift the last
data through the chain. All startup bytes are don't-cares;
these bytes are not included in bitstreams created by the
Xilinx software.

A selection of CRC or non-CRC error checking is allowed
by the bitstream generation software. The non-CRC error
checking tests for a designated end-of-frame field for each
frame. For CRC error checking, the software calculates a
running CRC and inserts a unique four-bit partial check at
the end of each frame. The 11-bit CRC check of the last
frame of an FPGA includes the last seven data bits.

Detection of an error results in the suspension of data load-
ing and the pulling down of the INIT pin. In Master modes,
CCLK and address signals continue to operate externally.
The user must detect INIT and initialize a new configuration
by pulsing the PROGRAM pin Low or cycling Vcc.

All Other

Data Type Modes (DO...)
Fill Byte 11111111b
Preamble Code 0010b
Length Count COUNT(23:0)
Fill Bits 1111b
Start Field Ob
Data Frame DATA(Nn-1:0)
CRC or Constant xxxx (CRC)
Field Check or 0110b
Extend Write Cycle —
Postamble 01111111b
Start-Up Bytes xxh
Legend:
Not shaded Once per bitstream
Light Once per data frame
Dark Once per device
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used), and if RAM is present, the RAM content must be
unchanged.

Statistically, one error out of 2048 might go undetected.

Configuration Sequence

There are four major steps in the XC4000 Series power-up
configuration sequence.

» Configuration Memory Clear
 Initialization

» Configuration

e Start-Up

The full process is illustrated in Figure 46.

Configuration Memory Clear

When power is first applied or is reapplied to an FPGA, an
internal circuit forces initialization of the configuration logic.
When Vcc reaches an operational level, and the circuit
passes the write and read test of a sample pair of configu-
ration bits, a time delay is started. This time delay is nomi-
nally 16 ms, and up to 10% longer in the low-voltage
devices. The delay is four times as long when in Master
Modes (MO Low), to allow ample time for all slaves to reach
a stable Vcc. When all INIT pins are tied together, as rec-
ommended, the longest delay takes precedence. There-
fore, devices with different time delays can easily be mixed
and matched in a daisy chain.

This delay is applied only on power-up. It is not applied
when re-configuring an FPGA by pulsing the PROGRAM

pin

X2 X15
X16
D—{z [34]5]6]7]8] 9]10[11112]13114J:>

o 1]1[1]2]1 o 15[14[13[12[21]20[9 [ 8] 7] 6]5]

LAST DATA FRAME — @ |«—— CRC - CHECKSUM ——>

START BIT |©

X1789

Readback Data Stream

Figure 45: Circuit for Generating CRC-16

Boundary Scan
Instructions

Available:
Yes
Test MO Generate [
One Time-Out Pulse PROGRAM
of 16 or 64 ms =Llow
Yes
Keep Clearing
Configuration Memory
EXTEST*
SAMPLE/PRELOAD Completely Clear
BYPASS Configuration Memory ) ~1.3 us per Frame
CONFIGURE* Once More

(*if PROGRAM = High)

INIT
High? if
Master

Master Waits 50 to 250 ps
' Before Sampling Mode Lines

Sample
Mode Lines

Master CCLK

Goes Active

Load One
Configuration
Data Frame

Pull INIT Low
and Stop

SAMPLE/PRELOAD
BYPASS

Config-
uration

memory

Configuration
Data to DOUT

CCLK
Count Equals
Length
Count

Start-Up
Sequence

=H

L, HDC Output

LDC Output

Operational
EXTEST

SAMPLE PRELOAD

BYPASS
USER1 \ If Boundary Scan

USER 2 is Selected
CONFIGURE
READBACK

Figure 46: Power-up Configuration Sequence

1/0 Active

X6076
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Low. During this time delay, or as long as the PROGRAM
input is asserted, the configuration logic is held in a Config-
uration Memory Clear state. The configuration-memory
frames are consecutively initialized, using the internal oscil-
lator.

At the end of each complete pass through the frame
addressing, the power-on time-out delay circuitry and the
level of the PROGRAM pin are tested. If neither is asserted,
the logic initiates one additional clearing of the configura-
tion frames and then tests the INIT input.

Initialization

During initialization and configuration, user pins HDC, LDC,
INIT and DONE provide status outputs for the system inter-
face. The outputs LDC, INIT and DONE are held Low and
HDC is held High starting at the initial application of power.

The open drain INIT pin is released after the final initializa-
tion pass through the frame addresses. There is a deliber-
ate delay of 50 to 250 ps (up to 10% longer for low-voltage
devices) before a Master-mode device recognizes an inac-
tive INIT. Two internal clocks after the INIT pin is recognized
as High, the FPGA samples the three mode lines to deter-
mine the configuration mode. The appropriate interface
lines become active and the configuration preamble and
data can be loaded.Configuration

The 0010 preamble code indicates that the following 24 bits
represent the length count. The length count is the total
number of configuration clocks needed to load the com-
plete configuration data. (Four additional configuration
clocks are required to complete the configuration process,
as discussed below.) After the preamble and the length
count have been passed through to all devices in the daisy
chain, DOUT is held High to prevent frame start bits from
reaching any daisy-chained devices.

A specific configuration bit, early in the first frame of a mas-
ter device, controls the configuration-clock rate and can
increase it by a factor of eight. Therefore, if a fast configu-
ration clock is selected by the bitstream, the slower clock
rate is used until this configuration bit is detected.

Each frame has a start field followed by the frame-configu-
ration data bits and a frame error field. If a frame data error
is detected, the FPGA halts loading, and signals the error
by pulling the open-drain INIT pin Low. After all configura-
tion frames have been loaded into an FPGA, DOUT again
follows the input data so that the remaining data is passed
on to the next device.

Delaying Configuration After Power-Up

There are two methods of delaying configuration after
power-up: put a logic Low on the PROGRAM input, or pull
the bidirectional INIT pin Low, using an open-collector
(open-drain) driver. (See Figure 46 on page 50.)

A Low on the PROGRAM input is the more radical
approach, and is recommended when the power-supply

rise time is excessive or poorly defined. As long as PRO-
GRAM is Low, the FPGA keeps clearing its configuration
memory. When PROGRAM goes High, the configuration
memory is cleared one more time, followed by the begin-
ning of configuration, provided the INIT input is not exter-
nally held Low. Note that a Low on the PROGRAM input
automatically forces a Low on the INIT output. The XC4000
Series PROGRAM pin has a permanent weak pull-up.

Using an open-collector or open-drain driver to hold INIT
Low before the beginning of configuration causes the
FPGA to wait after completing the configuration memory
clear operation. When INIT is no longer held Low exter-
nally, the device determines its configuration mode by cap-
turing its mode pins, and is ready to start the configuration
process. A master device waits up to an additional 250 ps
to make sure that any slaves in the optional daisy chain
have seen that INIT is High.

Start-Up

Start-up is the transition from the configuration process to
the intended user operation. This transition involves a
change from one clock source to another, and a change
from interfacing parallel or serial configuration data where
most outputs are 3-stated, to normal operation with 1/0 pins
active in the user-system. Start-up must make sure that the
user-logic ‘wakes up’ gracefully, that the outputs become
active without causing contention with the configuration sig-
nals, and that the internal flip-flops are released from the
global Reset or Set at the right time.

Figure 47 describes start-up timing for the three Xilinx fam-
ilies in detail. The configuration modes can use any of the
four timing sequences.

To access the internal start-up signals, place the STARTUP
library symbol.

Start-up Timing
Different FPGA families have different start-up sequences.

The XC2000 family goes through a fixed sequence. DONE
goes High and the internal global Reset is de-activated one
CCLK period after the 1/O become active.

The XC3000A family offers some flexibility. DONE can be
programmed to go High one CCLK period before or after
the I/O become active. Independent of DONE, the internal
global Reset is de-activated one CCLK period before or
after the 1/0 become active.

The XC4000 Series offers additional flexibility. The three
events — DONE going High, the internal Set/Reset being
de-activated, and the user 1/0 going active — can all occur
in any arbitrary sequence. Each of them can occur one
CCLK period before or after, or simultaneous with, any of
the others. This relative timing is selected by means of soft-
ware options in the bitstream generation software.
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The default option, and the most practical one, is for DONE
to go High first, disconnecting the configuration data source
and avoiding any contention when the I/Os become active
one clock later. Reset/Set is then released another clock
period later to make sure that user-operation starts from
stable internal conditions. This is the most common
sequence, shown with heavy lines in Figure 47, but the
designer can modify it to meet particular requirements.

Normally, the start-up sequence is controlled by the internal
device oscillator output (CCLK), which is asynchronous to
the system clock.

XC4000 Series offers another start-up clocking option,
UCLK_NOSYNC. The three events described above need
not be triggered by CCLK. They can, as a configuration
option, be triggered by a user clock. This means that the
device can wake up in synchronism with the user system.

When the UCLK_SYNC option is enabled, the user can
externally hold the open-drain DONE output Low, and thus
stall all further progress in the start-up sequence until
DONE is released and has gone High. This option can be
used to force synchronization of several FPGAs to a com-
mon user clock, or to guarantee that all devices are suc-
cessfully configured before any I/Os go active.

If either of these two options is selected, and no user clock
is specified in the design or attached to the device, the chip
could reach a point where the configuration of the device is
complete and the Done pin is asserted, but the outputs do
not become active. The solution is either to recreate the bit-
stream specifying the start-up clock as CCLK, or to supply
the appropriate user clock.

Start-up Sequence

The Start-up sequence begins when the configuration
memory is full, and the total number of configuration clocks

received since INIT went High equals the loaded value of
the length count.

The next rising clock edge sets a flip-flop QO, shown in
Figure 48. QO is the leading bit of a 5-bit shift register. The
outputs of this register can be programmed to control three
events.

¢ The release of the open-drain DONE output

e The change of configuration-related pins to the user
function, activating all IOBs.

« The termination of the global Set/Reset initialization of
all CLB and IOB storage elements.

The DONE pin can also be wire-ANDed with DONE pins of
other FPGAs or with other external signals, and can then
be used as input to bit Q3 of the start-up register. This is
called “Start-up Timing Synchronous to Done In” and is
selected by either CCLK_SYNC or UCLK_SYNC.

When DONE is not used as an input, the operation is called
“Start-up Timing Not Synchronous to DONE In,” and is
selected by either CCLK_NOSYNC or UCLK_NOSYNC.

As a configuration option, the start-up control register
beyond QO can be clocked either by subsequent CCLK
pulses or from an on-chip user net called STARTUR.CLK.
These signals can be accessed by placing the STARTUP
library symbol.

Start-up from CCLK

If CCLK is used to drive the start-up, QO through Q3 pro-
vide the timing. Heavy lines in Figure 47 show the default
timing, which is compatible with XC2000 and XC3000
devices using early DONE and late Reset. The thin lines
indicate all other possible timing options.
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F = Finished, no more
configuration clocks needed
DONE | Daisy-chain lead device

XC3000 must have latest F
1/10 [
1 Heavy lines describe
default timing
Global Reset | I
F
DONE [ |
c1 c2 c3 c4
XC4000E/X o : } |
CCLK_NOSYNC c2 C3 Ca
GSR Active |
c2 c3 c4
DONE IN j
F
DONE | X
- ) I
C1,C2o0rC3 |
XC4000E/X L© : |
CCLK_SYNC Di : Di+1
I
GSR Active | |
Di  Di+1
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DONE | [
c1 u2 us U4
XC4000E/X Vo I I I
UCLK_NOSYNC U2 u3 U4
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DONE IN
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DONE |
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1
XCA4000E/X L —] I
UCLK_SYNC Di | Di+l Di+2
I
GSR Active | | I
o Di Di+1 Di+2
Synchronization )
Uncertainty < >}— UCLK Period

X9024

Figure 47: Start-up Timing
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Start-up from a User Clock (STARTUP.CLK)

When, instead of CCLK, a user-supplied start-up clock is
selected, Q1 is used to bridge the unknown phase relation-
ship between CCLK and the user clock. This arbitration
causes an unavoidable one-cycle uncertainty in the timing
of the rest of the start-up sequence.

DONE Goes High to Signal End of Configuration

XC4000 Series devices read the expected length count
from the bitstream and store it in an internal register. The
length count varies according to the number of devices and
the composition of the daisy chain. Each device also counts
the number of CCLKSs during configuration.

Two conditions have to be met in order for the DONE pin to
go high:

+ the chip's internal memory must be full, and
 the configuration length count must be met, exactly.

This is important because the counter that determines
when the length count is met begins with the very first
CCLK, not the first one after the preamble.

Therefore, if a stray bit is inserted before the preamble, or
the data source is not ready at the time of the first CCLK,
the internal counter that holds the number of CCLKs will be
one ahead of the actual number of data bits read. At the
end of configuration, the configuration memory will be full,
but the number of bits in the internal counter will not match
the expected length count.

As a consequence, a Master mode device will continue to
send out CCLKs until the internal counter turns over to
zero, and then reaches the correct length count a second
time. This will take several seconds [22* CCLK period] —
which is sometimes interpreted as the device not configur-
ing at all.

If it is not possible to have the data ready at the time of the
first CCLK, the problem can be avoided by increasing the
number in the length count by the appropriate value. The
XACT User Guide includes detailed information about man-
ually altering the length count.

Note that DONE is an open-drain output and does not go
High unless an internal pull-up is activated or an external
pull-up is attached. The internal pull-up is activated as the
default by the bitstream generation software.

Release of User I/O After DONE Goes High

By default, the user I/O are released one CCLK cycle after
the DONE pin goes High. If CCLK is not clocked after
DONE goes High, the outputs remain in their initial state —
3-stated, with a 50 kQ - 100 kQ pull-up. The delay from
DONE High to active user I/O is controlled by an option to
the bitstream generation software.

Release of Global Set/Reset After DONE Goes
High

By default, Global Set/Reset (GSR) is released two CCLK
cycles after the DONE pin goes High. If CCLK is not
clocked twice after DONE goes High, all flip-flops are held
in their initial set or reset state. The delay from DONE High
to GSR inactive is controlled by an option to the bitstream
generation software.

Configuration Complete After DONE Goes High

Three full CCLK cycles are required after the DONE pin
goes High, as shown in Figure 47 on page 53. If CCLK is
not clocked three times after DONE goes High, readback
cannot be initiated and most boundary scan instructions
cannot be used.

Configuration Through the Boundary Scan
Pins

XC4000 Series devices can be configured through the
boundary scan pins. The basic procedure is as follows:

« Power up the FPGA with INIT held Low (or drive the
PROGRAM pin Low for more than 300 ns followed by a
High while holding INIT Low). Holding INIT Low allows
enough time to issue the CONFIG command to the
FPGA. The pin can be used as /O after configuration if
a resistor is used to hold INIT Low.

¢ Issue the CONFIG command to the TMS input

+ Wait for INIT to go High

¢ Sequence the boundary scan Test Access Port to the
SHIFT-DR state

« Toggle TCK to clock data into TDI pin.

The user must account for all TCK clock cycles after INIT
goes High, as all of these cycles affect the Length Count
compare.

For more detailed information, refer to the Xilinx application
note XAPPQ17, “Boundary Scan in XC4000 Devices.” This
application note also applies to XC4000E and XC4000X
devices.
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XC4000E/EX/XL Program Readback Switching Characteristic Guidelines

Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100%
functionally tested. Internal timing parameters are not measured directly. They are derived from benchmark timing patterns
that are taken at device introduction, prior to any process improvements.

The following guidelines reflect worst-case values over the recommended operating conditions.

Finished
Internal Net

NN
[N

N L

rdbk. TRIG

NN
[N

®

{
)
E]\ ; £
~<TRCRT
TRTRC > @ @ TRTRC —» ‘TRCRT" ©)
rdclk.I :\L_/_\f
TrCL TRCH @

£ C {
)T 7

®

~

rdbk.RIP
—> TRCRR@
rdbk.DATA DUMMYX DUMMY >C :VALID X VALID F T \
- TRCRD@ X1790
E/EX
Description Symbol Min Max Units
rdbk. TRIG rdbk. TRIG setup to initiate and abort Readback | 1 TrTRC 200 - ns
rdbk.TRIG hold to initiate and abort Readback 2 TRCRT 50 - ns
rdclk.1 rdbk.DATA delay 7 TrcrRD - 250 ns
rdbk.RIP delay 6 TrRCRR - 250 ns
ngh time 5 TRCH 250 500 ns
Low time 4 TreL 250 500 ns

Note 1: Timing parameters apply to all speed grades.
Note 2: If rdbk. TRIG is High prior to Finished, Finished will trigger the first Readback.

XL
Description Symbol Min Max Units
rdbk. TRIG rdbk.TRIG setup to initiate and abort Readback | 1 TrRTRC 200 - ns
rdbk.TRIG hold to initiate and abort Readback 2 TRCRT 50 - ns
rdclk.1 rdbk.DATA delay 7 TrcrD - 250 ns
rdbk.RIP delay 6 TRCRR - 250 ns
High time 5 TRcH 250 500 ns
Low time 4 TreL 250 500 ns

Note 1: Timing parameters apply to all speed grades.
Note 2: If rdbk. TRIG is High prior to Finished, Finished will trigger the first Readback.
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éﬂtﬁ&é ><K Address for Byte n Address for Byte n + 1
\v et @ TrAC
DO0-D7
XRXKXXKXKRIN o X
(@D Tpre— «— (@ Trep
RCLK /
(output) / ‘e ]

|

CCLK

CCLK
(output)
DOUT
(output) X be \X o7
Byten-1 X6078
Description Symbol Min Max Units

Delay to Address valid 1 TrAC 0 200 ns

RCLK Data setup time 2 Tpre 60 ns

Data hold time 3 TreD 0 ns

Notes: 1. At power-up, Vcc must rise from 2.0 V to Vcec min in less than 25 ms, otherwise delay configuration by pulling PROGRAM
Low until Vcc is valid.

2. The first Data byte is loaded and CCLK starts at the end of the first RCLK active cycle (rising edge).
This timing diagram shows that the EPROM requirements are extremely relaxed. EPROM access time can be longer than
500 ns. EPROM data output has no hold-time requirements.

Figure 55: Master Parallel Mode Programming Switching Characteristics
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/gYTE\ /BYTE \
\ / \ L /

4

[ BYTE 0 OUT »| BYTE 10UT

BN €D & €D &5 &3 &5 € &
Rowmj\ / \

DOUT

X6096

Description Symbol Min Max Units
INIT (High) setup time Tic 5 us
DO - D7 setup time Toc 60 ns
CCLK DO - D7 .hold. time Tep 0 ns
CCLK High time Teen 50 ns
CCLK Low time TceL 60 ns

CCLK Frequency Fce 8 MHz

Notes: 1. Peripheral Synchronous mode can be considered Slave Parallel mode. An external CCLK provides timing, clocking in the
first data byte on the second rising edge of CCLK after INIT goes High. Subsequent data bytes are clocked in on every
eighth consecutive rising edge of CCLK.

2. The RDY/BUSY line goes High for one CCLK period after data has been clocked in, although synchronous operation does
not require such a response.

3. The pin name RDY/BUSY is a misnomer. In Synchronous Peripheral mode this is really an ACKNOWLEDGE signal.

4. Note that data starts to shift out serially on the DOUT pin 0.5 CCLK periods after it was loaded in parallel. Therefore,
additional CCLK pulses are clearly required after the last byte has been loaded.

Figure 57: Synchronous Peripheral Mode Programming Switching Characteristics
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Configuration Switching Characteristics

Vce V

>

- Tror
_/

RE-PROGRAM

PROGRAM

INIT

CCLK OUTPUT or INPUT

—b <+— >300ns
v - [
— >

4— <300 ns

?’éoéq“ﬂﬁég")z VALID X DONE RESPONSE N
X1582 —» |&— <300ns
110
Master Modes (XC4000E/EX)
Description Symbol Min Max Units
MO = High Tpor 10 40 ms
Power-On Reset MO = Low TrPoR 40 130 ms
Program Latency Tp 30 200 Us per
CLB column
CCLK (output) Delay Ticck 40 250 Hs
CCLK (output) Period, slow Teelk 640 2000 ns
CCLK (output) Period, fast Teelk 80 250 ns
Master Modes (XC4000XL)
Description Symbol Min Max Units
MO = High Tror 10 40 ms
Power-On Reset MO = Low Tror 40 130 ms
Program Latency Tp 30 200 us per
CLB column
CCLK (output) Delay Ticck 40 250 Hs
CCLK (output) Period, slow Teolk 540 1600 ns
CCLK (output) Period, fast Teelk 67 200 ns
Slave and Peripheral Modes (All)
Description Symbol Min Max Units
Power-On Reset TroRr 10 33 ms
Program Latency Tp 30 200 us per
CLB column
CCLK (input) Delay (required) Ticck 4 V&S
CCLK (input) Period (required) Tcelk 100 ns
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Product Availability

Table 24, Table 25, and Table 26 show the planned packages and speed grades for XC4000-Series devices. Call your local
sales office for the latest availability information, or see the Xilinx website at http://www.xilinx.com for the latest revision of
the specifications.

Table 24: Component Availability Chart for XC4000XL FPGAs

PINS 84 | 100 | 100 | 144 | 144 | 160 | 160 | 176 | 176 | 208 | 208 | 240 | 240 | 256 | 299 | 304 | 352 | 411 | 432 | 475 | 559 | 560
SO |l | s | |20 | O S0 | | 90 | O o | o PN T ) £ [} - £ i} £ £ o
I I I I I I
< 8 8 g [T [l |||l |l o [N [N || |O
o S [ | o~ | K|[O|lO|S S |w ||l |d|®m |~ | |O
CODE Sdla|lglg |2 [ |d |+ |N [N |N|N|[N[N[O| ™| [ || 0O |0
a ol o|Oo|lE|OQ|O|O|E|OQ|CC|O|IC|O[OICOIO|O O[O0 |O0|O
o > = I T o = I T o T o m o T m o m o o m
-3 cI | cr| cl
XC4002XL [ —ferfer et
-1 cl | ci Cl
0C g ¢ C c
3 clI | ci Cl cl cl cl
XC4005XL 2 cl [¢ cl | ci cl cl
-1 cit|ci|ci|cl Cl cl
ooc | C [& c c [& [
3 ci | ci cl cl | ci cl cl
2 c1 | ci cl cl | ci cl Cl
XC4010XL -1 ci | ci cl ci | ci cl cl
ooc | C [¢ c ¢ [¢ c [¢
-3 cl Cl cl cl cl | ci
2 cl cl cl cl ci | ci
XC4013XL | 1 cl cl cl cl ci | ci
09C c [ ¢ c ¢ ¢
08C [ [ c c c ¢
3 cl cl cl cl ci | ci
2 cl cl cl cl ci | ci
XC4020XL -1 cl cl cl cl ci | ci
09C c c [¢ c [ [
3 cl cl cl ct|ci|ci]ci
2 [ cl [ cit|ci|ci]cl
XCA4028XL -1 cl cl cl ct|ci|ci]cl
09C c o] [ [ c c c
3 [ cl cl ci|cit|ci]ci
2 cl cl c cli|ci|cri]ecl
XC4036XL | 1 cl cl cl ci|ci|ci]ci
09C [ c c c c c ¢
08C [ c [ c c [ ¢
3 cl cl cl ci|cit|ci]ci
2 cl cl cl ci|ci|ci]eci
XC4044XL El cl cl cl cl|ci|cri|ecl
09C c c c c c c [
3 cl cl cl | ci cl
2 cl cl cl | ci cl
XCA4052XL -1 [ cl cl | ci cl
09C c c [ c c
-3 cl cl c1 | ci cl
2 [ cl ci | ci cl
XC4062XL | -1 [ cl ci | ci cl
09C [ c [ c c
08C c c c ¢ c
3 cl cl | ci
2 cl cl | ci
XC4085XL —; o SRR
-09C c [¢ c

1/29/99
C = Commercial T;=0°to +85°C
I= Industrial T;=-40°C to +100°C
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S XILINX®

Product Obsolete or Under Obsolescence
XC4000E and XC4000X Series Field Programmable Gate Arrays

User I/O Per Package

Table 27, Table 28, and Table 29 show the number of user 1/0Os available in each package for XC4000-Series devices. Call
your local sales office for the latest availability information, or see the Xilinx website at http://www.xilinx.com for the latest
revision of the specifications.

Table 27: User I1/O Chart for XC4000XL FPGAs

Device

Max
110

Maximum User Accessible I/0O by E’ackage ?ype

TQ144

HT144

HQ160

TQ176

HT176

HQ208

HQ240

PQ240

BG256

PG299

HQ304

BG352

PG411

BG432

PG475

PG559

BG560

XC4002XL

64

2 [PO100

2 [VQ100

XC4005XL

112

=)
2
~
~

~
N

[
[
N

XC4010XL

160

XC4013XL

192

113

145

XC4020XL

224

113

145

192

205

XC4028XL

256

129

160

193

205

256

256

256

XC4036XL

288

129

160

193

256

288

288

288

XC4044XL

320

129

160

193

256

289

320

320

XC4052XL

352

193

256

352

352

352

XC4062XL

384

193

256

352

384

384

XC4085XL

448

352

448

448

1/29/99

Table 28: User I/0O Chart for XC4000E FPGAs

Device

Max

Maximum User Accessible /0 by

ackage ?ype

110

s |PQ100

s V@100

PG120

TQ144

PG156

PG191
|Ho208

PG223

BG225

|Ho240

PQ240

PG299

IHQ304

XC4003E

80

@
o

XC4005E

112

XC4006E

128

XC4008E

144

XC4010E

160

160 160

160

XC4013E

192

160

192

192

192

192

XC4020E

224

160

192

193

XC4025E

256

192

193

256

1/29/99

Table 29: User 1/O Chart for XC4000EX FPGAs

Device

Max

Maximum User Accessible I/0O by I-Dackage ?ype

I/0

HQ208

HQ240

PG299

HQ304

BG352

PG411

BG432

XC4028EX

256

160

193

256

256

256

XC4036EX

288

193

256

288

288

288

1/29/99
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