Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 576 | | Number of Logic Elements/Cells | 1368 | | Total RAM Bits | 18432 | | Number of I/O | 113 | | Number of Gates | 13000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 144-LQFP Exposed Pad | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xc4013xl-3ht144i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 7: 16x1 Edge-Triggered Dual-Port RAM Figure 8 shows the write timing for level-sensitive, single-port RAM. The relationships between CLB pins and RAM inputs and outputs for single-port level-sensitive mode are shown in Table 7. Figure 9 and Figure 10 show block diagrams of a CLB configured as 16x2 and 32x1 level-sensitive, single-port RAM. ## Initializing RAM at Configuration Both RAM and ROM implementations of the XC4000 Series devices are initialized during configuration. The initial contents are defined via an INIT attribute or property attached to the RAM or ROM symbol, as described in the schematic library guide. If not defined, all RAM contents are initialized to all zeros, by default. RAM initialization occurs only during configuration. The RAM content is not affected by Global Set/Reset. **Table 7: Single-Port Level-Sensitive RAM Signals** | RAM Signal | CLB Pin | Function | |------------|----------------|--------------| | D | D0 or D1 | Data In | | A[3:0] | F1-F4 or G1-G4 | Address | | WE | WE | Write Enable | | 0 | F' or G' | Data Out | Figure 8: Level-Sensitive RAM Write Timing May 14, 1999 (Version 1.6) Figure 9: 16x2 (or 16x1) Level-Sensitive Single-Port RAM Figure 10: 32x1 Level-Sensitive Single-Port RAM (F and G addresses are identical) ## Output Multiplexer/2-Input Function Generator (XC4000X only) As shown in Figure 16 on page 21, the output path in the XC4000X IOB contains an additional multiplexer not available in the XC4000E IOB. The multiplexer can also be configured as a 2-input function generator, implementing a pass-gate, AND-gate, OR-gate, or XOR-gate, with 0, 1, or 2 inverted inputs. The logic used to implement these functions is shown in the upper gray area of Figure 16. When configured as a multiplexer, this feature allows two output signals to time-share the same output pad; effectively doubling the number of device outputs without requiring a larger, more expensive package. When the MUX is configured as a 2-input function generator, logic can be implemented within the IOB itself. Combined with a Global Early buffer, this arrangement allows very high-speed gating of a single signal. For example, a wide decoder can be implemented in CLBs, and its output gated with a Read or Write Strobe Driven by a BUFGE buffer, as shown in Figure 19. The critical-path pin-to-pin delay of this circuit is less than 6 nanoseconds. As shown in Figure 16, the IOB input pins Out, Output Clock, and Clock Enable have different delays and different flexibilities regarding polarity. Additionally, Output Clock sources are more limited than the other inputs. Therefore, the Xilinx software does not move logic into the IOB function generators unless explicitly directed to do so. The user can specify that the IOB function generator be used, by placing special library symbols beginning with the letter "O." For example, a 2-input AND-gate in the IOB function generator is called OAND2. Use the symbol input pin labelled "F" for the signal on the critical path. This signal is placed on the OK pin — the IOB input with the shortest delay to the function generator. Two examples are shown in Figure 20. Figure 19: Fast Pin-to-Pin Path in XC4000X Figure 20: AND & MUX Symbols in XC4000X IOB ## Other IOB Options There are a number of other programmable options in the XC4000 Series IOB. ## Pull-up and Pull-down Resistors Programmable pull-up and pull-down resistors are useful for tying unused pins to Vcc or Ground to minimize power consumption and reduce noise sensitivity. The configurable pull-up resistor is a p-channel transistor that pulls to Vcc. The configurable pull-down resistor is an n-channel transistor that pulls to Ground. The value of these resistors is 50 k Ω – 100 k Ω . This high value makes them unsuitable as wired-AND pull-up resistors. The pull-up resistors for most user-programmable IOBs are active during the configuration process. See Table 22 on page 58 for a list of pins with pull-ups active before and during configuration. After configuration, voltage levels of unused pads, bonded or un-bonded, must be valid logic levels, to reduce noise sensitivity and avoid excess current. Therefore, by default, unused pads are configured with the internal pull-up resistor active. Alternatively, they can be individually configured with the pull-down resistor, or as a driven output, or to be driven by an external source. To activate the internal pull-up, attach the PULLUP library component to the net attached to the pad. To activate the internal pull-down, attach the PULLDOWN library component to the net attached to the pad. ## Independent Clocks Separate clock signals are provided for the input and output flip-flops. The clock can be independently inverted for each flip-flop within the IOB, generating either falling-edge or rising-edge triggered flip-flops. The clock inputs for each IOB are independent, except that in the XC4000X, the Fast Capture latch shares an IOB input with the output clock pin. ## Early Clock for IOBs (XC4000X only) Special early clocks are available for IOBs. These clocks are sourced by the same sources as the Global Low-Skew buffers, but are separately buffered. They have fewer loads and therefore less delay. The early clock can drive either the IOB output clock or the IOB input clock, or both. The early clock allows fast capture of input data, and fast clock-to-output on output data. The Global Early buffers that drive these clocks are described in "Global Nets and Buffers (XC4000X only)" on page 37. #### **Global Set/Reset** As with the CLB registers, the Global Set/Reset signal (GSR) can be used to set or clear the input and output registers, depending on the value of the INIT attribute or property. The two flip-flops can be individually configured to set # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays or clear on reset and after configuration. Other than the global GSR net, no user-controlled set/reset signal is available to the I/O flip-flops. The choice of set or clear applies to both the initial state of the flip-flop and the response to the Global Set/Reset pulse. See "Global Set/Reset" on page 11 for a description of how to use GSR. #### **JTAG Support** Embedded logic attached to the IOBs contains test structures compatible with IEEE Standard 1149.1 for boundary scan testing, permitting easy chip and board-level testing. More information is provided in "Boundary Scan" on page 42. ### **Three-State Buffers** A pair of 3-state buffers is associated with each CLB in the array. (See Figure 27 on page 30.) These 3-state buffers can be used to drive signals onto the nearest horizontal longlines above and below the CLB. They can therefore be used to implement multiplexed or bidirectional buses on the horizontal longlines, saving logic resources. Programmable pull-up resistors attached to these longlines help to implement a wide wired-AND function. The buffer enable is an active-High 3-state (i.e. an active-Low enable), as shown in Table 13. Another 3-state buffer with similar access is located near each I/O block along the right and left edges of the array. (See Figure 33 on page 34.) The horizontal longlines driven by the 3-state buffers have a weak keeper at each end. This circuit prevents undefined floating levels. However, it is overridden by any driver, even a pull-up resistor. Special longlines running along the perimeter of the array can be used to wire-AND signals coming from nearby IOBs or from internal longlines. These longlines form the wide edge decoders discussed in "Wide Edge Decoders" on page 27. ## Three-State Buffer Modes The 3-state buffers can be configured in three modes: - · Standard 3-state buffer - Wired-AND with input on the I pin - Wired OR-AND #### Standard 3-State Buffer All three pins are used. Place the library element BUFT. Connect the input to the I pin and the output to the O pin. The T pin is an active-High 3-state (i.e. an active-Low enable). Tie the T pin to Ground to implement a standard buffer. ### Wired-AND with Input on the I Pin The buffer can be used as a Wired-AND. Use the WAND1 library symbol, which is essentially an open-drain buffer. WAND4, WAND8, and WAND16 are also available. See the *XACT Libraries Guide* for further information. The T pin is internally tied to the I pin. Connect the input to the I pin and the output to the O pin. Connect the outputs of all the WAND1s together and attach a PULLUP symbol. #### **Wired OR-AND** The buffer can be configured as a Wired
OR-AND. A High level on either input turns off the output. Use the WOR2AND library symbol, which is essentially an open-drain 2-input OR gate. The two input pins are functionally equivalent. Attach the two inputs to the I0 and I1 pins and tie the output to the O pin. Tie the outputs of all the WOR2ANDs together and attach a PULLUP symbol. ## Three-State Buffer Examples Figure 21 shows how to use the 3-state buffers to implement a wired-AND function. When all the buffer inputs are High, the pull-up resistor(s) provide the High output. Figure 22 shows how to use the 3-state buffers to implement a multiplexer. The selection is accomplished by the buffer 3-state signal. Pay particular attention to the polarity of the T pin when using these buffers in a design. Active-High 3-state (T) is identical to an active-Low output enable, as shown in Table 13. **Table 13: Three-State Buffer Functionality** | IN | Т | OUT | |----|---|-----| | X | 1 | Z | | IN | 0 | IN | Figure 21: Open-Drain Buffers Implement a Wired-AND Function Figure 28: Single- and Double-Length Lines, with Programmable Switch Matrices (PSMs) ## **Double-Length Lines** The double-length lines consist of a grid of metal segments, each twice as long as the single-length lines: they run past two CLBs before entering a switch matrix. Double-length lines are grouped in pairs with the switch matrices staggered, so that each line goes through a switch matrix at every other row or column of CLBs (see Figure 28). There are four vertical and four horizontal double-length lines associated with each CLB. These lines provide faster signal routing over intermediate distances, while retaining routing flexibility. Double-length lines are connected by way of the programmable switch matrices. Routing connectivity is shown in Figure 27. ## Quad Lines (XC4000X only) XC4000X devices also include twelve vertical and twelve horizontal quad lines per CLB row and column. Quad lines are four times as long as the single-length lines. They are interconnected via buffered switch matrices (shown as diamonds in Figure 27 on page 30). Quad lines run past four CLBs before entering a buffered switch matrix. They are grouped in fours, with the buffered switch matrices staggered, so that each line goes through a buffered switch matrix at every fourth CLB location in that row or column. (See Figure 29.) The buffered switch matrixes have four pins, one on each edge. All of the pins are bidirectional. Any pin can drive any or all of the other pins. Each buffered switch matrix contains one buffer and six pass transistors. It resembles the programmable switch matrix shown in Figure 26, with the addition of a programmable buffer. There can be up to two independent inputs Figure 29: Quad Lines (XC4000X only) and up to two independent outputs. Only one of the independent inputs can be buffered. The place and route software automatically uses the timing requirements of the design to determine whether or not a quad line signal should be buffered. A heavily loaded signal is typically buffered, while a lightly loaded one is not. One scenario is to alternate buffers and pass transistors. This allows both vertical and horizontal quad lines to be buffered at alternating buffered switch matrices. Due to the buffered switch matrices, quad lines are very fast. They provide the fastest available method of routing heavily loaded signals for long distances across the device. #### Longlines Longlines form a grid of metal interconnect segments that run the entire length or width of the array. Longlines are intended for high fan-out, time-critical signal nets, or nets that are distributed over long distances. In XC4000X devices, quad lines are preferred for critical nets, because the buffered switch matrices make them faster for high fan-out nets. Two horizontal longlines per CLB can be driven by 3-state or open-drain drivers (TBUFs). They can therefore implement unidirectional or bidirectional buses, wide multiplexers, or wired-AND functions. (See "Three-State Buffers" on page 26 for more details.) Each horizontal longline driven by TBUFs has either two (XC4000E) or eight (XC4000X) pull-up resistors. To activate these resistors, attach a PULLUP symbol to the long-line net. The software automatically activates the appropriate number of pull-ups. There is also a weak keeper at each end of these two horizontal longlines. This circuit prevents undefined floating levels. However, it is overridden by any driver, even a pull-up resistor. Each XC4000E longline has a programmable splitter switch at its center, as does each XC4000X longline driven by TBUFs. This switch can separate the line into two independent routing channels, each running half the width or height of the array. Each XC4000X longline not driven by TBUFs has a buffered programmable splitter switch at the 1/4, 1/2, and 3/4 points of the array. Due to the buffering, XC4000X longline performance does not deteriorate with the larger array sizes. If the longline is split, the resulting partial longlines are independent. Routing connectivity of the longlines is shown in Figure 27 on page 30. ## Direct Interconnect (XC4000X only) The XC4000X offers two direct, efficient and fast connections between adjacent CLBs. These nets facilitate a data flow from the left to the right side of the device, or from the top to the bottom, as shown in Figure 30. Signals routed on the direct interconnect exhibit minimum interconnect propagation delay and use no general routing resources. The direct interconnect is also present between CLBs and adjacent IOBs. Each IOB on the left and top device edges has a direct path to the nearest CLB. Each CLB on the right and bottom edges of the array has a direct path to the nearest two IOBs, since there are two IOBs for each row or column of CLBs. The place and route software uses direct interconnect whenever possible, to maximize routing resources and minimize interconnect delays. Figure 30: XC4000X Direct Interconnect ## I/O Routing XC4000 Series devices have additional routing around the IOB ring. This routing is called a VersaRing. The VersaRing facilitates pin-swapping and redesign without affecting board layout. Included are eight double-length lines spanning two CLBs (four IOBs), and four longlines. Global lines and Wide Edge Decoder lines are provided. XC4000X devices also include eight octal lines. A high-level diagram of the VersaRing is shown in Figure 31. The shaded arrows represent routing present only in XC4000X devices. Figure 33 on page 34 is a detailed diagram of the XC4000E and XC4000X VersaRing. The area shown includes two IOBs. There are two IOBs per CLB row or column, therefore this diagram corresponds to the CLB routing diagram shown in Figure 27 on page 30. The shaded areas represent routing and routing connections present only in XC4000X devices. ## Octal I/O Routing (XC4000X only) Between the XC4000X CLB array and the pad ring, eight interconnect tracks provide for versatility in pin assignment and fixed pinout flexibility. (See Figure 32 on page 33.) These routing tracks are called octals, because they can be broken every eight CLBs (sixteen IOBs) by a programmable buffer that also functions as a splitter switch. The buffers are staggered, so each line goes through a buffer at every eighth CLB location around the device edge. The octal lines bend around the corners of the device. The lines cross at the corners in such a way that the segment most recently buffered before the turn has the farthest distance to travel before the next buffer, as shown in Figure 32. 6-32 May 14, 1999 (Version 1.6) Figure 31: High-Level Routing Diagram of XC4000 Series VersaRing (Left Edge) WED = Wide Edge Decoder, IOB = I/O Block (shaded arrows indicate XC4000X only) Figure 32: XC4000X Octal I/O Routing ## Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays IOB inputs and outputs interface with the octal lines via the single-length interconnect lines. Single-length lines are also used for communication between the octals and double-length lines, quads, and longlines within the CLB array. Segmentation into buffered octals was found to be optimal for distributing signals over long distances around the device. ## **Global Nets and Buffers** Both the XC4000E and the XC4000X have dedicated global networks. These networks are designed to distribute clocks and other high fanout control signals throughout the devices with minimal skew. The global buffers are described in detail in the following sections. The text descriptions and diagrams are summarized in Table 15. The table shows which CLB and IOB clock pins can be sourced by which global buffers. In both XC4000E and XC4000X devices, placement of a library symbol called BUFG results in the software choosing the appropriate clock buffer, based on the timing requirements of the design. The detailed information in these sections is included only for reference. ## Global Nets and Buffers (XC4000E only) Four vertical longlines in each CLB column are driven exclusively by special global buffers. These longlines are in addition to the vertical longlines used for standard interconnect. The four global lines can be driven by either of two types of global buffers. The clock pins of every CLB and IOB can also be sourced from local interconnect. Two different types of clock buffers are available in the XC4000E: - Primary Global Buffers (BUFGP) - Secondary Global Buffers (BUFGS) Four Primary Global buffers offer the shortest delay and negligible skew. Four Secondary Global buffers have slightly longer delay and slightly more skew due to potentially heavier loading, but offer greater flexibility when used to drive non-clock CLB inputs. The Primary Global buffers must be driven by the semi-dedicated pads. The Secondary Global buffers can be sourced by either semi-dedicated pads or internal nets. Each CLB column has four dedicated vertical Global lines. Each of
these lines can be accessed by one particular Primary Global buffer, or by any of the Secondary Global buffers, as shown in Figure 34. Each corner of the device has one Primary buffer and one Secondary buffer. IOBs along the left and right edges have four vertical global longlines. Top and bottom IOBs can be clocked from the global lines in the adjacent CLB column. A global buffer should be specified for all timing-sensitive global signal distribution. To use a global buffer, place a BUFGP (primary buffer), BUFGS (secondary buffer), or BUFG (either primary or secondary buffer) element in a schematic or in HDL code. If desired, attach a LOC attribute or property to direct placement to the designated location. For example, attach a LOC=L attribute or property to a BUFGS symbol to direct that a buffer be placed in one of the two Secondary Global buffers on the left edge of the device, or a LOC=BL to indicate the Secondary Global buffer on the bottom edge of the device, on the left. **Table 15: Clock Pin Access** | | XC4 | XC4000E XC4000X | | | | Local | |--|-------|-----------------|--------|----------------|----------------|-------------------| | | BUFGP | BUFGS | BUFGLS | L & R
BUFGE | T & B
BUFGE | Inter-
connect | | All CLBs in Quadrant | √ | √ | V | V | V | V | | All CLBs in Device | V | √ | V | | | V | | IOBs on Adjacent Vertical
Half Edge | √ | V | V | V | √ | V | | IOBs on Adjacent Vertical
Full Edge | V | V | V | V | | V | | IOBs on Adjacent Horizontal
Half Edge (Direct) | | | | V | | V | | IOBs on Adjacent Horizontal
Half Edge (through CLB globals) | V | V | V | 1 | V | V | | IOBs on Adjacent Horizontal
Full Edge (through CLB globals) | V | V | V | | | V | L = Left, R = Right, T = Top, B = Bottom ## Global Nets and Buffers (XC4000X only) Eight vertical longlines in each CLB column are driven by special global buffers. These longlines are in addition to the vertical longlines used for standard interconnect. The global lines are broken in the center of the array, to allow faster distribution and to minimize skew across the whole array. Each half-column global line has its own buffered multiplexer, as shown in Figure 35. The top and bottom global lines cannot be connected across the center of the device, as this connection might introduce unacceptable skew. The top and bottom halves of the global lines must be separately driven — although they can be driven by the same global buffer. The eight global lines in each CLB column can be driven by either of two types of global buffers. They can also be driven by internal logic, because they can be accessed by single, double, and quad lines at the top, bottom, half, and quarter points. Consequently, the number of different clocks that can be used simultaneously in an XC4000X device is very large. There are four global lines feeding the IOBs at the left edge of the device. IOBs along the right edge have eight global lines. There is a single global line along the top and bottom edges with access to the IOBs. All IOB global lines are broken at the center. They cannot be connected across the center of the device, as this connection might introduce unacceptable skew. IOB global lines can be driven from two types of global buffers, or from local interconnect. Alternatively, top and bottom IOBs can be clocked from the global lines in the adjacent CLB column. Two different types of clock buffers are available in the XC4000X: - Global Low-Skew Buffers (BUFGLS) - Global Early Buffers (BUFGE) Global Low-Skew Buffers are the standard clock buffers. They should be used for most internal clocking, whenever a large portion of the device must be driven. Global Early Buffers are designed to provide a faster clock access, but CLB access is limited to one-fourth of the device. They also facilitate a faster I/O interface. Figure 35 is a conceptual diagram of the global net structure in the XC4000X. Global Early buffers and Global Low-Skew buffers share a single pad. Therefore, the same IPAD symbol can drive one buffer of each type, in parallel. This configuration is particularly useful when using the Fast Capture latches, as described in "IOB Input Signals" on page 20. Paired Global Early and Global Low-Skew buffers share a common input; they cannot be driven by two different signals. #### Choosing an XC4000X Clock Buffer The clocking structure of the XC4000X provides a large variety of features. However, it can be simple to use, without understanding all the details. The software automatically handles clocks, along with all other routing, when the appropriate clock buffer is placed in the design. In fact, if a buffer symbol called BUFG is placed, rather than a specific type of buffer, the software even chooses the buffer most appropriate for the design. The detailed information in this section is provided for those users who want a finer level of control over their designs. If fine control is desired, use the following summary and Table 15 on page 35 to choose an appropriate clock buffer. - The simplest thing to do is to use a Global Low-Skew buffer. - If a faster clock path is needed, try a BUFG. The software will first try to use a Global Low-Skew Buffer. If timing requirements are not met, a faster buffer will automatically be used. - If a single quadrant of the chip is sufficient for the clocked logic, and the timing requires a faster clock than the Global Low-Skew buffer, use a Global Early buffer. #### **Global Low-Skew Buffers** Each corner of the XC4000X device has two Global Low-Skew buffers. Any of the eight Global Low-Skew buffers can drive any of the eight vertical Global lines in a column of CLBs. In addition, any of the buffers can drive any of the four vertical lines accessing the IOBs on the left edge of the device, and any of the eight vertical lines accessing the IOBs on the right edge of the device. (See Figure 36 on page 38.) IOBs at the top and bottom edges of the device are accessed through the vertical Global lines in the CLB array, as in the XC4000E. Any Global Low-Skew buffer can, therefore, access every IOB and CLB in the device. The Global Low-Skew buffers can be driven by either semi-dedicated pads or internal logic. To use a Global Low-Skew buffer, instantiate a BUFGLS element in a schematic or in HDL code. If desired, attach a LOC attribute or property to direct placement to the designated location. For example, attach a LOC=T attribute or property to direct that a BUFGLS be placed in one of the two Global Low-Skew buffers on the top edge of the device, or a LOC=TR to indicate the Global Low-Skew buffer on the top edge of the device, on the right. ## **Table 16: Pin Descriptions (Continued)** | | I/O
During | I/O
After | | |--|-----------------|-----------------------|--| | Pin Name | Config. | Config. | Pin Description | | TDI, TCK,
TMS | I | I/O
or I
(JTAG) | If boundary scan is used, these pins are Test Data In, Test Clock, and Test Mode Select inputs respectively. They come directly from the pads, bypassing the IOBs. These pins can also be used as inputs to the CLB logic after configuration is completed. If the BSCAN symbol is not placed in the design, all boundary scan functions are inhibited once configuration is completed, and these pins become user-programmable I/O. The pins can be used automatically or user-constrained. To use them, use "LOC=" or place the library components TDI, TCK, and TMS instead of the usual pad symbols. Input or output buffers must still be used. | | HDC | 0 | I/O | High During Configuration (HDC) is driven High until the I/O go active. It is available as a control output indicating that configuration is not yet completed. After configuration, HDC is a user-programmable I/O pin. | | LDC | 0 | I/O | Low During Configuration (LDC) is driven Low until the I/O go active. It is available as a control output indicating that configuration is not yet completed. After configuration, LDC is a user-programmable I/O pin. | | ĪNĪT | I/O | I/O | Before and during configuration, $\overline{\text{INIT}}$ is a bidirectional signal. A 1 k Ω - 10 k Ω external pull-up resistor is recommended. As an active-Low open-drain output, $\overline{\text{INIT}}$ is held Low during the power stabilization and internal clearing of the configuration memory. As an active-Low input, it can be used to hold the FPGA in the internal WAIT state before the start of configuration. Master mode devices stay in a WAIT state an additional 30 to 300 μ s after $\overline{\text{INIT}}$ has gone High. During configuration, a Low on this output indicates that a configuration data error has occurred. After the I/O go active, $\overline{\text{INIT}}$ is a user-programmable I/O pin. | | PGCK1 -
PGCK4
(XC4000E
only) | Weak
Pull-up | I or I/O | Four Primary Global inputs each drive a dedicated internal global net with short delay and minimal skew. If not used to drive a global buffer, any of these pins is a user-programmable I/O. The PGCK1-PGCK4 pins drive the four Primary Global Buffers. Any input pad symbol connected directly to the input of a BUFGP symbol
is automatically placed on one of these pins. | | SGCK1 -
SGCK4
(XC4000E
only) | Weak
Pull-up | I or I/O | Four Secondary Global inputs each drive a dedicated internal global net with short delay and minimal skew. These internal global nets can also be driven from internal logic. If not used to drive a global net, any of these pins is a user-programmable I/O pin. The SGCK1-SGCK4 pins provide the shortest path to the four Secondary Global Buffers. Any input pad symbol connected directly to the input of a BUFGS symbol is automatically placed on one of these pins. | | GCK1 -
GCK8
(XC4000X
only) | Weak
Pull-up | I or I/O | Eight inputs can each drive a Global Low-Skew buffer. In addition, each can drive a Global Early buffer. Each pair of global buffers can also be driven from internal logic, but must share an input signal. If not used to drive a global buffer, any of these pins is a user-programmable I/O. Any input pad symbol connected directly to the input of a BUFGLS or BUFGE symbol is automatically placed on one of these pins. | | FCLK1 -
FCLK4
(XC4000XLA
and
XC4000XV
only) | Weak
Pull-up | I or I/O | Four inputs can each drive a Fast Clock (FCLK) buffer which can deliver a clock signal to any IOB clock input in the octant of the die served by the Fast Clock buffer. Two Fast Clock buffers serve the two IOB octants on the left side of the die and the other two Fast Clock buffers serve the two IOB octants on the right side of the die. On each side of the die, one Fast Clock buffer serves the upper octant and the other serves the lower octant. If not used to drive a Fast Clock buffer, any of these pins is a user-programmable I/O. | Figure 41: XC4000 Series Boundary Scan Logic ### **Instruction Set** The XC4000 Series boundary scan instruction set also includes instructions to configure the device and read back the configuration data. The instruction set is coded as shown in Table 17. ## **Bit Sequence** The bit sequence within each IOB is: In, Out, 3-State. The input-only M0 and M2 mode pins contribute only the In bit to the boundary scan I/O data register, while the output-only M1 pin contributes all three bits. The first two bits in the I/O data register are TDO.T and TDO.O, which can be used for the capture of internal signals. The final bit is BSCANT.UPD, which can be used to drive an internal net. These locations are primarily used by Xilinx for internal testing. From a cavity-up view of the chip (as shown in XDE or Epic), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 42. The device-specific pinout tables for the XC4000 Series include the boundary scan locations for each IOB pin. BSDL (Boundary Scan Description Language) files for XC4000 Series devices are available on the Xilinx FTP site. ## **Including Boundary Scan in a Schematic** If boundary scan is only to be used during configuration, no special schematic elements need be included in the schematic or HDL code. In this case, the special boundary scan pins TDI, TMS, TCK and TDO can be used for user functions after configuration. To indicate that boundary scan remain enabled after configuration, place the BSCAN library symbol and connect the TDI, TMS, TCK and TDO pad symbols to the appropriate pins, as shown in Figure 43. Even if the boundary scan symbol is used in a schematic, the input pins TMS, TCK, and TDI can still be used as inputs to be routed to internal logic. Care must be taken not to force the chip into an undesired boundary scan state by inadvertently applying boundary scan input patterns to these pins. The simplest way to prevent this is to keep TMS High, and then apply whatever signal is desired to TDI and TCK. ## Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays is passed through and is captured by each FPGA when it recognizes the 0010 preamble. Following the length-count data, each FPGA outputs a High on DOUT until it has received its required number of data frames. After an FPGA has received its configuration data, it passes on any additional frame start bits and configuration data on DOUT. When the total number of configuration clocks applied after memory initialization equals the value of the 24-bit length count, the FPGAs begin the start-up sequence and become operational together. FPGA I/O are normally released two CCLK cycles after the last configuration bit is received. Figure 47 on page 53 shows the start-up timing for an XC4000 Series device. The daisy-chained bitstream is not simply a concatenation of the individual bitstreams. The PROM file formatter must be used to combine the bitstreams for a daisy-chained configuration. ## **Multi-Family Daisy Chain** All Xilinx FPGAs of the XC2000, XC3000, and XC4000 Series use a compatible bitstream format and can, therefore, be connected in a daisy chain in an arbitrary sequence. There is, however, one limitation. The lead device must belong to the highest family in the chain. If the chain contains XC4000 Series devices, the master normally cannot be an XC2000 or XC3000 device. The reason for this rule is shown in Figure 47 on page 53. Since all devices in the chain store the same length count value and generate or receive one common sequence of CCLK pulses, they all recognize length-count match on the same CCLK edge, as indicated on the left edge of Figure 47. The master device then generates additional CCLK pulses until it reaches its finish point F. The different families generate or require different numbers of additional CCLK pulses until they reach F. Not reaching F means that the device does not really finish its configuration, although DONE may have gone High, the outputs became active, and the internal reset was released. For the XC4000 Series device, not reaching F means that readback cannot be ini- tiated and most boundary scan instructions cannot be used. The user has some control over the relative timing of these events and can, therefore, make sure that they occur at the proper time and the finish point F is reached. Timing is controlled using options in the bitstream generation software. #### XC3000 Master with an XC4000 Series Slave Some designers want to use an inexpensive lead device in peripheral mode and have the more precious I/O pins of the XC4000 Series devices all available for user I/O. Figure 44 provides a solution for that case. This solution requires one CLB, one IOB and pin, and an internal oscillator with a frequency of up to 5 MHz as a clock source. The XC3000 master device must be configured with late Internal Reset, which is the default option. One CLB and one IOB in the lead XC3000-family device are used to generate the additional CCLK pulse required by the XC4000 Series devices. When the lead device removes the internal RESET signal, the 2-bit shift register responds to its clock input and generates an active Low output signal for the duration of the subsequent clock period. An external connection between this output and CCLK thus creates the extra CCLK pulse. Figure 44: CCLK Generation for XC3000 Master Driving an XC4000 Series Slave # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays The default option, and the most practical one, is for DONE to go High first, disconnecting the configuration data source and avoiding any contention when the I/Os become active one clock later. Reset/Set is then released another clock period later to make sure that user-operation starts from stable internal conditions. This is the most common sequence, shown with heavy lines in Figure 47, but the designer can modify it to meet particular requirements. Normally, the start-up sequence is controlled by the internal device oscillator output (CCLK), which is asynchronous to the system clock. XC4000 Series offers another start-up clocking option, UCLK_NOSYNC. The three events described above need not be triggered by CCLK. They can, as a configuration option, be triggered by a user clock. This means that the device can wake up in synchronism with the user system. When the UCLK_SYNC option is enabled, the user can externally hold the open-drain DONE output Low, and thus stall all further progress in the start-up sequence until DONE is released and has gone High. This option can be used to force synchronization of several FPGAs to a common user clock, or to guarantee that all devices are successfully configured before any I/Os go active. If either of these two options is selected, and no user clock is specified in the design or attached to the device, the chip could reach a point where the configuration of the device is complete and the Done pin is asserted, but the outputs do not become active. The solution is either to recreate the bitstream specifying the start-up clock as CCLK, or to supply the appropriate user clock. ## Start-up Sequence The Start-up sequence begins when the configuration memory is full, and the total number of configuration clocks received since $\overline{\text{INIT}}$ went High equals the loaded value of the length count. The next rising clock edge sets a flip-flop Q0, shown in Figure 48. Q0 is the leading bit of a 5-bit shift register. The outputs of this register can be programmed to control three events. - The release of the open-drain DONE output - The change of configuration-related pins to the user function, activating all IOBs. - The termination of the global Set/Reset initialization of all CLB and IOB storage elements. The DONE pin can also be wire-ANDed with DONE pins of other FPGAs or with other external signals, and can then be used as input to bit Q3 of the start-up register. This is called "Start-up Timing Synchronous to Done In" and is selected by either CCLK SYNC or UCLK SYNC. When DONE is not used as an input, the operation is called "Start-up Timing Not Synchronous to DONE In," and is selected by either CCLK_NOSYNC or UCLK_NOSYNC. As a
configuration option, the start-up control register beyond Q0 can be clocked either by subsequent CCLK pulses or from an on-chip user net called STARTUP.CLK. These signals can be accessed by placing the STARTUP library symbol. ## **Start-up from CCLK** If CCLK is used to drive the start-up, Q0 through Q3 provide the timing. Heavy lines in Figure 47 show the default timing, which is compatible with XC2000 and XC3000 devices using early DONE and late Reset. The thin lines indicate all other possible timing options. Figure 48: Start-up Logic ## Readback The user can read back the content of configuration memory and the level of certain internal nodes without interfering with the normal operation of the device. Readback not only reports the downloaded configuration bits, but can also include the present state of the device, represented by the content of all flip-flops and latches in CLBs and IOBs, as well as the content of function generators used as RAMs. Note that in XC4000 Series devices, configuration data is *not* inverted with respect to configuration as it is in XC2000 and XC3000 families. XC4000 Series Readback does not use any dedicated pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA, RDBK.RIP and RDBK.CLK) that can be routed to any IOB. To access the internal Readback signals, place the READ- BACK library symbol and attach the appropriate pad symbols, as shown in Figure 49. After Readback has been initiated by a High level on RDBK.TRIG after configuration, the RDBK.RIP (Read In Progress) output goes High on the next rising edge of RDBK.CLK. Subsequent rising edges of this clock shift out Readback data on the RDBK.DATA net. Readback data does not include the preamble, but starts with five dummy bits (all High) followed by the Start bit (Low) of the first frame. The first two data bits of the first frame are always High. Each frame ends with four error check bits. They are read back as High. The last seven bits of the last frame are also read back as High. An additional Start bit (Low) and an 11-bit Cyclic Redundancy Check (CRC) signature follow, before RDBK.RIP returns Low. ## XC4000E/EX/XL Program Readback Switching Characteristic Guidelines Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are not measured directly. They are derived from benchmark timing patterns that are taken at device introduction, prior to any process improvements. The following guidelines reflect worst-case values over the recommended operating conditions. ## E/EX | | Description | | Symbol | | Max | Units | |-----------|--|---|-------------------|-----|-----|-------| | rdbk.TRIG | rdbk.TRIG setup to initiate and abort Readback | 1 | T _{RTRC} | 200 | - | ns | | | rdbk.TRIG hold to initiate and abort Readback | 2 | T _{RCRT} | 50 | - | ns | | rdclk.1 | rdbk.DATA delay | 7 | T _{RCRD} | - | 250 | ns | | | rdbk.RIP delay | 6 | T _{RCRR} | - | 250 | ns | | | High time | 5 | T _{RCH} | 250 | 500 | ns | | | Low time | 4 | T _{RCL} | 250 | 500 | ns | Note 1: Timing parameters apply to all speed grades. Note 2: If rdbk.TRIG is High prior to Finished, Finished will trigger the first Readback. ### XL | | Description | 5 | Symbol | Min | Max | Units | |-----------|--|---|-------------------|-----|-----|-------| | rdbk.TRIG | rdbk.TRIG setup to initiate and abort Readback | 1 | T _{RTRC} | 200 | - | ns | | | rdbk.TRIG hold to initiate and abort Readback | 2 | T _{RCRT} | 50 | - | ns | | rdclk.1 | rdbk.DATA delay | 7 | T _{RCRD} | - | 250 | ns | | | rdbk.RIP delay | 6 | T _{RCRR} | - | 250 | ns | | | High time | 5 | T _{RCH} | 250 | 500 | ns | | | Low time | 4 | T _{RCL} | 250 | 500 | ns | Note 1: Timing parameters apply to all speed grades. Note 2: If rdbk.TRIG is High prior to Finished, Finished will trigger the first Readback. ## **Configuration Timing** The seven configuration modes are discussed in detail in this section. Timing specifications are included. #### **Slave Serial Mode** In Slave Serial mode, an external signal drives the CCLK input of the FPGA. The serial configuration bitstream must be available at the DIN input of the lead FPGA a short setup time before each rising CCLK edge. The lead FPGA then presents the preamble data—and all data that overflows the lead device—on its DOUT pin. There is an internal delay of 0.5 CCLK periods, which means that DOUT changes on the falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge. Figure 51 shows a full master/slave system. An XC4000 Series device in Slave Serial mode should be connected as shown in the third device from the left. Slave Serial mode is selected by a <111> on the mode pins (M2, M1, M0). Slave Serial is the default mode if the mode pins are left unconnected, as they have weak pull-up resistors during configuration. Figure 51: Master/Slave Serial Mode Circuit Diagram | | Description | | Symbol | Min | Max | Units | |------|-------------|---|------------------|-----|-----|-------| | | DIN setup | 1 | T _{DCC} | 20 | | ns | | | DIN hold | 2 | T _{CCD} | 0 | | ns | | CCLK | DIN to DOUT | 3 | T _{CCO} | | 30 | ns | | CCLR | High time | 4 | T _{CCH} | 45 | | ns | | | Low time | 5 | T _{CCL} | 45 | | ns | | | Frequency | | F _{CC} | | 10 | MHz | Note: Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High. Figure 52: Slave Serial Mode Programming Switching Characteristics | | Description | , | Symbol | Min | Max | Units | |---------|--|---|-------------------|-----|-----|-----------------| | \\/#ito | Effective Write time (CSO, WS=Low; RS, CS1=High) | 1 | T _{CA} | 100 | | ns | | Write | DIN setup time | 2 | T _{DC} | 60 | | ns | | | DIN hold time | 3 | T _{CD} | 0 | | ns | | | RDY/BUSY delay after end of Write or Read | 4 | T _{WTRB} | | 60 | ns | | RDY | RDY/BUSY active after beginning of Read | 7 | | | 60 | ns | | | RDY/BUSY Low output (Note 4) | 6 | T _{BUSY} | 2 | 9 | CCLK
periods | - Notes: 1. Configuration must be delayed until the NIT pins of all daisy-chained FPGAs are High. - 2. The time from the end of WS to CCLK cycle for the new byte of data depends on the completion of previous byte processing and the phase of the internal timing generator for CCLK. - 3. CCLK and DOUT timing is tested in slave mode. - 4. T_{RUSY} indicates that the double-buffered parallel-to-serial converter is not yet ready to receive new data. The shortest T_{BUSY} occurs when a byte is loaded into an empty parallel-to-serial converter. The longest T_{BUSY} occurs when a new word is loaded into the input register before the second-level buffer has started shifting out data This timing diagram shows very relaxed requirements. Data need not be held beyond the rising edge of WS. RDY/BUSY will go active within 60 ns after the end of WS. A new write may be asserted immediately after RDY/BUSY goes Low, but write may not be terminated until RDY/BUSY has been High for one CCLK period. Figure 59: Asynchronous Peripheral Mode Programming Switching Characteristics ## **Configuration Switching Characteristics** ## Master Modes (XC4000E/EX) | Description | Symbol | Min | Max | Units | | |----------------------------|-----------|-------------------|-----|-------|------------| | | M0 = High | T _{POR} | 10 | 40 | ms | | Power-On Reset | M0 = Low | T _{POR} | 40 | 130 | ms | | Program Latency | | T _{PI} | 30 | 200 | μs per | | | | | | | CLB column | | CCLK (output) Delay | | T _{ICCK} | 40 | 250 | μs | | CCLK (output) Period, slow | | T _{CCLK} | 640 | 2000 | ns | | CCLK (output) Period, fast | | T _{CCLK} | 80 | 250 | ns | ## Master Modes (XC4000XL) | Description | | Symbol | Min | Max | Units | |----------------------------|-----------|-------------------|-----|------|------------| | | M0 = High | T _{POR} | 10 | 40 | ms | | Power-On Reset | M0 = Low | T _{POR} | 40 | 130 | ms | | Program Latency | | T _{Pl} | 30 | 200 | μs per | | | | | | | CLB column | | CCLK (output) Delay | | T _{ICCK} | 40 | 250 | μs | | CCLK (output) Period, slow | | T _{CCLK} | 540 | 1600 | ns | | CCLK (output) Period, fast | | T _{CCLK} | 67 | 200 | ns | ## Slave and Peripheral Modes (All) | Description | Symbol | Min | Max | Units | |--------------------------------|-------------------|-----|-----|----------------------| | Power-On Reset | T _{POR} | 10 | 33 | ms | | Program Latency | T _{Pl} | 30 | 200 | μs per
CLB column | | CCLK (input) Delay (required) | T _{ICCK} | 4 | | μs | | CCLK (input) Period (required) | T _{CCLK} | 100 | | ns | ## **Product Availability** Table 24, Table 25, and Table 26 show the planned packages and speed grades for XC4000-Series devices. Call your local sales office for the latest availability information, or see the Xilinx website at http://www.xilinx.com for the latest revision of the specifications. Table 24: Component Availability Chart for XC4000XL FPGAs | | PINS | 84 | 100 | 100 | 144 | 144 | 160 | 160 | 176 | 176 | 208 | 208 | 240 | 240 | 256 | 299 | 304 | 352 | 411 | 432 | 475 | 559 | 560 | |--------------|------------|----------------|----------------|----------------|----------------|--------------------|-------------------|----------------|----------------|--------------------|-------------------|----------------|-------------------|----------------|---------------|---------------|-------------------|---------------|---------------|---------------|---------------|---------------|---------------| TYPE
CODE | | Plast.
PLCC | Plast.
PQFP | Plast.
VQFP | Plast.
TQFP | High-Perf.
TQFP | High-Perf.
QFP | Plast.
PQFP | Plast.
TQFP | High-Perf.
TQFP | High-Perf.
QFP | Plast.
PQFP | High-Perf.
QFP | Plast.
PQFP | Plast.
BGA | Ceram.
PGA |
High-Perf.
QFP | Plast.
BGA | Ceram.
PGA | Plast.
BGA | Ceram.
PGA | Ceram.
PGA | Plast.
BGA | | | | PC84 | PQ100 | VQ100 | TQ144 | HT144 | HQ160 | PQ160 | TQ176 | HT176 | HQ208 | PQ208 | HQ240 | PQ240 | BG256 | PG299 | HQ304 | BG352 | PG411 | BG432 | PG475 | PG559 | BG560 | | XC4002XL | -3 | СІ | СІ | СІ | -2 | СІ | СІ | СІ | -1 | СІ | СІ | СІ | -09C | С | С | С | XC4005XL | -3 | СІ | СІ | СІ | СІ | | | СІ | | | | СІ | | | | | | | | | | | | | | -2 | CI | С | CI | CI | | | CI | | | | CI | | | | | | | | | | | | | | -1
-09C | C I | CI | C I | C I | | | C I | | | | C I | | | | | | | | | | | | | | -3 | CI | CI | | CI | | | CI | СІ | | | CI | | | СІ | | | | | | | | | | XC4010XL | -2 | СІ | СІ | | СІ | | | СІ | CI | | | CI | | | CI | | | | | | | | | | | -1 | СІ | СІ | | СІ | | | СІ | СІ | | | СІ | | | CI | | | | | | | | | | | -09C | С | С | | С | | | С | С | | | С | | | С | | | | | | | | | | XC4013XL | -3
-2 | | | | | CI | CI | | | | | | | | | | | -1 | | | | | CI | CI | | | | | | | | | | | -09C | | | | | C | | C | | C | | C | | C | C | | | | | | | | | | | -08C | | | | | С | | С | | С | | С | | С | С | | | | | | | | | | | -3 | | | | | СІ | | CI | | CI | | СІ | | CI | СІ | | | | | | | | | | XC4020XL | -2 | | | | | СІ | СІ | | | | | | | | | | | -1 | | | | | СІ | | СІ | | СI | | СІ | | CI | СІ | | | | | | | | | | | -09C | | | | | С | | С | | С | | С | | С | С | | | | | | | | | | | -3 | | | | | | CI | | | | CI | | CI | | CI | CI | CI | CI | | | | | | | XC4028XL | -2
-1 | | | | | | CI | | | | CI | | CI | | CI | CI | CI | CI | | | | | | | | -09C | | | | | | C | | | | C | | С | | С | С | C | C | | | | | | | | -3 | | | | | | CI | | | | CI | | CI | | | | CI | CI | СІ | CI | | | | | | -2 | | | | | | СІ | | | | СІ | | С | | | | CI | CI | CI | СІ | | | | | XC4036XL | -1 | | | | | | СІ | | | | СІ | | СІ | | | | СІ | СІ | СІ | СІ | | | | | | -09C | | | | | | O | | | | С | | С | | | | С | С | С | С | | | | | | -08C | | | | | | С | | | | С | | С | | | | С | С | С | С | | | | | XC4044XL | -3 | | | | | | CI | | | | CI | | CI | | | | CI | CI | CI | CI | | | | | | -2
-1 | | | | | | CI | | | | CI | | CI | | | | CI | CI | CI | CI | | | | | | -09C | | | | | | С | | | | С | | С | | | | С | C | С | С | | | | | XC4052XL | -3 | | | | | | | | | | | | CI | | | | CI | <u> </u> | CI | CI | | | СІ | | | -2 | | | | | | | | | | | | CI | | | | CI | | CI | CI | | | CI | | | -1 | | | | | | | | | | | | СІ | | | | СІ | | СІ | СІ | | | СІ | | | -09C | | | | | | | | | | | | С | | | | С | | С | С | | | С | | XC4062XL | -3 | | | | | | | | | | | | CI | | | | CI | | | CI | CI | | CI | | | -2 | | | | | | | | | | | | CI | | | | CI | | | CI | CI | | CI | | | -1
-09C | | | | | | | | | | | | C1 | | | | CI | | | C I | C I | | CI
C | | | -09C | | | | | | | | | | | | С | | - | | С | | | С | С | | С | | XC4085XL | -3 | | | | | | | | | | | | | | | | | | | CI | | CI | CI | | | -2 | | | | | | | | | | | | | | | | | | | CI | | CI | CI | | | -1 | | | | | | | | | | | | | | | | | | | CI | | CI | CI | | | -09C | | | | | | | | | | | | | | | | | | | С | | С | С | | 1/29/99 | 550 | | | | | | | | | | | | | | | | | | | J | | | | 1/29/99 $C = Commercial \ T_J = 0^{\circ} \ to \ +85^{\circ}C$ I= Industrial $T_J = -40^{\circ}C$ to $+100^{\circ}C$ ## XC4000 Series Electrical Characteristics and Device-Specific Pinout Table For the latest Electrical Characteristics and package/pinout information for each XC4000 Family, see the Xilinx web site at http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp ## **Ordering Information** X9020 ## **Revision Control** | Version | Description | | | | | | | |---------------|---|--|--|--|--|--|--| | 3/30/98 (1.5) | Updated XC4000XL timing and added XC4002XL | | | | | | | | 1/29/99 (1.5) | Updated pin diagrams | | | | | | | | 5/14/99 (1.6) | Replaced Electrical Specification and pinout pages for E, EX, and XL families with separate updates and | | | | | | | | | added URL link for electrical specifications/pinouts for Web users | | | | | | |