
AMD Xilinx - XC4013XL-2PQ240I Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Detailed Functional Description
XC4000 Series devices achieve high speed through
advanced semiconductor technology and improved archi-
tecture. The XC4000E and XC4000X support system clock
rates of up to 80 MHz and internal performance in excess
of 150 MHz. Compared to older Xilinx FPGA families,
XC4000 Series devices are more powerful. They offer
on-chip edge-triggered and dual-port RAM, clock enables
on I/O flip-flops, and wide-input decoders. They are more
versatile in many applications, especially those involving
RAM. Design cycles are faster due to a combination of
increased routing resources and more sophisticated soft-
ware.

Basic Building Blocks
Xilinx user-programmable gate arrays include two major
configurable elements: configurable logic blocks (CLBs)
and input/output blocks (IOBs).

• CLBs provide the functional elements for constructing
the user’s logic.

• IOBs provide the interface between the package pins
and internal signal lines.

Three other types of circuits are also available:

• 3-State buffers (TBUFs) driving horizontal longlines are
associated with each CLB.

• Wide edge decoders are available around the periphery
of each device.

• An on-chip oscillator is provided.

Programmable interconnect resources provide routing
paths to connect the inputs and outputs of these config-
urable elements to the appropriate networks.

The functionality of each circuit block is customized during
configuration by programming internal static memory cells.
The values stored in these memory cells determine the
logic functions and interconnections implemented in the
FPGA. Each of these available circuits is described in this
section.

Configurable Logic Blocks (CLBs)
Configurable Logic Blocks implement most of the logic in
an FPGA. The principal CLB elements are shown in
Figure 1. Two 4-input function generators (F and G) offer
unrestricted versatility. Most combinatorial logic functions
need four or fewer inputs. However, a third function gener-
ator (H) is provided. The H function generator has three
inputs. Either zero, one, or two of these inputs can be the
outputs of F and G; the other input(s) are from outside the
CLB. The CLB can, therefore, implement certain functions
of up to nine variables, like parity check or expand-
able-identity comparison of two sets of four inputs.

Each CLB contains two storage elements that can be used
to store the function generator outputs. However, the stor-
age elements and function generators can also be used
independently. These storage elements can be configured
as flip-flops in both XC4000E and XC4000X devices; in the
XC4000X they can optionally be configured as latches. DIN
can be used as a direct input to either of the two storage
elements. H1 can drive the other through the H function
generator. Function generator outputs can also drive two
outputs independent of the storage element outputs. This
versatility increases logic capacity and simplifies routing.

Thirteen CLB inputs and four CLB outputs provide access
to the function generators and storage elements. These
inputs and outputs connect to the programmable intercon-
nect resources outside the block.

Function Generators

Four independent inputs are provided to each of two func-
tion generators (F1 - F4 and G1 - G4). These function gen-
erators, with outputs labeled F’ and G’, are each capable of
implementing any arbitrarily defined Boolean function of
four inputs. The function generators are implemented as
memory look-up tables. The propagation delay is therefore
independent of the function implemented.

A third function generator, labeled H’, can implement any
Boolean function of its three inputs. Two of these inputs can
optionally be the F’ and G’ functional generator outputs.
Alternatively, one or both of these inputs can come from
outside the CLB (H2, H0). The third input must come from
outside the block (H1).

Signals from the function generators can exit the CLB on
two outputs. F’ or H’ can be connected to the X output. G’ or
H’ can be connected to the Y output.

A CLB can be used to implement any of the following func-
tions:

• any function of up to four variables, plus any second
function of up to four unrelated variables, plus any third

function of up to three unrelated variables1

• any single function of five variables
• any function of four variables together with some

functions of six variables
• some functions of up to nine variables.

Implementing wide functions in a single block reduces both
the number of blocks required and the delay in the signal
path, achieving both increased capacity and speed.

The versatility of the CLB function generators significantly
improves system speed. In addition, the design-software
tools can deal with each function generator independently.
This flexibility improves cell usage.

1.  When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two
unregistered function generator outputs are available from the CLB.
May 14, 1999 (Version 1.6) 6-9
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Set/Reset

An asynchronous storage element input (SR) can be con-
figured as either set or reset. This configuration option
determines the state in which each flip-flop becomes oper-
ational after configuration. It also determines the effect of a
Global Set/Reset pulse during normal operation, and the
effect of a pulse on the SR pin of the CLB. All three
set/reset functions for any single flip-flop are controlled by
the same configuration data bit.

The set/reset state can be independently specified for each
flip-flop. This input can also be independently disabled for
either flip-flop.

The set/reset state is specified by using the INIT attribute,
or by placing the appropriate set or reset flip-flop library
symbol.

SR is active High. It is not invertible within the CLB.

Global Set/Reset

A separate Global Set/Reset line (not shown in Figure 1)
sets or clears each storage element during power-up,
re-configuration, or when a dedicated Reset net is driven
active. This global net (GSR) does not compete with other
routing resources; it uses a dedicated distribution network.

Each flip-flop is configured as either globally set or reset in
the same way that the local set/reset (SR) is specified.
Therefore, if a flip-flop is set by SR, it is also set by GSR.
Similarly, a reset flip-flop is reset by both SR and GSR.

GSR can be driven from any user-programmable pin as a
global reset input. To use this global net, place an input pad
and input buffer in the schematic or HDL code, driving the
GSR pin of the STARTUP symbol. (See Figure 2.) A spe-
cific pin location can be assigned to this input using a LOC
attribute or property, just as with any other user-program-
mable pad. An inverter can optionally be inserted after the
input buffer to invert the sense of the Global Set/Reset sig-
nal.

Alternatively, GSR can be driven from any internal node.

Data Inputs and Outputs

The source of a storage element data input is programma-
ble. It is driven by any of the functions F’, G’, and H’, or by
the Direct In (DIN) block input. The flip-flops or latches drive
the XQ and YQ CLB outputs.

Two fast feed-through paths are available, as shown in
Figure 1. A two-to-one multiplexer on each of the XQ and
YQ outputs selects between a storage element output and
any of the control inputs. This bypass is sometimes used by
the automated router to repower internal signals.

Control Signals

Multiplexers in the CLB map the four control inputs (C1 - C4
in Figure 1) into the four internal control signals (H1,
DIN/H2, SR/H0, and EC). Any of these inputs can drive any
of the four internal control signals.

When the logic function is enabled, the four inputs are:

• EC — Enable Clock
• SR/H0 — Asynchronous Set/Reset or H function

generator Input 0
• DIN/H2 — Direct In or H function generator Input 2
• H1 — H function generator Input 1.

When the memory function is enabled, the four inputs are:

• EC — Enable Clock
• WE — Write Enable
• D0 — Data Input to F and/or G function generator
• D1 — Data input to G function generator (16x1 and

16x2 modes) or 5th Address bit (32x1 mode).

Using FPGA Flip-Flops and Latches

The abundance of flip-flops in the XC4000 Series invites
pipelined designs. This is a powerful way of increasing per-
formance by breaking the function into smaller subfunc-
tions and executing them in parallel, passing on the results
through pipeline flip-flops. This method should be seriously
considered wherever throughput is more important than
latency.

To include a CLB flip-flop, place the appropriate library
symbol. For example, FDCE is a D-type flip-flop with clock
enable and asynchronous clear. The corresponding latch
symbol (for the XC4000X only) is called LDCE.

In XC4000 Series devices, the flip flops can be used as reg-
isters or shift registers without blocking the function gener-
ators from performing a different, perhaps unrelated task.
This ability increases the functional capacity of the devices.

The CLB setup time is specified between the function gen-
erator inputs and the clock input K. Therefore, the specified
CLB flip-flop setup time includes the delay through the
function generator.

Using Function Generators as RAM

Optional modes for each CLB make the memory look-up
tables in the F’ and G’ function generators usable as an
array of Read/Write memory cells. Available modes are
level-sensitive (similar to the XC4000/A/H families),
edge-triggered, and dual-port edge-triggered. Depending
on the selected mode, a single CLB can be configured as
either a 16x2, 32x1, or 16x1 bit array.

PAD

IBUF

GSR
GTS

CLK DONEIN
Q1Q4

Q2
Q3

STARTUP

X5260

Figure 2:   Schematic Symbols for Global Set/Reset
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Figure 9:   16x2 (or 16x1) Level-Sensitive Single-Port RAM
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Figure 10:   32x1 Level-Sensitive Single-Port RAM (F and G addresses are identical)
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Input/Output Blocks (IOBs)
User-configurable input/output blocks (IOBs) provide the
interface between external package pins and the internal
logic. Each IOB controls one package pin and can be con-
figured for input, output, or bidirectional signals.

Figure 15 shows a simplified block diagram of the
XC4000E IOB. A more complete diagram which includes
the boundary scan logic of the XC4000E IOB can be found
in Figure 40 on page 43, in the “Boundary Scan” section.

The XC4000X IOB contains some special features not
included in the XC4000E IOB. These features are high-
lighted in a simplified block diagram found in Figure 16, and
discussed throughout this section. When XC4000X special
features are discussed, they are clearly identified in the
text. Any feature not so identified is present in both
XC4000E and XC4000X devices.

IOB Input Signals

Two paths, labeled I1 and I2 in Figure 15 and Figure 16,
bring input signals into the array. Inputs also connect to an
input register that can be programmed as either an
edge-triggered flip-flop or a level-sensitive latch.

The choice is made by placing the appropriate library sym-
bol. For example, IFD is the basic input flip-flop (rising edge
triggered), and ILD is the basic input latch (transpar-
ent-High). Variations with inverted clocks are available, and
some combinations of latches and flip-flops can be imple-
mented in a single IOB, as described in the XACT Libraries
Guide.

The XC4000E inputs can be globally configured for either
TTL (1.2V) or 5.0 volt CMOS thresholds, using an option in
the bitstream generation software. There is a slight input
hysteresis of about 300mV. The XC4000E output levels are
also configurable; the two global adjustments of input
threshold and output level are independent.

Inputs on the XC4000XL are TTL compatible and 3.3V
CMOS compatible. Outputs on the XC4000XL are pulled to
the 3.3V positive supply.

The inputs of XC4000 Series 5-Volt devices can be driven
by the outputs of any 3.3-Volt device, if the 5-Volt inputs are
in TTL mode.

Supported sources for XC4000 Series device inputs are
shown in Table 8.
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Figure 14:   Detail of XC4000E Dedicated Carry Logic
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Figure 15:   Simplified Block Diagram of XC4000E IOB
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Double-Length Lines

The double-length lines consist of a grid of metal segments,
each twice as long as the single-length lines: they run past
two CLBs before entering a switch matrix. Double-length
lines are grouped in pairs with the switch matrices stag-
gered, so that each line goes through a switch matrix at
every other row or column of CLBs (see Figure 28).

There are four vertical and four horizontal double-length
lines associated with each CLB. These lines provide faster
signal routing over intermediate distances, while retaining
routing flexibility. Double-length lines are connected by way
of the programmable switch matrices. Routing connectivity
is shown in Figure 27.

Quad Lines (XC4000X only)

XC4000X devices also include twelve vertical and twelve
horizontal quad lines per CLB row and column. Quad lines
are four times as long as the single-length lines. They are
interconnected via buffered switch matrices (shown as dia-
monds in Figure 27 on page 30). Quad lines run past four
CLBs before entering a buffered switch matrix. They are
grouped in fours, with the buffered switch matrices stag-
gered, so that each line goes through a buffered switch
matrix at every fourth CLB location in that row or column.
(See Figure 29.)

The buffered switch matrixes have four pins, one on each
edge. All of the pins are bidirectional. Any pin can drive any
or all of the other pins.

Each buffered switch matrix contains one buffer and six
pass transistors. It resembles the programmable switch
matrix shown in Figure 26, with the addition of a program-
mable buffer. There can be up to two independent inputs

and up to two independent outputs. Only one of the inde-
pendent inputs can be buffered.

The place and route software automatically uses the timing
requirements of the design to determine whether or not a
quad line signal should be buffered. A heavily loaded signal
is typically buffered, while a lightly loaded one is not. One
scenario is to alternate buffers and pass transistors. This
allows both vertical and horizontal quad lines to be buffered
at alternating buffered switch matrices.

Due to the buffered switch matrices, quad lines are very
fast. They provide the fastest available method of routing
heavily loaded signals for long distances across the device.

Longlines

Longlines form a grid of metal interconnect segments that
run the entire length or width of the array. Longlines are
intended for high fan-out, time-critical signal nets, or nets
that are distributed over long distances. In XC4000X
devices, quad lines are preferred for critical nets, because
the buffered switch matrices make them faster for high
fan-out nets.

Two horizontal longlines per CLB can be driven by 3-state
or open-drain drivers (TBUFs). They can therefore imple-
ment unidirectional or bidirectional buses, wide multiplex-
ers, or wired-AND functions. (See “Three-State Buffers” on
page 26 for more details.)

Each horizontal longline driven by TBUFs has either two
(XC4000E) or eight (XC4000X) pull-up resistors. To acti-
vate these resistors, attach a PULLUP symbol to the
long-line net. The software automatically activates the
appropriate number of pull-ups. There is also a weak
keeper at each end of these two horizontal longlines. This
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Figure 28: Single- and Double-Length Lines, with
Programmable Switch Matrices (PSMs)
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Figure 29:   Quad Lines (XC4000X only)
May 14, 1999 (Version 1.6) 6-31



R

XC4000E and XC4000X Series Field Programmable Gate Arrays

6

Product Obsolete or Under Obsolescence
X5995

Direct

Connect

Edge

Decode

Double Long Global

Clock

Octal

Quad

Single

Double

Long

Direct

Connect

Long

INTERCONNECT

IOB
WED

WED

WED
IOB

Figure 31:   High-Level Routing Diagram of XC4000 Series VersaRing (Left Edge)
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Global Early Buffers

Each corner of the XC4000X device has two Global Early
buffers. The primary purpose of the Global Early buffers is
to provide an earlier clock access than the potentially
heavily-loaded Global Low-Skew buffers. A clock source
applied to both buffers will result in the Global Early clock
edge occurring several nanoseconds earlier than the Glo-
bal Low-Skew buffer clock edge, due to the lighter loading.

Global Early buffers also facilitate the fast capture of device
inputs, using the Fast Capture latches described in “IOB
Input Signals” on page 20. For Fast Capture, take a single
clock signal, and route it through both a Global Early buffer
and a Global Low-Skew buffer. (The two buffers share an
input pad.) Use the Global Early buffer to clock the Fast
Capture latch, and the Global Low-Skew buffer to clock the
normal input flip-flop or latch, as shown in Figure 17 on
page 23.

The Global Early buffers can also be used to provide a fast
Clock-to-Out on device output pins. However, an early clock
in the output flip-flop IOB must be taken into consideration
when calculating the internal clock speed for the design.

The Global Early buffers at the left and right edges of the
chip have slightly different capabilities than the ones at the
top and bottom. Refer to Figure 37, Figure 38, and
Figure 35 on page 36 while reading the following explana-
tion.

Each Global Early buffer can access the eight vertical Glo-
bal lines for all CLBs in the quadrant. Therefore, only
one-fourth of the CLB clock pins can be accessed. This
restriction is in large part responsible for the faster speed of
the buffers, relative to the Global Low-Skew buffers.

The left-side Global Early buffers can each drive two of the
four vertical lines accessing the IOBs on the entire left edge
of the device. The right-side Global Early buffers can each
drive two of the eight vertical lines accessing the IOBs on
the entire right edge of the device. (See Figure 37.)

Each left and right Global Early buffer can also drive half of
the IOBs along either the top or bottom edge of the device,
using a dedicated line that can only be accessed through
the Global Early buffers.

The top and bottom Global Early buffers can drive half of
the IOBs along either the left or right edge of the device, as
shown in Figure 38. They can only access the top and bot-
tom IOBs via the CLB global lines.
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Figure 36:   Any BUFGLS (GCK1 - GCK8) Can
Drive Any or All Clock Inputs on the Device
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Figure 37: Left and Right BUFGEs Can Drive Any or
All Clock Inputs in Same Quadrant or Edge (GCK1 is
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The top and bottom Global Early buffers are about 1 ns
slower clock to out than the left and right Global Early buff-
ers.

The Global Early buffers can be driven by either semi-ded-
icated pads or internal logic. They share pads with the Glo-
bal Low-Skew buffers, so a single net can drive both global
buffers, as described above.

To use a Global Early buffer, place a BUFGE element in a
schematic or in HDL code. If desired, attach a LOC
attribute or property to direct placement to the designated
location. For example, attach a LOC=T attribute or property
to direct that a BUFGE be placed in one of the two Global
Early buffers on the top edge of the device, or a LOC=TR to
indicate the Global Early buffer on the top edge of the
device, on the right.

Power Distribution
Power for the FPGA is distributed through a grid to achieve
high noise immunity and isolation between logic and I/O.
Inside the FPGA, a dedicated Vcc and Ground ring sur-
rounding the logic array provides power to the I/O drivers,
as shown in Figure 39. An independent matrix of Vcc and
Ground lines supplies the interior logic of the device.

This power distribution grid provides a stable supply and
ground for all internal logic, providing the external package
power pins are all connected and appropriately de-coupled.
Typically, a 0.1 µF capacitor connected between each Vcc
pin and the board’s Ground plane will provide adequate
de-coupling.

Output buffers capable of driving/sinking the specified 12
mA loads under specified worst-case conditions may be
capable of driving/sinking up to 10 times as much current
under best case conditions.

Noise can be reduced by minimizing external load capaci-
tance and reducing simultaneous output transitions in the
same direction. It may also be beneficial to locate heavily
loaded output buffers near the Ground pads. The I/O Block
output buffers have a slew-rate limited mode (default) which
should be used where output rise and fall times are not
speed-critical.

Pin Descriptions
There are three types of pins in the XC4000 Series
devices:

• Permanently dedicated pins
• User I/O pins that can have special functions
• Unrestricted user-programmable I/O pins.

Before and during configuration, all outputs not used for the
configuration process are 3-stated with a 50 kΩ - 100 kΩ
pull-up resistor.

After configuration, if an IOB is unused it is configured as
an input with a 50 kΩ - 100 kΩ pull-up resistor.

XC4000 Series devices have no dedicated Reset input.
Any user I/O can be configured to drive the Global
Set/Reset net, GSR. See “Global Set/Reset” on page 11
for more information on GSR.

XC4000 Series devices have no Powerdown control input,
as the XC3000 and XC2000 families do. The
XC3000/XC2000 Powerdown control also 3-stated all of the
device
I/O pins. For XC4000 Series devices, use the global 3-state
net, GTS, instead. This net 3-states all outputs, but does
not place the device in low-power mode. See “IOB Output
Signals” on page 23 for more information on GTS.

Device pins for XC4000 Series devices are described in
Table 16. Pin functions during configuration for each of the
seven configuration modes are summarized in Table 22 on
page 58, in the “Configuration Timing” section.

GND

Ground and

Vcc Ring for

I/O Drivers

Vcc

GND

Vcc

Logic

Power Grid 

X5422

Figure 39:   XC4000 Series Power Distribution
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Boundary Scan
The ‘bed of nails’ has been the traditional method of testing
electronic assemblies. This approach has become less
appropriate, due to closer pin spacing and more sophisti-
cated assembly methods like surface-mount technology
and multi-layer boards. The IEEE Boundary Scan Standard
1149.1 was developed to facilitate board-level testing of
electronic assemblies. Design and test engineers can
imbed a standard test logic structure in their device to
achieve high fault coverage for I/O and internal logic. This
structure is easily implemented with a four-pin interface on
any boundary scan-compatible IC. IEEE 1149.1-compati-
ble devices may be serial daisy-chained together, con-
nected in parallel, or a combination of the two.

The XC4000 Series implements IEEE 1149.1-compatible
BYPASS, PRELOAD/SAMPLE and EXTEST boundary
scan instructions. When the boundary scan configuration
option is selected, three normal user I/O pins become ded-
icated inputs for these functions. Another user output pin
becomes the dedicated boundary scan output. The details

of how to enable this circuitry are covered later in this sec-
tion.

By exercising these input signals, the user can serially load
commands and data into these devices to control the driv-
ing of their outputs and to examine their inputs. This
method is an improvement over bed-of-nails testing. It
avoids the need to over-drive device outputs, and it reduces
the user interface to four pins. An optional fifth pin, a reset
for the control logic, is described in the standard but is not
implemented in Xilinx devices.

The dedicated on-chip logic implementing the IEEE 1149.1
functions includes a 16-state machine, an instruction regis-
ter and a number of data registers. The functional details
can be found in the IEEE 1149.1 specification and are also
discussed in the Xilinx application note XAPP 017: “Bound-
ary Scan in XC4000 Devices.”

Figure 40 on page 43 shows a simplified block diagram of
the XC4000E Input/Output Block with boundary scan
implemented. XC4000X boundary scan logic is identical.

CS0, CS1,
WS, RS

I I/O

These four inputs are used in Asynchronous Peripheral mode. The chip is selected
when CS0 is Low and CS1 is High. While the chip is selected, a Low on Write Strobe
(WS) loads the data present on the D0 - D7 inputs into the internal data buffer. A Low
on Read Strobe (RS) changes D7 into a status output — High if Ready, Low if Busy —
and drives D0 - D6 High.
In Express mode, CS1 is used as a serial-enable signal for daisy-chaining.
WS and RS should be mutually exclusive, but if both are Low simultaneously, the Write
Strobe overrides. After configuration, these are user-programmable I/O pins.

A0 - A17 O I/O
During Master Parallel configuration, these 18 output pins address the configuration
EPROM. After configuration, they are user-programmable I/O pins.

A18 - A21
(XC4003XL to

XC4085XL)
O I/O

During Master Parallel configuration with an XC4000X master, these 4 output pins add
4 more bits to address the configuration EPROM. After configuration, they are user-pro-
grammable I/O pins. (See Master Parallel Configuration section for additional details.)

D0 - D7 I I/O
During Master Parallel and Peripheral configuration, these eight input pins receive con-
figuration data. After configuration, they are user-programmable I/O pins.

DIN I I/O
During Slave Serial or Master Serial configuration, DIN is the serial configuration data
input receiving data on the rising edge of CCLK. During Parallel configuration, DIN is
the D0 input. After configuration, DIN is a user-programmable I/O pin.

DOUT O I/O

During configuration in any mode but Express mode, DOUT is the serial configuration
data output that can drive the DIN of daisy-chained slave FPGAs. DOUT data changes
on the falling edge of CCLK, one-and-a-half CCLK periods after it was received at the
DIN input.
In Express modefor XC4000E and XC4000X only, DOUT is the status output that can
drive the CS1 of daisy-chained FPGAs, to enable and disable downstream devices.
After configuration, DOUT is a user-programmable I/O pin.

Unrestricted User-Programmable I/O Pins

I/O
Weak
Pull-up

I/O
These pins can be configured to be input and/or output after configuration is completed.
Before configuration is completed, these pins have an internal high-value pull-up resis-
tor (25 kΩ - 100 kΩ) that defines the logic level as High.

Table 16: Pin Descriptions (Continued)

Pin Name

I/O
During
Config.

I/O
After

Config. Pin Description
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Configuration Modes
XC4000E devices have six configuration modes. XC4000X
devices have the same six modes, plus an additional con-
figuration mode. These modes are selected by a 3-bit input
code applied to the M2, M1, and M0 inputs. There are three
self-loading Master modes, two Peripheral modes, and a
Serial Slave mode, which is used primarily for
daisy-chained devices. The coding for mode selection is
shown in Table 18.

A detailed description of each configuration mode, with tim-
ing information, is included later in this data sheet. During
configuration, some of the I/O pins are used temporarily for
the configuration process. All pins used during configura-
tion are shown in Table 22 on page 58.

Master Modes

The three Master modes use an internal oscillator to gener-
ate a Configuration Clock (CCLK) for driving potential slave
devices. They also generate address and timing for exter-
nal PROM(s) containing the configuration data.

Master Parallel (Up or Down) modes generate the CCLK
signal and PROM addresses and receive byte parallel data.
The data is internally serialized into the FPGA data-frame
format. The up and down selection generates starting
addresses at either zero or 3FFFF (3FFFFF when 22
address lines are used), for compatibility with different
microprocessor addressing conventions. The Master Serial
mode generates CCLK and receives the configuration data
in serial form from a Xilinx serial-configuration PROM.

CCLK speed is selectable as either 1 MHz (default) or 8
MHz. Configuration always starts at the default slow fre-
quency, then can switch to the higher frequency during the
first frame. Frequency tolerance is -50% to +25%.

Additional Address lines in XC4000 devices

The XC4000X devices have additional address lines
(A18-A21) allowing the additional address space required
to daisy-chain several large devices.

The extra address lines are programmable in XC4000EX
devices. By default these address lines are not activated. In
the default mode, the devices are compatible with existing
XC4000 and XC4000E products. If desired, the extra
address lines can be used by specifying the address lines
option in bitgen as 22 (bitgen -g AddressLines:22). The
lines (A18-A21) are driven when a master device detects,
via the bitstream, that it should be using all 22 address
lines. Because these pins will initially be pulled high by
internal pull-ups, designers using Master Parallel Up mode
should use external pull down resistors on pins A18-A21. If
Master Parallel Down mode is used external resistors are
not necessary.

All 22 address lines are always active in Master Parallel
modes with XC4000XL devices. The additional address
lines behave identically to the lower order address lines. If
the Address Lines option in bitgen is set to 18, it will be
ignored by the XC4000XL device.

The additional address lines (A18-A21) are not available in
the PC84 package.

Peripheral Modes

The two Peripheral modes accept byte-wide data from a
bus. A RDY/BUSY status is available as a handshake sig-
nal. In Asynchronous Peripheral mode, the internal oscilla-
tor generates a CCLK burst signal that serializes the
byte-wide data. CCLK can also drive slave devices. In the
synchronous mode, an externally supplied clock input to
CCLK serializes the data.

Slave Serial Mode

In Slave Serial mode, the FPGA receives serial configura-
tion data on the rising edge of CCLK and, after loading its
configuration, passes additional data out, resynchronized
on the next falling edge of CCLK.

Multiple slave devices with identical configurations can be
wired with parallel DIN inputs. In this way, multiple devices
can be configured simultaneously.

Serial Daisy Chain

Multiple devices with different configurations can be con-
nected together in a “daisy chain,” and a single combined
bitstream used to configure the chain of slave devices.

To configure a daisy chain of devices, wire the CCLK pins
of all devices in parallel, as shown in Figure 51 on page
60. Connect the DOUT of each device to the DIN of the
next. The lead or master FPGA and following slaves each
passes resynchronized configuration data coming from a
single source. The header data, including the length count,

Table 18: Configuration Modes

Mode M2 M1 M0 CCLK Data
Master Serial 0 0 0 output Bit-Serial
Slave Serial 1 1 1 input Bit-Serial
Master
Parallel Up

1 0 0 output Byte-Wide,
increment

from 00000
Master
Parallel Down

1 1 0 output Byte-Wide,
decrement

from 3FFFF
Peripheral
Synchronous*

0 1 1 input Byte-Wide

Peripheral
Asynchronous

1 0 1 output Byte-Wide

Reserved 0 1 0 — —
Reserved 0 0 1 — —
* Can be considered byte-wide Slave Parallel
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The default option, and the most practical one, is for DONE
to go High first, disconnecting the configuration data source
and avoiding any contention when the I/Os become active
one clock later. Reset/Set is then released another clock
period later to make sure that user-operation starts from
stable internal conditions. This is the most common
sequence, shown with heavy lines in Figure 47, but the
designer can modify it to meet particular requirements.

Normally, the start-up sequence is controlled by the internal
device oscillator output (CCLK), which is asynchronous to
the system clock.

XC4000 Series offers another start-up clocking option,
UCLK_NOSYNC. The three events described above need
not be triggered by CCLK. They can, as a configuration
option, be triggered by a user clock. This means that the
device can wake up in synchronism with the user system.

When the UCLK_SYNC option is enabled, the user can
externally hold the open-drain DONE output Low, and thus
stall all further progress in the start-up sequence until
DONE is released and has gone High. This option can be
used to force synchronization of several FPGAs to a com-
mon user clock, or to guarantee that all devices are suc-
cessfully configured before any I/Os go active.

If either of these two options is selected, and no user clock
is specified in the design or attached to the device, the chip
could reach a point where the configuration of the device is
complete and the Done pin is asserted, but the outputs do
not become active. The solution is either to recreate the bit-
stream specifying the start-up clock as CCLK, or to supply
the appropriate user clock.

Start-up Sequence

The Start-up sequence begins when the configuration
memory is full, and the total number of configuration clocks

received since INIT went High equals the loaded value of
the length count.

The next rising clock edge sets a flip-flop Q0, shown in
Figure 48. Q0 is the leading bit of a 5-bit shift register. The
outputs of this register can be programmed to control three
events.

• The release of the open-drain DONE output
• The change of configuration-related pins to the user

function, activating all IOBs.
• The termination of the global Set/Reset initialization of

all CLB and IOB storage elements.

The DONE pin can also be wire-ANDed with DONE pins of
other FPGAs or with other external signals, and can then
be used as input to bit Q3 of the start-up register. This is
called “Start-up Timing Synchronous to Done In” and is
selected by either CCLK_SYNC or UCLK_SYNC.

When DONE is not used as an input, the operation is called
“Start-up Timing Not Synchronous to DONE In,” and is
selected by either CCLK_NOSYNC or UCLK_NOSYNC.

As a configuration option, the start-up control register
beyond Q0 can be clocked either by subsequent CCLK
pulses or from an on-chip user net called STARTUP.CLK.
These signals can be accessed by placing the STARTUP
library symbol.

Start-up from CCLK

If CCLK is used to drive the start-up, Q0 through Q3 pro-
vide the timing. Heavy lines in Figure 47 show the default
timing, which is compatible with XC2000 and XC3000
devices using early DONE and late Reset. The thin lines
indicate all other possible timing options.
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Start-up from a User Clock (STARTUP.CLK)

When, instead of CCLK, a user-supplied start-up clock is
selected, Q1 is used to bridge the unknown phase relation-
ship between CCLK and the user clock. This arbitration
causes an unavoidable one-cycle uncertainty in the timing
of the rest of the start-up sequence.

DONE Goes High to Signal End of Configuration

XC4000 Series devices read the expected length count
from the bitstream and store it in an internal register. The
length count varies according to the number of devices and
the composition of the daisy chain. Each device also counts
the number of CCLKs during configuration.

Two conditions have to be met in order for the DONE pin to
go high:

• the chip's internal memory must be full, and
• the configuration length count must be met, exactly.

This is important because the counter that determines
when the length count is met begins with the very first
CCLK, not the first one after the preamble.

Therefore, if a stray bit is inserted before the preamble, or
the data source is not ready at the time of the first CCLK,
the internal counter that holds the number of CCLKs will be
one ahead of the actual number of data bits read. At the
end of configuration, the configuration memory will be full,
but the number of bits in the internal counter will not match
the expected length count.

As a consequence, a Master mode device will continue to
send out CCLKs until the internal counter turns over to
zero, and then reaches the correct length count a second
time. This will take several seconds [224 ∗ CCLK period] —
which is sometimes interpreted as the device not configur-
ing at all.

If it is not possible to have the data ready at the time of the
first CCLK, the problem can be avoided by increasing the
number in the length count by the appropriate value. The
XACT User Guide includes detailed information about man-
ually altering the length count.

Note that DONE is an open-drain output and does not go
High unless an internal pull-up is activated or an external
pull-up is attached. The internal pull-up is activated as the
default by the bitstream generation software.

Release of User I/O After DONE Goes High

By default, the user I/O are released one CCLK cycle after
the DONE pin goes High. If CCLK is not clocked after
DONE goes High, the outputs remain in their initial state —
3-stated, with a 50 kΩ - 100 kΩ pull-up. The delay from
DONE High to active user I/O is controlled by an option to
the bitstream generation software.

Release of Global Set/Reset After DONE Goes
High

By default, Global Set/Reset (GSR) is released two CCLK
cycles after the DONE pin goes High. If CCLK is not
clocked twice after DONE goes High, all flip-flops are held
in their initial set or reset state. The delay from DONE High
to GSR inactive is controlled by an option to the bitstream
generation software.

Configuration Complete After DONE Goes High

Three full CCLK cycles are required after the DONE pin
goes High, as shown in Figure 47 on page 53. If CCLK is
not clocked three times after DONE goes High, readback
cannot be initiated and most boundary scan instructions
cannot be used.

Configuration Through the Boundary Scan
Pins
XC4000 Series devices can be configured through the
boundary scan pins. The basic procedure is as follows:

• Power up the FPGA with INIT held Low (or drive the
PROGRAM pin Low for more than 300 ns followed by a
High while holding INIT Low). Holding INIT Low allows
enough time to issue the CONFIG command to the
FPGA. The pin can be used as I/O after configuration if
a resistor is used to hold INIT Low.

• Issue the CONFIG command to the TMS input
• Wait for INIT to go High
• Sequence the boundary scan Test Access Port to the

SHIFT-DR state
• Toggle TCK to clock data into TDI pin.

The user must account for all TCK clock cycles after INIT
goes High, as all of these cycles affect the Length Count
compare.

For more detailed information, refer to the Xilinx application
note XAPP017, “Boundary Scan in XC4000 Devices.” This
application note also applies to XC4000E and XC4000X
devices.
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Readback
The user can read back the content of configuration mem-
ory and the level of certain internal nodes without interfer-
ing with the normal operation of the device.

Readback not only reports the downloaded configuration
bits, but can also include the present state of the device,
represented by the content of all flip-flops and latches in
CLBs and IOBs, as well as the content of function genera-
tors used as RAMs.

Note that in XC4000 Series devices, configuration data is
not inverted with respect to configuration as it is in XC2000
and XC3000 families.

XC4000 Series Readback does not use any dedicated
pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA,
RDBK.RIP and RDBK.CLK) that can be routed to any IOB.
To access the internal Readback signals, place the READ-

BACK library symbol and attach the appropriate pad sym-
bols, as shown in Figure 49.

After Readback has been initiated by a High level on
RDBK.TRIG after configuration, the RDBK.RIP (Read In
Progress) output goes High on the next rising edge of
RDBK.CLK. Subsequent rising edges of this clock shift out
Readback data on the RDBK.DATA net.

Readback data does not include the preamble, but starts
with five dummy bits (all High) followed by the Start bit
(Low) of the first frame. The first two data bits of the first
frame are always High.

Each frame ends with four error check bits. They are read
back as High. The last seven bits of the last frame are also
read back as High. An additional Start bit (Low) and an
11-bit Cyclic Redundancy Check (CRC) signature follow,
before RDBK.RIP returns Low.
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*

*

*

*

* *
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Figure 48:   Start-up Logic
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Table 22: Pin Functions During Configuration

CONFIGURATION MODE <M2:M1:M0>
SLAVE
SERIAL
<1:1:1>

MASTER
SERIAL
<0:0:0>

SYNCH.
PERIPHERAL

<0:1:1>

ASYNCH.
PERIPHERAL

<1:0:1>

MASTER
PARALLEL DOWN

<1:1:0>

MASTER
PARALLEL UP

<1:0:0>

USER
OPERATION

M2(HIGH) (I) M2(LOW) (I) M2(LOW) (I) M2(HIGH) (I) M2(HIGH) (I) M2(HIGH) (I) (I)
M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) (O)
M0(HIGH) (I) M0(LOW) (I) M0(HIGH) (I) M0(HIGH) (I) M0(LOW) (I) M0(LOW) (I) (I)
HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) I/O
LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) I/O

INIT INIT INIT INIT INIT INIT I/O
DONE DONE DONE DONE DONE DONE DONE

PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM
CCLK (I) CCLK (O) CCLK (I) CCLK (O) CCLK (O) CCLK (O) CCLK (I)

RDY/BUSY (O) RDY/BUSY (O) RCLK (O) RCLK (O) I/O
RS (I) I/O

CS0 (I) I/O
DATA 7 (I) DATA 7 (I) DATA 7 (I) DATA 7 (I) I/O
DATA 6 (I) DATA 6 (I) DATA 6 (I) DATA 6 (I) I/O
DATA 5 (I) DATA 5 (I) DATA 5 (I) DATA 5 (I) I/O
DATA 4 (I) DATA 4 (I) DATA 4 (I) DATA 4 (I) I/O
DATA 3 (I) DATA 3 (I) DATA 3 (I) DATA 3 (I) I/O
DATA 2 (I) DATA 2 (I) DATA 2 (I) DATA 2 (I) I/O
DATA 1 (I) DATA 1 (I) DATA 1 (I) DATA 1 (I) I/O

DIN (I) DIN (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) I/O
DOUT DOUT DOUT DOUT DOUT DOUT SGCK4-GCK6-I/O

TDI TDI TDI TDI TDI TDI TDI-I/O
TCK TCK TCK TCK TCK TCK TCK-I/O
TMS TMS TMS TMS TMS TMS TMS-I/O
TDO TDO TDO TDO TDO TDO TDO-(O)

WS (I) A0 A0 I/O
A1 A1 PGCK4-GCK7-I/O

CS1 A2 A2 I/O
A3 A3 I/O
A4 A4 I/O
A5 A5 I/O
A6 A6 I/O
A7 A7 I/O
A8 A8 I/O
A9 A9 I/O

A10 A10 I/O
A11 A11 I/O
A12 A12 I/O
A13 A13 I/O
A14 A14 I/O
A15 A15 SGCK1-GCK8-I/O
A16 A16 PGCK1-GCK1-I/O
A17 A17 I/O
A18* A18* I/O
A19* A19* I/O
A20* A20* I/O
A21* A21* I/O

ALL OTHERS
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Table 23: Pin Functions During Configuration

CONFIGURATION MODE <M2:M1:M0>
SLAVE
SERIAL
<1:1:1>

MASTER
SERIAL
<0:0:0>

SYNCH.
PERIPHERAL

<0:1:1>

ASYNCH.
PERIPHERAL

<1:0:1>

MASTER
PARALLEL DOWN

<1:1:0>

MASTER
PARALLEL UP

<1:0:0>

USER
OPERATION

M2(HIGH) (I) M2(LOW) (I) M2(LOW) (I) M2(HIGH) (I) M2(HIGH) (I) M2(HIGH) (I) (I)
M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) (O)
M0(HIGH) (I) M0(LOW) (I) M0(HIGH) (I) M0(HIGH) (I) M0(LOW) (I) M0(LOW) (I) (I)
HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) I/O
LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) I/O

INIT INIT INIT INIT INIT INIT I/O
DONE DONE DONE DONE DONE DONE DONE

PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM
CCLK (I) CCLK (O) CCLK (I) CCLK (O) CCLK (O) CCLK (O) CCLK (I)

RDY/BUSY (O) RDY/BUSY (O) RCLK (O) RCLK (O) I/O
RS (I) I/O

CS0 (I) I/O
DATA 7 (I) DATA 7 (I) DATA 7 (I) DATA 7 (I) I/O
DATA 6 (I) DATA 6 (I) DATA 6 (I) DATA 6 (I) I/O
DATA 5 (I) DATA 5 (I) DATA 5 (I) DATA 5 (I) I/O
DATA 4 (I) DATA 4 (I) DATA 4 (I) DATA 4 (I) I/O
DATA 3 (I) DATA 3 (I) DATA 3 (I) DATA 3 (I) I/O
DATA 2 (I) DATA 2 (I) DATA 2 (I) DATA 2 (I) I/O
DATA 1 (I) DATA 1 (I) DATA 1 (I) DATA 1 (I) I/O

DIN (I) DIN (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) I/O
DOUT DOUT DOUT DOUT DOUT DOUT SGCK4-GCK6-I/O

TDI TDI TDI TDI TDI TDI TDI-I/O
TCK TCK TCK TCK TCK TCK TCK-I/O
TMS TMS TMS TMS TMS TMS TMS-I/O
TDO TDO TDO TDO TDO TDO TDO-(O)

WS (I) A0 A0 I/O
A1 A1 PGCK4-GCK7-I/O

CS1 A2 A2 I/O
A3 A3 I/O
A4 A4 I/O
A5 A5 I/O
A6 A6 I/O
A7 A7 I/O
A8 A8 I/O
A9 A9 I/O

A10 A10 I/O
A11 A11 I/O
A12 A12 I/O
A13 A13 I/O
A14 A14 I/O
A15 A15 SGCK1-GCK8-I/O
A16 A16 PGCK1-GCK1-I/O
A17 A17 I/O
A18* A18* I/O
A19* A19* I/O
A20* A20* I/O
A21* A21* I/O

ALL OTHERS
* XC4000X only
Notes 1. A shaded table cell represents a 50 kΩ - 100 kΩ pull-up before and during configuration.

2. (I) represents an input; (O) represents an output.
3. INIT is an open-drain output during configuration.
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Product Obsolete or Under Obsolescence
Master Serial Mode
In Master Serial mode, the CCLK output of the lead FPGA
drives a Xilinx Serial PROM that feeds the FPGA DIN input.
Each rising edge of the CCLK output increments the Serial
PROM internal address counter. The next data bit is put on
the SPROM data output, connected to the FPGA DIN pin.
The lead FPGA accepts this data on the subsequent rising
CCLK edge.

The lead FPGA then presents the preamble data—and all
data that overflows the lead device—on its DOUT pin.
There is an internal pipeline delay of 1.5 CCLK periods,
which means that DOUT changes on the falling CCLK
edge, and the next FPGA in the daisy chain accepts data
on the subsequent rising CCLK edge.

In the bitstream generation software, the user can specify
Fast ConfigRate, which, starting several bits into the first
frame, increases the CCLK frequency by a factor of eight.

For actual timing values please refer to “Configuration
Switching Characteristics” on page 68. Be sure that the
serial PROM and slaves are fast enough to support this
data rate. XC2000, XC3000/A, and XC3100A devices do
not support the Fast ConfigRate option.

The SPROM CE input can be driven from either LDC or
DONE. Using LDC avoids potential contention on the DIN
pin, if this pin is configured as user-I/O, but LDC is then
restricted to be a permanently High user output after con-
figuration. Using DONE can also avoid contention on DIN,
provided the early DONE option is invoked.

Figure 51 on page 60 shows a full master/slave system.
The leftmost device is in Master Serial mode.

Master Serial mode is selected by a <000> on the mode
pins (M2, M1, M0).

Figure 53:   Master Serial Mode Programming Switching Characteristics

Description Symbol Min Max Units

CCLK
DIN setup 1 TDSCK 20 ns
DIN hold 2 TCKDS 0 ns

Notes: 1. At power-up, Vcc must rise from 2.0 V to Vcc min in less than 25 ms, otherwise delay configuration by pulling PROGRAM
Low until Vcc is valid.

2. Master Serial mode timing is based on testing in slave mode.

Serial Data In

CCLK

(Output)

Serial DOUT

(Output)

1 TDSCK

2 TCKDS

n n + 1 n + 2

n – 3 n – 2 n – 1 n 

X3223
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Product Obsolete or Under Obsolescence
XC4000 Series Electrical Characteristics and Device-Specific Pinout Table
For the latest Electrical Characteristics and package/pinout information for each XC4000 Family, see the Xilinx web site at

http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp

Ordering Information

XC4013E-3HQ240C

Device Type

Speed Grade

    -6

    -5

    -4

    -3

    -2

    -1

Number of Pins

Package Type

Temperature Range
C = Commercial (TJ = 0 to +85°C)

I   = Industrial (TJ = -40 to +100°C)

M = Military (TC = -55 to+125°C) 

PC = Plastic Lead Chip Carrier

PQ = Plastic Quad Flat Pack

VQ = Very Thin Quad Flat Pack

TQ = Thin Quad Flat Pack 

BG = Ball Grid Array

PG = Ceramic Pin Grid Array

HQ = High Heat Dissipation Quad Flat Pack

MQ = Metal Quad Flat Pack

CB = Top Brazed Ceramic Quad Flat Pack

X9020

Example:

Revision Control
Version Description

3/30/98 (1.5) Updated XC4000XL timing and added XC4002XL
1/29/99 (1.5) Updated pin diagrams
5/14/99 (1.6) Replaced Electrical Specification and pinout pages for E, EX, and XL families with separate updates and

added URL link for electrical specifications/pinouts for Web users
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