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Set/Reset

An asynchronous storage element input (SR) can be con-
figured as either set or reset. This configuration option
determines the state in which each flip-flop becomes oper-
ational after configuration. It also determines the effect of a
Global Set/Reset pulse during normal operation, and the
effect of a pulse on the SR pin of the CLB. All three
set/reset functions for any single flip-flop are controlled by
the same configuration data bit.

The set/reset state can be independently specified for each
flip-flop. This input can also be independently disabled for
either flip-flop.

The set/reset state is specified by using the INIT attribute,
or by placing the appropriate set or reset flip-flop library
symbol.

SR is active High. It is not invertible within the CLB.
Global Set/Reset

A separate Global Set/Reset line (not shown in Figure 1)
sets or clears each storage element during power-up,
re-configuration, or when a dedicated Reset net is driven
active. This global net (GSR) does not compete with other
routing resources; it uses a dedicated distribution network.

Each flip-flop is configured as either globally set or reset in
the same way that the local set/reset (SR) is specified.
Therefore, if a flip-flop is set by SR, it is also set by GSR.
Similarly, a reset flip-flop is reset by both SR and GSR.

STARTUP
PAD } GSR Q2 —
IBUF —{ GTS Q3 —
QlQ4 | —
—> CLK DONEIN —
X5260

Figure 2: Schematic Symbols for Global Set/Reset

GSR can be driven from any user-programmable pin as a
global reset input. To use this global net, place an input pad
and input buffer in the schematic or HDL code, driving the
GSR pin of the STARTUP symbol. (See Figure 2.) A spe-
cific pin location can be assigned to this input using a LOC
attribute or property, just as with any other user-program-
mable pad. An inverter can optionally be inserted after the
input buffer to invert the sense of the Global Set/Reset sig-
nal.

Alternatively, GSR can be driven from any internal node.

Data Inputs and Outputs

The source of a storage element data input is programma-
ble. It is driven by any of the functions F’, G’, and H’, or by
the Direct In (DIN) block input. The flip-flops or latches drive
the XQ and YQ CLB outputs.

Two fast feed-through paths are available, as shown in
Figure 1. A two-to-one multiplexer on each of the XQ and
YQ outputs selects between a storage element output and
any of the control inputs. This bypass is sometimes used by
the automated router to repower internal signals.

Control Signals

Multiplexers in the CLB map the four control inputs (C1 - C4
in Figure 1) into the four internal control signals (H1,
DIN/H2, SR/HO, and EC). Any of these inputs can drive any
of the four internal control signals.

When the logic function is enabled, the four inputs are:

 EC — Enable Clock

¢ SR/HO — Asynchronous Set/Reset or H function
generator Input O

¢ DIN/H2 — Direct In or H function generator Input 2

e H1 — H function generator Input 1.

When the memory function is enabled, the four inputs are:

e EC — Enable Clock

« WE — Write Enable

« DO — Data Input to F and/or G function generator

¢ D1 — Data input to G function generator (16x1 and
16x2 modes) or 5th Address bit (32x1 mode).

Using FPGA Flip-Flops and Latches

The abundance of flip-flops in the XC4000 Series invites
pipelined designs. This is a powerful way of increasing per-
formance by breaking the function into smaller subfunc-
tions and executing them in parallel, passing on the results
through pipeline flip-flops. This method should be seriously
considered wherever throughput is more important than
latency.

To include a CLB flip-flop, place the appropriate library
symbol. For example, FDCE is a D-type flip-flop with clock
enable and asynchronous clear. The corresponding latch
symbol (for the XC4000X only) is called LDCE.

In XC4000 Series devices, the flip flops can be used as reg-
isters or shift registers without blocking the function gener-
ators from performing a different, perhaps unrelated task.
This ability increases the functional capacity of the devices.

The CLB setup time is specified between the function gen-
erator inputs and the clock input K. Therefore, the specified
CLB flip-flop setup time includes the delay through the
function generator.

Using Function Generators as RAM

Optional modes for each CLB make the memory look-up
tables in the F and G’ function generators usable as an
array of Read/Write memory cells. Available modes are
level-sensitive (similar to the XC4000/A/H families),
edge-triggered, and dual-port edge-triggered. Depending
on the selected mode, a single CLB can be configured as
either a 16x2, 32x1, or 16x1 bit array.
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Supported CLB memory configurations and timing modes
for single- and dual-port modes are shown in Table 3.

XC4000 Series devices are the first programmable logic
devices with edge-triggered (synchronous) and dual-port
RAM accessible to the user. Edge-triggered RAM simpli-
fies system timing. Dual-port RAM doubles the effective
throughput of FIFO applications. These features can be
individually programmed in any XC4000 Series CLB.

Advantages of On-Chip and Edge-Triggered RAM

The on-chip RAM is extremely fast. The read access time is
the same as the logic delay. The write access time is
slightly slower. Both access times are much faster than
any off-chip solution, because they avoid I/0O delays.

Edge-triggered RAM, also called synchronous RAM, is a
feature never before available in a Field Programmable
Gate Array. The simplicity of designing with edge-triggered
RAM, and the markedly higher achievable performance,
add up to a significant improvement over existing devices
with on-chip RAM.

Three application notes are available from Xilinx that dis-
cuss edge-triggered RAM: “XC4000E Edge-Triggered and
Dual-Port RAM Capability; “Implementing FIFOs in
XC4000E RAM, and “Synchronous and Asynchronous
FIFO Designs” All three application notes apply to both
XC4000E and XC4000X RAM.

Table 3: Supported RAM Modes

16 | 16 | 32 Edge- Level-

X X X | Triggered | Sensitive

1 2 1 Timing Timing
Single-Port v v v v v
Dual-Port v v

RAM Configuration Options

The function generators in any CLB can be configured as
RAM arrays in the following sizes:

» Two 16x1 RAMSs: two data inputs and two data outputs
with identical or, if preferred, different addressing for
each RAM

* One 32x1 RAM: one data input and one data output.

One F or G function generator can be configured as a 16x1
RAM while the other function generators are used to imple-
ment any function of up to 5 inputs.

Additionally, the XC4000 Series RAM may have either of
two timing modes:

» Edge-Triggered (Synchronous): data written by the
designated edge of the CLB clock. WE acts as a true
clock enable.

* Level-Sensitive (Asynchronous): an external WE signal
acts as the write strobe.

The selected timing mode applies to both function genera-
tors within a CLB when both are configured as RAM.

The number of read ports is also programmable:

¢ Single Port: each function generator has a common
read and write port

e Dual Port: both function generators are configured
together as a single 16x1 dual-port RAM with one write
port and two read ports. Simultaneous read and write
operations to the same or different addresses are
supported.

RAM configuration options are selected by placing the
appropriate library symbol.

Choosing a RAM Configuration Mode

The appropriate choice of RAM mode for a given design
should be based on timing and resource requirements,
desired functionality, and the simplicity of the design pro-
cess. Recommended usage is shown in Table 4.

The difference between level-sensitive, edge-triggered,
and dual-port RAM is only in the write operation. Read
operation and timing is identical for all modes of operation.

Table 4: RAM Mode Selection

Dual-Port
Level-Sens | Edge-Trigg | Edge-Trigg
itive ered ered
Use_for New No Yes Yes
Designs?
Size (16x1, 1/2CLB | 1/2CLB 1CLB
Registered)
Simultaneous
Read/Write No No Yes
Relative 2X (4X
Performance X 2X effective)

RAM Inputs and Outputs

The F1-F4 and G1-G4 inputs to the function generators act
as address lines, selecting a particular memory cell in each
look-up table.

The functionality of the CLB control signals changes when
the function generators are configured as RAM. The
DIN/H2, H1, and SR/HO lines become the two data inputs
(DO, D1) and the Write Enable (WE) input for the 16x2
memory. When the 32x1 configuration is selected, D1 acts
as the fifth address bit and DO is the data input.

The contents of the memory cell(s) being addressed are
available at the F’ and G’ function-generator outputs. They
can exit the CLB through its X and Y outputs, or can be cap-
tured in the CLB flip-flop(s).

Configuring the CLB function generators as Read/Write
memory does not affect the functionality of the other por-
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Fast Carry Logic

Each CLB F and G function generator contains dedicated
arithmetic logic for the fast generation of carry and borrow
signals. This extra output is passed on to the function gen-
erator in the adjacent CLB. The carry chain is independent
of normal routing resources.

Dedicated fast carry logic greatly increases the efficiency
and performance of adders, subtractors, accumulators,
comparators and counters. It also opens the door to many
new applications involving arithmetic operation, where the
previous generations of FPGAs were not fast enough or too
inefficient. High-speed address offset calculations in micro-
processor or graphics systems, and high-speed addition in
digital signal processing are two typical applications.

The two 4-input function generators can be configured as a
2-bit adder with built-in hidden carry that can be expanded
to any length. This dedicated carry circuitry is so fast and
efficient that conventional speed-up methods like carry
generate/propagate are meaningless even at the 16-bit
level, and of marginal benefit at the 32-bit level.

This fast carry logic is one of the more significant features
of the XC4000 Series, speeding up arithmetic and counting
into the 70 MHz range.

The carry chain in XC4000E devices can run either up or
down. At the top and bottom of the columns where there
are no CLBs above or below, the carry is propagated to the
right. (See Figure 11.) In order to improve speed in the
high-capacity XC4000X devices, which can potentially
have very long carry chains, the carry chain travels upward
only, as shown in Figure 12. Additionally, standard intercon-
nect can be used to route a carry signal in the downward
direction.

Figure 13 on page 19 shows an XC4000E CLB with dedi-
cated fast carry logic. The carry logic in the XC4000X is
similar, except that COUT exits at the top only, and the sig-
nal CINDOWN does not exist. As shown in Figure 13, the
carry logic shares operand and control inputs with the func-
tion generators. The carry outputs connect to the function
generators, where they are combined with the operands to
form the sums.

Figure 14 on page 20 shows the details of the carry logic
for the XC4000E. This diagram shows the contents of the
box labeled “CARRY LOGIC” in Figure 13. The XC4000X
carry logic is very similar, but a multiplexer on the
pass-through carry chain has been eliminated to reduce
delay. Additionally, in the XC4000X the multiplexer on the
G4 path has a memory-programmable O input, which per-
mits G4 to directly connect to COUT. G4 thus becomes an
additional high-speed initialization path for carry-in.

The dedicated carry logic is discussed in detail in Xilinx
document XAPP 013: “Using the Dedicated Carry Logic in

XC4000" This discussion also applies to XC4000E
devices, and to XC4000X devices when the minor logic
changes are taken into account.

The fast carry logic can be accessed by placing special
library symbols, or by using Xilinx Relationally Placed Mac-
ros (RPMs) that already include these symbols.

CLB > CLB %%+ CLB ——=| CLB
CLB CLB CLB CLB
Ff T 1% 73
CLB CLB CLB CLB
CLB » CLB [+ CLB »( CLB

X6687

Figure 11: Available XC4000E Carry Propagation
Paths

CLB |-:#| CLB }---»| CLB }---+| CLB
Y E Y E Iy E 4
CLB | i+ CLB | i+ CLB | i CLB
3 i k3 i k3 i k3
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cLB | ++ cLB | -+ cLB | -+ CLB
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Figure 12: Available XC4000X Carry Propagation
Paths (dotted lines use general interconnect)
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or clear on reset and after configuration. Other than the glo-
bal GSR net, no user-controlled set/reset signal is available
to the I/O flip-flops. The choice of set or clear applies to
both the initial state of the flip-flop and the response to the
Global Set/Reset pulse. See “Global Set/Reset” on
page 11 for a description of how to use GSR.

JTAG Support

Embedded logic attached to the IOBs contains test struc-
tures compatible with IEEE Standard 1149.1 for boundary
scan testing, permitting easy chip and board-level testing.
More information is provided in “Boundary Scan” on
page 42.

Three-State Buffers

A pair of 3-state buffers is associated with each CLB in the
array. (See Figure 27 on page 30.) These 3-state buffers
can be used to drive signals onto the nearest horizontal
longlines above and below the CLB. They can therefore be
used to implement multiplexed or bidirectional buses on the
horizontal longlines, saving logic resources. Programmable
pull-up resistors attached to these longlines help to imple-
ment a wide wired-AND function.

The buffer enable is an active-High 3-state (i.e. an
active-Low enable), as shown in Table 13.

Another 3-state buffer with similar access is located near
each 1/0 block along the right and left edges of the array.
(See Figure 33 on page 34.)

The horizontal longlines driven by the 3-state buffers have
a weak keeper at each end. This circuit prevents undefined
floating levels. However, it is overridden by any driver, even
a pull-up resistor.

Special longlines running along the perimeter of the array
can be used to wire-AND signals coming from nearby IOBs
or from internal longlines. These longlines form the wide
edge decoders discussed in “Wide Edge Decoders” on
page 27.

Three-State Buffer Modes

The 3-state buffers can be configured in three modes:

» Standard 3-state buffer
* Wired-AND with input on the | pin
* Wired OR-AND

Z=D,+ Dy« (D+Dp) « (Dg+Dp)

Standard 3-State Buffer

All three pins are used. Place the library element BUFT.
Connect the input to the | pin and the output to the O pin.
The T pin is an active-High 3-state (i.e. an active-Low
enable). Tie the T pin to Ground to implement a standard
buffer.

Wired-AND with Input on the | Pin

The buffer can be used as a Wired-AND. Use the WAND1
library symbol, which is essentially an open-drain buffer.
WAND4, WANDS8, and WAND16 are also available. See the
XACT Libraries Guide for further information.

The T pin is internally tied to the | pin. Connect the input to
the I pin and the output to the O pin. Connect the outputs of
all the WAND1s together and attach a PULLUP symbol.

Wired OR-AND

The buffer can be configured as a Wired OR-AND. A High
level on either input turns off the output. Use the
WOR2AND library symbol, which is essentially an
open-drain 2-input OR gate. The two input pins are func-
tionally equivalent. Attach the two inputs to the 10 and I1
pins and tie the output to the O pin. Tie the outputs of all the
WOR2ANDSs together and attach a PULLUP symbol.

Three-State Buffer Examples

Figure 21 shows how to use the 3-state buffers to imple-
ment a wired-AND function. When all the buffer inputs are
High, the pull-up resistor(s) provide the High output.

Figure 22 shows how to use the 3-state buffers to imple-
ment a multiplexer. The selection is accomplished by the
buffer 3-state signal.

Pay particular attention to the polarity of the T pin when
using these buffers in a design. Active-High 3-state (T) is
identical to an active-Low output enable, as shown in
Table 13.

Table 13: Three-State Buffer Functionality

IN T ouT
X 1 Z
IN 0 IN

DA DB
|:: WANDL |:: WANDL

Jo—— 4o

rrco
"\/\/\/L‘
oC

WOR2AND WOR2AND

X6465

Figure 21: Open-Drain Buffers Implement a Wired-AND Function
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The oscillator output is optionally available after configura-
tion. Any two of four resynchronized taps of a built-in divider
are also available. These taps are at the fourth, ninth, four-
teenth and nineteenth bits of the divider. Therefore, if the
primary oscillator output is running at the nominal 8 MHz,
the user has access to an 8 MHz clock, plus any two of 500
kHz, 16kHz, 490Hz and 15Hz (up to 10% lower for low-volt-
age devices). These frequencies can vary by as much as
-50% or +25%.

These signals can be accessed by placing the OSC4
library element in a schematic or in HDL code (see
Figure 24).

The oscillator is automatically disabled after configuration if
the OSC4 symbol is not used in the design.

Programmable Interconnect

All internal connections are composed of metal segments
with programmable switching points and switching matrices
to implement the desired routing. A structured, hierarchical
matrix of routing resources is provided to achieve efficient
automated routing.

The XC4000E and XC4000X share a basic interconnect
structure. XC4000X devices, however, have additional rout-
ing not available in the XC4000E. The extra routing
resources allow high utilization in high-capacity devices. All
XC4000X-specific routing resources are clearly identified
throughout this section. Any resources not identified as
XC4000X-specific are present in all XC4000 Series
devices.

This section describes the varied routing resources avail-
able in XC4000 Series devices. The implementation soft-
ware automatically assigns the appropriate resources
based on the density and timing requirements of the
design.

Interconnect Overview
There are several types of interconnect.

» CLB routing is associated with each row and column of
the CLB array.

» |OB routing forms a ring (called a VersaRing) around
the outside of the CLB array. It connects the I/O with the
internal logic blocks.

* Global routing consists of dedicated networks primarily
designed to distribute clocks throughout the device with
minimum delay and skew. Global routing can also be
used for other high-fanout signals.

Five interconnect types are distinguished by the relative
length of their segments: single-length lines, double-length
lines, quad and octal lines (XC4000X only), and longlines.
In the XC4000X, direct connects allow fast data flow
between adjacent CLBs, and between I0Bs and CLBs.

Extra routing is included in the IOB pad ring. The XC4000X
also includes a ring of octal interconnect lines near the
IOBs to improve pin-swapping and routing to locked pins.

XC4000E/X devices include two types of global buffers.
These global buffers have different properties, and are
intended for different purposes. They are discussed in
detail later in this section.

CLB Routing Connections

A high-level diagram of the routing resources associated
with one CLB is shown in Figure 25. The shaded arrows
represent routing present only in XC4000X devices.

Table 14 shows how much routing of each type is available
in XC4000E and XC4000X CLB arrays. Clearly, very large
designs, or designs with a great deal of interconnect, will
route more easily in the XC4000X. Smaller XC4000E
designs, typically requiring significantly less interconnect,
do not require the additional routing.

Figure 27 on page 30 is a detailed diagram of both the
XC4000E and the XC4000X CLB, with associated routing.
The shaded square is the programmable switch matrix,
present in both the XC4000E and the XC4000X. The
L-shaped shaded area is present only in XC4000X devices.
As shown in the figure, the XC4000X block is essentially an
XC4000E block with additional routing.

CLB inputs and outputs are distributed on all four sides,
providing maximum routing flexibility. In general, the entire
architecture is symmetrical and regular. It is well suited to
established placement and routing algorithms. Inputs, out-
puts, and function generators can freely swap positions
within a CLB to avoid routing congestion during the place-
ment and routing operation.
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Figure 27: Detail of Programmable Interconnect Associated with XC4000 Series CLB
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Figure 32: XC4000X Octal I/0 Routing
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Figure 36: Any BUFGLS (GCKL1 - GCK8) Can
Drive Any or All Clock Inputs on the Device

Global Early Buffers

Each corner of the XC4000X device has two Global Early
buffers. The primary purpose of the Global Early buffers is
to provide an earlier clock access than the potentially
heavily-loaded Global Low-Skew buffers. A clock source
applied to both buffers will result in the Global Early clock
edge occurring several nanoseconds earlier than the Glo-
bal Low-Skew buffer clock edge, due to the lighter loading.

Global Early buffers also facilitate the fast capture of device
inputs, using the Fast Capture latches described in “IOB
Input Signals” on page 20. For Fast Capture, take a single
clock signal, and route it through both a Global Early buffer
and a Global Low-Skew buffer. (The two buffers share an
input pad.) Use the Global Early buffer to clock the Fast
Capture latch, and the Global Low-Skew buffer to clock the
normal input flip-flop or latch, as shown in Figure 17 on
page 23.

The Global Early buffers can also be used to provide a fast
Clock-to-Out on device output pins. However, an early clock
in the output flip-flop IOB must be taken into consideration
when calculating the internal clock speed for the design.

The Global Early buffers at the left and right edges of the
chip have slightly different capabilities than the ones at the
top and bottom. Refer to Figure 37, Figure 38, and
Figure 35 on page 36 while reading the following explana-
tion.

Each Global Early buffer can access the eight vertical Glo-
bal lines for all CLBs in the quadrant. Therefore, only
one-fourth of the CLB clock pins can be accessed. This
restriction is in large part responsible for the faster speed of
the buffers, relative to the Global Low-Skew buffers.

8 7
> | 0B | | 0B B¢
1v v 6
I [
(0] CLB CLB o
B B
I [
(¢} CLB CLB o
B B
A A
2 D OB | 10B R 5
3 4

X6751

Figure 37: Left and Right BUFGEs Can Drive Any or
All Clock Inputs in Same Quadrant or Edge (GCK1 is
shown. GCK2, GCK5 and GCKG6 are similar.)

The left-side Global Early buffers can each drive two of the
four vertical lines accessing the I0Bs on the entire left edge
of the device. The right-side Global Early buffers can each
drive two of the eight vertical lines accessing the IOBs on
the entire right edge of the device. (See Figure 37.)

Each left and right Global Early buffer can also drive half of
the I0Bs along either the top or bottom edge of the device,
using a dedicated line that can only be accessed through
the Global Early buffers.

The top and bottom Global Early buffers can drive half of
the 10Bs along either the left or right edge of the device, as
shown in Figure 38. They can only access the top and bot-
tom 10Bs via the CLB global lines.

8 7
| 0B | | I0B |
1v v 6
I I
0] CLB CLB o
B B
I I
] CLB CLB o
B
A A
2 > 10B | 10B | < 5
3 4

X6747

Figure 38: Top and Bottom BUFGEs Can Drive Any
or All Clock Inputs in Same Quadrant (GCK8 is
shown. GCK3, GCK4 and GCK?7 are similar.)
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The top and bottom Global Early buffers are about 1 ns
slower clock to out than the left and right Global Early buff-
ers.

The Global Early buffers can be driven by either semi-ded-
icated pads or internal logic. They share pads with the Glo-
bal Low-Skew buffers, so a single net can drive both global
buffers, as described above.

To use a Global Early buffer, place a BUFGE element in a
schematic or in HDL code. If desired, attach a LOC
attribute or property to direct placement to the designated
location. For example, attach a LOC=T attribute or property
to direct that a BUFGE be placed in one of the two Global
Early buffers on the top edge of the device, ora LOC=TR to
indicate the Global Early buffer on the top edge of the
device, on the right.

Power Distribution

Power for the FPGA is distributed through a grid to achieve
high noise immunity and isolation between logic and I/O.
Inside the FPGA, a dedicated Vcc and Ground ring sur-
rounding the logic array provides power to the I/O drivers,
as shown in Figure 39. An independent matrix of Vcc and
Ground lines supplies the interior logic of the device.

This power distribution grid provides a stable supply and
ground for all internal logic, providing the external package
power pins are all connected and appropriately de-coupled.
Typically, a 0.1 pF capacitor connected between each Vcc
pin and the board’s Ground plane will provide adequate
de-coupling.

Output buffers capable of driving/sinking the specified 12
mA loads under specified worst-case conditions may be
capable of driving/sinking up to 10 times as much current
under best case conditions.

Noise can be reduced by minimizing external load capaci-
tance and reducing simultaneous output transitions in the
same direction. It may also be beneficial to locate heavily
loaded output buffers near the Ground pads. The 1/0O Block
output buffers have a slew-rate limited mode (default) which
should be used where output rise and fall times are not
speed-critical.
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1
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Figure 39: XC4000 Series Power Distribution

Pin Descriptions

There are three types of pins in the XC4000 Series
devices:

e Permanently dedicated pins
e User I/O pins that can have special functions
e Unrestricted user-programmable I/O pins.

Before and during configuration, all outputs not used for the
configuration process are 3-stated with a 50 kQ - 100 kQ
pull-up resistor.

After configuration, if an IOB is unused it is configured as
an input with a 50 kQ - 100 kQ pull-up resistor.

XC4000 Series devices have no dedicated Reset input.
Any user 1/0O can be configured to drive the Global
Set/Reset net, GSR. See “Global Set/Reset” on page 11
for more information on GSR.

XC4000 Series devices have no Powerdown control input,
as the XC3000 and XC2000 families do. The
XC3000/XC2000 Powerdown control also 3-stated all of the
device

I/0 pins. For XC4000 Series devices, use the global 3-state
net, GTS, instead. This net 3-states all outputs, but does
not place the device in low-power mode. See “IOB Output
Signals” on page 23 for more information on GTS.

Device pins for XC4000 Series devices are described in
Table 16. Pin functions during configuration for each of the
seven configuration modes are summarized in Table 22 on
page 58, in the “Configuration Timing” section.
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Table 16: Pin Descriptions (Continued)

Pin Description

These four inputs are used in Asynchronous Peripheral mode. The chip is selected

when CS0 is Low and CS1 is High. While the chip is selected, a Low on Write Strobe
(WS) loads the data present on the DO - D7 inputs into the internal data buffer. A Low
on Read Strobe (RS) changes D7 into a status output — High if Ready, Low if Busy —

Expreimode, CSl1is used as a serial-enable signal for daisy-chaining.
WS and RS should be mutually exclusive, but if both are Low simultaneously, the Write
Strobe overrides. After configuration, these are user-programmable 1/O pins.

During Master Parallel configuration, these 18 output pins address the configuration
EPROM. After configuration, they are user-programmable /O pins.

During Master Parallel configuration with an XC4000X master, these 4 output pins add
4 more bits to address the configuration EPROM. After configuration, they are user-pro-
grammable 1/O pins. (See Master Parallel Configuration section for additional details.)

During Master Parallel and Peripheral configuration, these eight input pins receive con-
figuration data. After configuration, they are user-programmable I/O pins.

During Slave Serial or Master Serial configuration, DIN is the serial configuration data
input receiving data on the rising edge of CCLK. During Parallel configuration, DIN is
the DO input. After configuration, DIN is a user-programmable 1/O pin.

During configuration in any mode but Express mode, DOUT is the serial configuration
data output that can drive the DIN of daisy-chained slave FPGAs. DOUT data changes
on the falling edge of CCLK, one-and-a-half CCLK periods after it was received at the

In Express modefor XC4000E and XC4000X only, DOUT is the status output that can
drive the CS1 of daisy-chained FPGAs, to enable and disable downstream devices.

I/0 I/0
During | After
Pin Name | Config. | Config.
CS0, CS1, | o
WS, RS and drives DO - D6 High.
AO - A17 o I/O
Al18 - A21
(XC4003XL to O I/O
XC4085XL)
DO - D7 1/0
DIN 1/0
DOUT 0] /O |DIN input.
After configuration, DOUT is a user-programmable /O pin.
Unrestricted User-Programmable I/O Pins
o o ﬁik 1o
P tor (25 kQ - 100 kQ) that defines the logic level as High.

These pins can be configured to be input and/or output after configuration is completed.
Before configuration is completed, these pins have an internal high-value pull-up resis-

Boundary Scan

The ‘bed of nails’ has been the traditional method of testing
electronic assemblies. This approach has become less
appropriate, due to closer pin spacing and more sophisti-
cated assembly methods like surface-mount technology
and multi-layer boards. The IEEE Boundary Scan Standard
1149.1 was developed to facilitate board-level testing of
electronic assemblies. Design and test engineers can
imbed a standard test logic structure in their device to
achieve high fault coverage for I/O and internal logic. This
structure is easily implemented with a four-pin interface on
any boundary scan-compatible IC. IEEE 1149.1-compati-
ble devices may be serial daisy-chained together, con-
nected in parallel, or a combination of the two.

The XC4000 Series implements IEEE 1149.1-compatible
BYPASS, PRELOAD/SAMPLE and EXTEST boundary
scan instructions. When the boundary scan configuration
option is selected, three normal user 1/O pins become ded-
icated inputs for these functions. Another user output pin
becomes the dedicated boundary scan output. The details

of how to enable this circuitry are covered later in this sec-
tion.

By exercising these input signals, the user can serially load
commands and data into these devices to control the driv-
ing of their outputs and to examine their inputs. This
method is an improvement over bed-of-nails testing. It
avoids the need to over-drive device outputs, and it reduces
the user interface to four pins. An optional fifth pin, a reset
for the control logic, is described in the standard but is not
implemented in Xilinx devices.

The dedicated on-chip logic implementing the IEEE 1149.1
functions includes a 16-state machine, an instruction regis-
ter and a number of data registers. The functional details
can be found in the IEEE 1149.1 specification and are also
discussed in the Xilinx application note XAPP 017: “Bound-
ary Scan in XC4000 Devices."

Figure 40 on page 43 shows a simplified block diagram of
the XC4000E Input/Output Block with boundary scan
implemented. XC4000X boundary scan logic is identical.
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May 14, 1999 (Version 1.6)



S XILINX®

Product Obsolete or Under Obsolescence
XC4000E and XC4000X Series Field Programmable Gate Arrays

Table 17: Boundary Scan Instructions

Instruction 12 Test I/0 Data
11 10 Selected TDO Source Source
0 0 EXTEST DR DR
0 0 1 |SAMPLE/PR DR Pin/Logic
ELOAD
0 1 0 USER 1 BSCAN. | User Logic
TDO1
0 1 1 USER 2 BSCAN. | User Logic
TDO2
1 0 0 |READBACK | Readback | Pin/Logic
Data
1 0 1 |CONFIGURE| DOUT Disabled
1 1 0 Reserved — —
1 1 1 BYPASS Bypass —
Register
Bit 0 ( TDO end) TDO.T
Bit 1 TDO.O
Bit 2
{ Top-edge I0Bs (Right to Left)

{ Left-edge I0Bs (Top to Bottom)

MDL1.T
MD1.0
MD1.I
MDO.!
MD2.1

{ Bottom-edge 10Bs (Left to Right)

{ Right-edge 10Bs (Bottom to Top)

B SCANT.UPD

(TDI end)

X6075

Figure 42: Boundary Scan Bit Sequence

Avoiding Inadvertent Boundary Scan

If TMS or TCK is used as user I/O, care must be taken to
ensure that at least one of these pins is held constant dur-
ing configuration. In some applications, a situation may
occur where TMS or TCK is driven during configuration.
This may cause the device to go into boundary scan mode
and disrupt the configuration process.

To prevent activation of boundary scan during configura-
tion, do either of the following:

« TMS: Tie High to put the Test Access Port controller
in a benign RESET state
» TCK: Tie High or Low—don't toggle this clock input.

For more information regarding boundary scan, refer to the
Xilinx Application Note XAPP 017.001, “Boundary Scan in
XC4000E Devices."

Optional l\ To User
l/ Logic
IBUF
BSCAN
[ ToI DI DO TDO
T™MS ™S DRCK [—
TCK TCK IDLE [—
To User
From — TDO1 SEL1 |— Logic
User Logic — TDO2 SEL2 [—
X2675

Figure 43: Boundary Scan Schematic Example

Configuration

Configuration is the process of loading design-specific pro-
gramming data into one or more FPGAs to define the func-
tional operation of the internal blocks and their
interconnections. This is somewhat like loading the com-
mand registers of a programmable peripheral chip. XC4000
Series devices use several hundred bits of configuration
data per CLB and its associated interconnects. Each con-
figuration bit defines the state of a static memory cell that
controls either a function look-up table bit, a multiplexer
input, or an interconnect pass transistor. The XACTstep
development system translates the design into a netlist file.
It automatically partitions, places and routes the logic and
generates the configuration data in PROM format.

Special Purpose Pins

Three configuration mode pins (M2, M1, M0) are sampled
prior to configuration to determine the configuration mode.
After configuration, these pins can be used as auxiliary
connections. M2 and MO can be used as inputs, and M1
can be used as an output. The XACT step development sys-
tem does not use these resources unless they are explicitly
specified in the design entry. This is done by placing a spe-
cial pad symbol called MD2, MD1, or MDO instead of the
input or output pad symbol.

In XC4000 Series devices, the mode pins have weak
pull-up resistors during configuration. With all three mode
pins High, Slave Serial mode is selected, which is the most
popular configuration mode. Therefore, for the most com-
mon configuration mode, the mode pins can be left uncon-
nected. (Note, however, that the internal pull-up resistor
value can be as high as 100 kQ.) After configuration, these
pins can individually have weak pull-up or pull-down resis-
tors, as specified in the design. A pull-down resistor value
of 4.7 kQ is recommended.

These pins are located in the lower left chip corner and are
near the readback nets. This location allows convenient
routing if compatibility with the XC2000 and XC3000 family
conventions of MO/RT, M1/RD is desired.
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is passed through and is captured by each FPGA when it
recognizes the 0010 preamble. Following the length-count
data, each FPGA outputs a High on DOUT until it has
received its required number of data frames.

After an FPGA has received its configuration data, it
passes on any additional frame start bits and configuration
data on DOUT. When the total number of configuration
clocks applied after memory initialization equals the value
of the 24-bit length count, the FPGAs begin the start-up
sequence and become operational together. FPGA I/O are
normally released two CCLK cycles after the last configura-
tion bit is received. Figure 47 on page 53 shows the
start-up timing for an XC4000 Series device.

The daisy-chained bitstream is not simply a concatenation
of the individual bitstreams. The PROM file formatter must
be used to combine the bitstreams for a daisy-chained con-
figuration.

Multi-Family Daisy Chain

All Xilinx FPGAs of the XC2000, XC3000, and XC4000
Series use a compatible bitstream format and can, there-
fore, be connected in a daisy chain in an arbitrary
sequence. There is, however, one limitation. The lead
device must belong to the highest family in the chain. If the
chain contains XC4000 Series devices, the master nor-
mally cannot be an XC2000 or XC3000 device.

The reason for this rule is shown in Figure 47 on page 53.
Since all devices in the chain store the same length count
value and generate or receive one common sequence of
CCLK pulses, they all recognize length-count match on the
same CCLK edge, as indicated on the left edge of
Figure 47. The master device then generates additional
CCLK pulses until it reaches its finish point F. The different
families generate or require different numbers of additional
CCLK pulses until they reach F. Not reaching F means that
the device does not really finish its configuration, although
DONE may have gone High, the outputs became active,
and the internal reset was released. For the XC4000 Series
device, not reaching F means that readback cannot be ini-

tiated and most boundary scan instructions cannot be
used.

The user has some control over the relative timing of these
events and can, therefore, make sure that they occur at the
proper time and the finish point F is reached. Timing is con-
trolled using options in the bitstream generation software.

XC3000 Master with an XC4000 Series Slave

Some designers want to use an inexpensive lead device in
peripheral mode and have the more precious I/O pins of the
XC4000 Series devices all available for user 1/0O. Figure 44
provides a solution for that case.

This solution requires one CLB, one IOB and pin, and an
internal oscillator with a frequency of up to 5 MHz as a
clock source. The XC3000 master device must be config-
ured with late Internal Reset, which is the default option.

One CLB and one IOB in the lead XC3000-family device
are used to generate the additional CCLK pulse required by
the XC4000 Series devices. When the lead device removes
the internal RESET signal, the 2-bit shift register responds
to its clock input and generates an active Low output signal
for the duration of the subsequent clock period. An external
connection between this output and CCLK thus creates the
extra CCLK pulse.

OEIT
Output
Connected
Reset to CCLK

Active Low Output
Active High Output

>

corro
PrRrPROO

L etc
X5223

Figure 44: CCLK Generation for XC3000 Master
Driving an XC4000 Series Slave
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Table 20: XC4000E Program Data

Device XC4003E | XC4005E | XC4006E | XC4008E | XC4010E | XC4013E | XC4020E | XC4025E
Max Logic Gates 3,000 5,000 6,000 8,000 10,000 13,000 20,000 25,000
CLBs 100 196 256 324 400 576 784 1,024
(Row x Col.) (10x10) | (14x14) | (16x16) | (18x18) | (20x20) | (24x24) | (28x28) | (32x32)
I0Bs 80 112 128 144 160 192 224 256
Flip-Flops 360 616 768 936 1,120 1,536 2,016 2,560
Bits per Frame 126 166 186 206 226 266 306 346
Frames 428 572 644 716 788 932 1,076 1,220
Program Data 53,936 94,960 119,792 147,504 178,096 247,920 329,264 422,128
PROM Size 53,984 95,008 119,840 147,552 178,144 247,968 329,312 422,176
(bits)

Notes: 1. Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits
Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1
Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits
PROM Size = Program Data + 40 (header) + 8
2. The user can add more “one” bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of
any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra “one”
bits, even for extra leading ones at the beginning of the header.

Table 21: XC4000EX/XL Program Data

Device XC4002XL | XC4005 |XC4010 |XC4013 |XC4020 [XC4028 |XC4036 | XC4044 | XC4052 | XC4062 | XC4085
Max Logic 2,000 5,000 10,000 | 13,000 | 20,000 | 28,000 | 36,000 44,000 52,000 62,000 85,000
Gates
CLBs 64 196 400 576 784 1,024 1,296 1,600 1,936 2,304 3,136
(Row x (8x8) |[(14x14)[(20x20)[(24x24)|(28x28)|(32x32)|(36x36)| (40x40) | (44x44) | (48x48) | (56 x 56)
Column)

I0Bs 64 112 160 192 224 256 288 320 352 384 448
Flip-Flops 256 616 1,120 1,536 2,016 2,560 3,168 3,840 4,576 5,376 7,168
Bits per 133 205 277 325 373 421 469 517 565 613 709
Frame

Frames 459 741 1,023 1,211 1,399 1,587 1,775 1,963 2,151 2,339 2,715
Program Data 61,052 | 151,910 | 283,376 | 393,580 | 521,832 | 668,124 | 832,480 | 1,014,876 | 1,215,320 | 1,433,804 | 1,924,940
PROM Size 61,104 | 151,960 | 283,424 | 393,632 | 521,880 | 668,172 | 832,528 | 1,014,924 | 1,215,368 | 1,433,852 | 1,924,992
(bits)

Notes: 1. Bits per frame = (13 x number of rows) + 9 for the top + 17 for the bottom + 8 + 1 start bit + 4 error check bits.
Frames = (47 x number of columns) + 27 for the left edge + 52 for the right edge + 4.
Program data = (bits per frame x number of frames) + 5 postamble bits.
PROM size = (program data + 40 header bits + 8 start bits) rounded up to the nearest byte.
2. The user can add more “one” bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end
of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra “one”
bits, even for extra leading “ones” at the beginning of the header.

Cyclic Redundancy Check (CRC) for figuration process with a potentially corrupted bitstream is
Configuration and Readback terminated. The FPGA pulls the INIT pin Low and goes into
a Wait state.

The Cyclic Redundancy Check is a method of error detec-
tion in data transmission applications. Generally, the trans-
mitting system performs a calculation on the serial
bitstream. The result of this calculation is tagged onto the
data stream as additional check bits. The receiving system
performs an identical calculation on the bitstream and com-
pares the result with the received checksum.

During Readback, 11 bits of the 16-bit checksum are added
to the end of the Readback data stream. The checksum is
computed using the CRC-16 CCITT polynomial, as shown
in Figure 45. The checksum consists of the 11 most signif-
icant bits of the 16-bit code. A change in the checksum indi-
cates a change in the Readback bitstream. A comparison
to a previous checksum is meaningful only if the readback
Each data frame of the configuration bitstream has four data is independent of the current device state. CLB out-

error bits at the end, as shown in Table 19. If a frame data puts should not be included (Read Capture Option not
error is detected during the loading of the FPGA, the con-
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used), and if RAM is present, the RAM content must be
unchanged.

Statistically, one error out of 2048 might go undetected.

Configuration Sequence

There are four major steps in the XC4000 Series power-up
configuration sequence.

» Configuration Memory Clear
 Initialization

» Configuration

e Start-Up

The full process is illustrated in Figure 46.

Configuration Memory Clear

When power is first applied or is reapplied to an FPGA, an
internal circuit forces initialization of the configuration logic.
When Vcc reaches an operational level, and the circuit
passes the write and read test of a sample pair of configu-
ration bits, a time delay is started. This time delay is nomi-
nally 16 ms, and up to 10% longer in the low-voltage
devices. The delay is four times as long when in Master
Modes (MO Low), to allow ample time for all slaves to reach
a stable Vcc. When all INIT pins are tied together, as rec-
ommended, the longest delay takes precedence. There-
fore, devices with different time delays can easily be mixed
and matched in a daisy chain.

This delay is applied only on power-up. It is not applied
when re-configuring an FPGA by pulsing the PROGRAM

pin

X2 X15
X16
D—{z [34]5]6]7]8] 9]10[11112]13114J:>

o 1]1[1]2]1 o 15[14[13[12[21]20[9 [ 8] 7] 6]5]

LAST DATA FRAME — @ |«—— CRC - CHECKSUM ——>

START BIT |©

X1789

Readback Data Stream

Figure 45: Circuit for Generating CRC-16

Boundary Scan
Instructions

Available:
Yes
Test MO Generate [
One Time-Out Pulse PROGRAM
of 16 or 64 ms =Llow
Yes
Keep Clearing
Configuration Memory
EXTEST*
SAMPLE/PRELOAD Completely Clear
BYPASS Configuration Memory ) ~1.3 us per Frame
CONFIGURE* Once More

(*if PROGRAM = High)

INIT
High? if
Master

Master Waits 50 to 250 ps
' Before Sampling Mode Lines

Sample
Mode Lines

Master CCLK

Goes Active

Load One
Configuration
Data Frame

Pull INIT Low
and Stop

SAMPLE/PRELOAD
BYPASS

Config-
uration

memory

Configuration
Data to DOUT

CCLK
Count Equals
Length
Count

Start-Up
Sequence

=H

L, HDC Output

LDC Output

Operational
EXTEST

SAMPLE PRELOAD

BYPASS
USER1 \ If Boundary Scan

USER 2 is Selected
CONFIGURE
READBACK

Figure 46: Power-up Configuration Sequence

1/0 Active

X6076
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Start-up from a User Clock (STARTUP.CLK)

When, instead of CCLK, a user-supplied start-up clock is
selected, Q1 is used to bridge the unknown phase relation-
ship between CCLK and the user clock. This arbitration
causes an unavoidable one-cycle uncertainty in the timing
of the rest of the start-up sequence.

DONE Goes High to Signal End of Configuration

XC4000 Series devices read the expected length count
from the bitstream and store it in an internal register. The
length count varies according to the number of devices and
the composition of the daisy chain. Each device also counts
the number of CCLKSs during configuration.

Two conditions have to be met in order for the DONE pin to
go high:

+ the chip's internal memory must be full, and
 the configuration length count must be met, exactly.

This is important because the counter that determines
when the length count is met begins with the very first
CCLK, not the first one after the preamble.

Therefore, if a stray bit is inserted before the preamble, or
the data source is not ready at the time of the first CCLK,
the internal counter that holds the number of CCLKs will be
one ahead of the actual number of data bits read. At the
end of configuration, the configuration memory will be full,
but the number of bits in the internal counter will not match
the expected length count.

As a consequence, a Master mode device will continue to
send out CCLKs until the internal counter turns over to
zero, and then reaches the correct length count a second
time. This will take several seconds [22* CCLK period] —
which is sometimes interpreted as the device not configur-
ing at all.

If it is not possible to have the data ready at the time of the
first CCLK, the problem can be avoided by increasing the
number in the length count by the appropriate value. The
XACT User Guide includes detailed information about man-
ually altering the length count.

Note that DONE is an open-drain output and does not go
High unless an internal pull-up is activated or an external
pull-up is attached. The internal pull-up is activated as the
default by the bitstream generation software.

Release of User I/O After DONE Goes High

By default, the user I/O are released one CCLK cycle after
the DONE pin goes High. If CCLK is not clocked after
DONE goes High, the outputs remain in their initial state —
3-stated, with a 50 kQ - 100 kQ pull-up. The delay from
DONE High to active user I/O is controlled by an option to
the bitstream generation software.

Release of Global Set/Reset After DONE Goes
High

By default, Global Set/Reset (GSR) is released two CCLK
cycles after the DONE pin goes High. If CCLK is not
clocked twice after DONE goes High, all flip-flops are held
in their initial set or reset state. The delay from DONE High
to GSR inactive is controlled by an option to the bitstream
generation software.

Configuration Complete After DONE Goes High

Three full CCLK cycles are required after the DONE pin
goes High, as shown in Figure 47 on page 53. If CCLK is
not clocked three times after DONE goes High, readback
cannot be initiated and most boundary scan instructions
cannot be used.

Configuration Through the Boundary Scan
Pins

XC4000 Series devices can be configured through the
boundary scan pins. The basic procedure is as follows:

« Power up the FPGA with INIT held Low (or drive the
PROGRAM pin Low for more than 300 ns followed by a
High while holding INIT Low). Holding INIT Low allows
enough time to issue the CONFIG command to the
FPGA. The pin can be used as /O after configuration if
a resistor is used to hold INIT Low.

¢ Issue the CONFIG command to the TMS input

+ Wait for INIT to go High

¢ Sequence the boundary scan Test Access Port to the
SHIFT-DR state

« Toggle TCK to clock data into TDI pin.

The user must account for all TCK clock cycles after INIT
goes High, as all of these cycles affect the Length Count
compare.

For more detailed information, refer to the Xilinx application
note XAPPQ17, “Boundary Scan in XC4000 Devices.” This
application note also applies to XC4000E and XC4000X
devices.
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Q3 Q1/Q4
STARTUP DONE
Q2 IN
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GLOBAL SET/RESET OF

GSR ENABLE
GSR INVERT
STARTUP.GSR

STARTUP.GTS
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GTS ENABLE
L

ALL CLB AND IOB FLIP-FLOP
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Figure 48: Start-up Logic

Readback

The user can read back the content of configuration mem-
ory and the level of certain internal nodes without interfer-
ing with the normal operation of the device.

Readback not only reports the downloaded configuration
bits, but can also include the present state of the device,
represented by the content of all flip-flops and latches in
CLBs and 10Bs, as well as the content of function genera-
tors used as RAMs.

Note that in XC4000 Series devices, configuration data is
not inverted with respect to configuration as it is in XC2000
and XC3000 families.

XC4000 Series Readback does not use any dedicated
pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA,
RDBK.RIP and RDBK.CLK) that can be routed to any IOB.
To access the internal Readback signals, place the READ-

% CONFIGURATION BIT OPTIONS SELECTED BY USER IN "MAKEBITS"

X1528

BACK library symbol and attach the appropriate pad sym-
bols, as shown in Figure 49.

After Readback has been initiated by a High level on
RDBK.TRIG after configuration, the RDBK.RIP (Read In
Progress) output goes High on the next rising edge of
RDBK.CLK. Subsequent rising edges of this clock shift out
Readback data on the RDBK.DATA net.

Readback data does not include the preamble, but starts
with five dummy bits (all High) followed by the Start bit
(Low) of the first frame. The first two data bits of the first
frame are always High.

Each frame ends with four error check bits. They are read
back as High. The last seven bits of the last frame are also
read back as High. An additional Start bit (Low) and an
11-bit Cyclic Redundancy Check (CRC) signature follow,
before RDBK.RIP returns Low.
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XC4000E/EX/XL Program Readback Switching Characteristic Guidelines

Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100%
functionally tested. Internal timing parameters are not measured directly. They are derived from benchmark timing patterns
that are taken at device introduction, prior to any process improvements.

The following guidelines reflect worst-case values over the recommended operating conditions.

Finished
Internal Net

NN
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N L

rdbk. TRIG
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[N

®

{
)
E]\ ; £
~<TRCRT
TRTRC > @ @ TRTRC —» ‘TRCRT" ©)
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TrCL TRCH @

£ C {
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®

~

rdbk.RIP
—> TRCRR@
rdbk.DATA DUMMYX DUMMY >C :VALID X VALID F T \
- TRCRD@ X1790
E/EX
Description Symbol Min Max Units
rdbk. TRIG rdbk. TRIG setup to initiate and abort Readback | 1 TrTRC 200 - ns
rdbk.TRIG hold to initiate and abort Readback 2 TRCRT 50 - ns
rdclk.1 rdbk.DATA delay 7 TrcrRD - 250 ns
rdbk.RIP delay 6 TrRCRR - 250 ns
ngh time 5 TRCH 250 500 ns
Low time 4 TreL 250 500 ns

Note 1: Timing parameters apply to all speed grades.
Note 2: If rdbk. TRIG is High prior to Finished, Finished will trigger the first Readback.

XL
Description Symbol Min Max Units
rdbk. TRIG rdbk.TRIG setup to initiate and abort Readback | 1 TrRTRC 200 - ns
rdbk.TRIG hold to initiate and abort Readback 2 TRCRT 50 - ns
rdclk.1 rdbk.DATA delay 7 TrcrD - 250 ns
rdbk.RIP delay 6 TRCRR - 250 ns
High time 5 TRcH 250 500 ns
Low time 4 TreL 250 500 ns

Note 1: Timing parameters apply to all speed grades.
Note 2: If rdbk. TRIG is High prior to Finished, Finished will trigger the first Readback.
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Table 22: Pin Functions During Configuration

CONFIGURATION MODE <M2:M1:M0>
SLAVE MASTER SYNCH. ASYNCH. MASTER MASTER USER
SERIAL SERIAL PERIPHERAL | PERIPHERAL |PARALLEL DOWN | PARALLEL UP OPERATION
<1:1:1> <0:0:0> <0:1:1> <1:0:1> <1:1:0> <1:0:0>
M2(HIGH) (1) M2(LOW) (1) M2(LOW) (1) M2(HIGH) (1) M2(HIGH) (1) M2(HIGH) (1) 0)
M1(HIGH) (1) M1(LOW) (1) M1(HIGH) (1) M1(LOW) (1) M1(HIGH) (1) M1(LOW) (1) (0)
MO(HIGH) (1) MO(LOW) (1) MO(HIGH) (1) MO(HIGH) (1) MO(LOW) (I) MO(LOW) (1) ()
HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) 110
LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) 110
INIT INIT INIT INIT INIT INIT 110
DONE DONE DONE DONE DONE DONE DONE
PROGRAM (I) | PROGRAM () | PROGRAM () | PROGRAM (I) PROGRAM (1) PROGRAM (I) PROGRAM
CCLK (l) CCLK (0) CCLK (1) CCLK (0) CCLK (0) CCLK (0) CCLK (l)
RDY/BUSY (O) | RDY/BUSY (O) RCLK (O) RCLK (0O) 110
RS (I) 110
CS0 (1) 110
DATA 7 (1) DATA 7 (1) DATA 7 (1) DATA 7 (1) 110
DATA 6 (1) DATA 6 (1) DATA 6 (1) DATA 6 (1) 110
DATA 5 (1) DATA 5 (1) DATA 5 (1) DATA 5 (1) 110
DATA 4 (1) DATA 4 (1) DATA 4 (1) DATA 4 (1) 1/0
DATA 3 (1) DATA 3 (1) DATA 3 (1) DATA 3 (1) 1/O
DATA 2 (1) DATA 2 (1) DATA 2 (1) DATA 2 (1) 11O
DATA 1 (1) DATA 1 (1) DATA 1 (1) DATA 1 (1) 110
DIN (1) DIN (1) DATA 0 (1) DATA 0 (1) DATA 0 (1) DATA 0 (1) 110
DOUT DOUT DOUT DOUT DOUT DOUT SGCK4-GCK6-1/0
TDI TDI TDI TDI TDI TDI TDI-I/O
TCK TCK TCK TCK TCK TCK TCK-/O
T™MS T™MS T™MS T™MS T™MS T™MS TMS-I/O
TDO TDO TDO TDO TDO TDO TDO-(0)
WS (1) A0 A0 110
Al Al PGCK4-GCK7-1/0
Ccs1 A2 A2 110
A3 A3 110
A4 A4 110
A5 A5 110
A6 A6 110
A7 A7 110
A8 A8 110
A9 A9 1/0
A10 A10 11O
All All 11O
Al12 Al12 110
Al13 Al13 110
Al4 Al4 110
A15 Al15 SGCK1-GCK8-1/0
Al16 Al6 PGCK1-GCK1-1/0
Al7 Al7 110
A18* A18* 110
A19* A19* 110
A20* A20* 11O
A21* A21* 110
ALL OTHERS
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/gYTE\ /BYTE \
\ / \ L /

4

[ BYTE 0 OUT »| BYTE 10UT

BN €D & €D &5 &3 &5 € &
Rowmj\ / \

DOUT

X6096

Description Symbol Min Max Units
INIT (High) setup time Tic 5 us
DO - D7 setup time Toc 60 ns
CCLK DO - D7 .hold. time Tep 0 ns
CCLK High time Teen 50 ns
CCLK Low time TceL 60 ns

CCLK Frequency Fce 8 MHz

Notes: 1. Peripheral Synchronous mode can be considered Slave Parallel mode. An external CCLK provides timing, clocking in the
first data byte on the second rising edge of CCLK after INIT goes High. Subsequent data bytes are clocked in on every
eighth consecutive rising edge of CCLK.

2. The RDY/BUSY line goes High for one CCLK period after data has been clocked in, although synchronous operation does
not require such a response.

3. The pin name RDY/BUSY is a misnomer. In Synchronous Peripheral mode this is really an ACKNOWLEDGE signal.

4. Note that data starts to shift out serially on the DOUT pin 0.5 CCLK periods after it was loaded in parallel. Therefore,
additional CCLK pulses are clearly required after the last byte has been loaded.

Figure 57: Synchronous Peripheral Mode Programming Switching Characteristics
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Product Availability

Table 24, Table 25, and Table 26 show the planned packages and speed grades for XC4000-Series devices. Call your local
sales office for the latest availability information, or see the Xilinx website at http://www.xilinx.com for the latest revision of
the specifications.

Table 24: Component Availability Chart for XC4000XL FPGAs

PINS 84 | 100 | 100 | 144 | 144 | 160 | 160 | 176 | 176 | 208 | 208 | 240 | 240 | 256 | 299 | 304 | 352 | 411 | 432 | 475 | 559 | 560
SO |l | s | |20 | O S0 | | 90 | O o | o PN T ) £ [} - £ i} £ £ o
I I I I I I
< 8 8 g [T [l |||l |l o [N [N || |O
o S [ | o~ | K|[O|lO|S S |w ||l |d|®m |~ | |O
CODE Sdla|lglg |2 [ |d |+ |N [N |N|N|[N[N[O| ™| [ || 0O |0
a ol o|Oo|lE|OQ|O|O|E|OQ|CC|O|IC|O[OICOIO|O O[O0 |O0|O
o > = I T o = I T o T o m o T m o m o o m
-3 cI | cr| cl
XC4002XL [ —ferfer et
-1 cl | ci Cl
0C g ¢ C c
3 clI | ci Cl cl cl cl
XC4005XL 2 cl [¢ cl | ci cl cl
-1 cit|ci|ci|cl Cl cl
ooc | C [& c c [& [
3 ci | ci cl cl | ci cl cl
2 c1 | ci cl cl | ci cl Cl
XC4010XL -1 ci | ci cl ci | ci cl cl
ooc | C [¢ c ¢ [¢ c [¢
-3 cl Cl cl cl cl | ci
2 cl cl cl cl ci | ci
XC4013XL | 1 cl cl cl cl ci | ci
09C c [ ¢ c ¢ ¢
08C [ [ c c c ¢
3 cl cl cl cl ci | ci
2 cl cl cl cl ci | ci
XC4020XL -1 cl cl cl cl ci | ci
09C c c [¢ c [ [
3 cl cl cl ct|ci|ci]ci
2 [ cl [ cit|ci|ci]cl
XCA4028XL -1 cl cl cl ct|ci|ci]cl
09C c o] [ [ c c c
3 [ cl cl ci|cit|ci]ci
2 cl cl c cli|ci|cri]ecl
XC4036XL | 1 cl cl cl ci|ci|ci]ci
09C [ c c c c c ¢
08C [ c [ c c [ ¢
3 cl cl cl ci|cit|ci]ci
2 cl cl cl ci|ci|ci]eci
XC4044XL El cl cl cl cl|ci|cri|ecl
09C c c c c c c [
3 cl cl cl | ci cl
2 cl cl cl | ci cl
XCA4052XL -1 [ cl cl | ci cl
09C c c [ c c
-3 cl cl c1 | ci cl
2 [ cl ci | ci cl
XC4062XL | -1 [ cl ci | ci cl
09C [ c [ c c
08C c c c ¢ c
3 cl cl | ci
2 cl cl | ci
XC4085XL —; o SRR
-09C c [¢ c

1/29/99
C = Commercial T;=0°to +85°C
I= Industrial T;=-40°C to +100°C
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