Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 784 | | Number of Logic Elements/Cells | 1862 | | Total RAM Bits | 25088 | | Number of I/O | 160 | | Number of Gates | 20000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 208-BFQFP | | Supplier Device Package | 208-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xc4020xl-3pq208c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## **Detailed Functional Description** XC4000 Series devices achieve high speed through advanced semiconductor technology and improved architecture. The XC4000E and XC4000X support system clock rates of up to 80 MHz and internal performance in excess of 150 MHz. Compared to older Xilinx FPGA families, XC4000 Series devices are more powerful. They offer on-chip edge-triggered and dual-port RAM, clock enables on I/O flip-flops, and wide-input decoders. They are more versatile in many applications, especially those involving RAM. Design cycles are faster due to a combination of increased routing resources and more sophisticated software. ## **Basic Building Blocks** Xilinx user-programmable gate arrays include two major configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs). - CLBs provide the functional elements for constructing the user's logic. - IOBs provide the interface between the package pins and internal signal lines. Three other types of circuits are also available: - 3-State buffers (TBUFs) driving horizontal longlines are associated with each CLB. - Wide edge decoders are available around the periphery of each device. - An on-chip oscillator is provided. Programmable interconnect resources provide routing paths to connect the inputs and outputs of these configurable elements to the appropriate networks. The functionality of each circuit block is customized during configuration by programming internal static memory cells. The values stored in these memory cells determine the logic functions and interconnections implemented in the FPGA. Each of these available circuits is described in this section. ## **Configurable Logic Blocks (CLBs)** Configurable Logic Blocks implement most of the logic in an FPGA. The principal CLB elements are shown in Figure 1. Two 4-input function generators (F and G) offer unrestricted versatility. Most combinatorial logic functions need four or fewer inputs. However, a third function generator (H) is provided. The H function generator has three inputs. Either zero, one, or two of these inputs can be the outputs of F and G; the other input(s) are from outside the CLB. The CLB can, therefore, implement certain functions of up to nine variables, like parity check or expandable-identity comparison of two sets of four inputs. Each CLB contains two storage elements that can be used to store the function generator outputs. However, the storage elements and function generators can also be used independently. These storage elements can be configured as flip-flops in both XC4000E and XC4000X devices; in the XC4000X they can optionally be configured as latches. DIN can be used as a direct input to either of the two storage elements. H1 can drive the other through the H function generator. Function generator outputs can also drive two outputs independent of the storage element outputs. This versatility increases logic capacity and simplifies routing. Thirteen CLB inputs and four CLB outputs provide access to the function generators and storage elements. These inputs and outputs connect to the programmable interconnect resources outside the block. #### **Function Generators** Four independent inputs are provided to each of two function generators (F1 - F4 and G1 - G4). These function generators, with outputs labeled F' and G', are each capable of implementing any arbitrarily defined Boolean function of four inputs. The function generators are implemented as memory look-up tables. The propagation delay is therefore independent of the function implemented. A third function generator, labeled H', can implement any Boolean function of its three inputs. Two of these inputs can optionally be the F' and G' functional generator outputs. Alternatively, one or both of these inputs can come from outside the CLB (H2, H0). The third input must come from outside the block (H1). Signals from the function generators can exit the CLB on two outputs. F' or H' can be connected to the X output. G' or H' can be connected to the Y output. A CLB can be used to implement any of the following functions: - any function of up to four variables, plus any second function of up to four unrelated variables, plus any third function of up to three unrelated variables¹ - any single function of five variables - any function of four variables together with some functions of six variables - · some functions of up to nine variables. Implementing wide functions in a single block reduces both the number of blocks required and the delay in the signal path, achieving both increased capacity and speed. The versatility of the CLB function generators significantly improves system speed. In addition, the design-software tools can deal with each function generator independently. This flexibility improves cell usage. ^{1.} When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two unregistered function generator outputs are available from the CLB. Supported CLB memory configurations and timing modes for single- and dual-port modes are shown in Table 3. XC4000 Series devices are the first programmable logic devices with edge-triggered (synchronous) and dual-port RAM accessible to the user. Edge-triggered RAM simplifies system timing. Dual-port RAM doubles the effective throughput of FIFO applications. These features can be individually programmed in any XC4000 Series CLB. ### Advantages of On-Chip and Edge-Triggered RAM The on-chip RAM is extremely fast. The read access time is the same as the logic delay. The write access time is slightly slower. Both access times are much faster than any off-chip solution, because they avoid I/O delays. Edge-triggered RAM, also called synchronous RAM, is a feature never before available in a Field Programmable Gate Array. The simplicity of designing with edge-triggered RAM, and the markedly higher achievable performance, add up to a significant improvement over existing devices with on-chip RAM. Three application notes are available from Xilinx that discuss edge-triggered RAM: "XC4000E Edge-Triggered and Dual-Port RAM Capability," "Implementing FIFOs in XC4000E RAM," and "Synchronous and Asynchronous FIFO Designs." All three application notes apply to both XC4000E and XC4000X RAM. **Table 3: Supported RAM Modes** | | 16 | 16 | 32 | Edge- | Level- | |-------------|----|----|----|-----------|-----------| | | х | х | x | Triggered | Sensitive | | | 1 | 2 | 1 | Timing | Timing | | Single-Port | V | √ | 1 | 1 | V | | Dual-Port | V | | | $\sqrt{}$ | | #### **RAM Configuration Options** The function generators in any CLB can be configured as RAM arrays in the following sizes: - Two 16x1 RAMs: two data inputs and two data outputs with identical or, if preferred, different addressing for each RAM - One 32x1 RAM: one data input and one data output. One F or G function generator can be configured as a 16x1 RAM while the other function generators are used to implement any function of up to 5 inputs. Additionally, the XC4000 Series RAM may have either of two timing modes: - Edge-Triggered (Synchronous): data written by the designated edge of the CLB clock. WE acts as a true clock enable. - Level-Sensitive (Asynchronous): an external WE signal acts as the write strobe. The selected timing mode applies to both function generators within a CLB when both are configured as RAM. The number of read ports is also programmable: - Single Port: each function generator has a common read and write port - Dual Port: both function generators are configured together as a single 16x1 dual-port RAM with one write port and two read ports. Simultaneous read and write operations to the same or different addresses are supported. RAM configuration options are selected by placing the appropriate library symbol. ## **Choosing a RAM Configuration Mode** The appropriate choice of RAM mode for a given design should be based on timing and resource requirements, desired functionality, and the simplicity of the design process. Recommended usage is shown in Table 4. The difference between level-sensitive, edge-triggered, and dual-port RAM is only in the write operation. Read operation and timing is identical for all modes of operation. **Table 4: RAM Mode Selection** | | Level-Sens itive | Edge-Trigg
ered | Dual-Port
Edge-Trigg
ered | |----------------------------|------------------|--------------------|---------------------------------| | Use for New Designs? | No | Yes | Yes | | Size (16x1,
Registered) | 1/2 CLB | 1/2 CLB | 1 CLB
| | Simultaneous
Read/Write | No | No | Yes | | Relative
Performance | Х | 2X | 2X (4X
effective) | #### **RAM Inputs and Outputs** The F1-F4 and G1-G4 inputs to the function generators act as address lines, selecting a particular memory cell in each look-up table. The functionality of the CLB control signals changes when the function generators are configured as RAM. The DIN/H2, H1, and SR/H0 lines become the two data inputs (D0, D1) and the Write Enable (WE) input for the 16x2 memory. When the 32x1 configuration is selected, D1 acts as the fifth address bit and D0 is the data input. The contents of the memory cell(s) being addressed are available at the F' and G' function-generator outputs. They can exit the CLB through its X and Y outputs, or can be captured in the CLB flip-flop(s). Configuring the CLB function generators as Read/Write memory does not affect the functionality of the other por- tions of the CLB, with the exception of the redefinition of the control signals. In 16x2 and 16x1 modes, the H' function generator can be used to implement Boolean functions of F', G', and D1, and the D flip-flops can latch the F', G', H', or D0 signals. ### Single-Port Edge-Triggered Mode Edge-triggered (synchronous) RAM simplifies timing requirements. XC4000 Series edge-triggered RAM timing operates like writing to a data register. Data and address are presented. The register is enabled for writing by a logic High on the write enable input, WE. Then a rising or falling clock edge loads the data into the register, as shown in Figure 3. Figure 3: Edge-Triggered RAM Write Timing Complex timing relationships between address, data, and write enable signals are not required, and the external write enable pulse becomes a simple clock enable. The active edge of WCLK latches the address, input data, and WE sig- nals. An internal write pulse is generated that performs the write. See Figure 4 and Figure 5 for block diagrams of a CLB configured as 16x2 and 32x1 edge-triggered, single-port RAM. The relationships between CLB pins and RAM inputs and outputs for single-port, edge-triggered mode are shown in Table 5. The Write Clock input (WCLK) can be configured as active on either the rising edge (default) or the falling edge. It uses the same CLB pin (K) used to clock the CLB flip-flops, but it can be independently inverted. Consequently, the RAM output can optionally be registered within the same CLB either by the same clock edge as the RAM, or by the opposite edge of this clock. The sense of WCLK applies to both function generators in the CLB when both are configured as RAM. The WE pin is active-High and is not invertible within the CLB. **Note:** The pulse following the active edge of WCLK (T_{WPS} in Figure 3) must be less than one millisecond wide. For most applications, this requirement is not overly restrictive; however, it must not be forgotten. Stopping WCLK at this point in the write cycle could result in excessive current and even damage to the larger devices if many CLBs are configured as edge-triggered RAM. Table 5: Single-Port Edge-Triggered RAM Signals | RAM Signal | CLB Pin | Function | |------------|------------------|-----------------| | D | D0 or D1 (16x2, | Data In | | | 16x1), D0 (32x1) | | | A[3:0] | F1-F4 or G1-G4 | Address | | A[4] | D1 (32x1) | Address | | WE | WE | Write Enable | | WCLK | K | Clock | | SPO | F' or G' | Single Port Out | | (Data Out) | | (Data Out) | Figure 4: 16x2 (or 16x1) Edge-Triggered Single-Port RAM Figure 5: 32x1 Edge-Triggered Single-Port RAM (F and G addresses are identical) 6-14 May 14, 1999 (Version 1.6) Figure 14: Detail of XC4000E Dedicated Carry Logic ## Input/Output Blocks (IOBs) User-configurable input/output blocks (IOBs) provide the interface between external package pins and the internal logic. Each IOB controls one package pin and can be configured for input, output, or bidirectional signals. Figure 15 shows a simplified block diagram of the XC4000E IOB. A more complete diagram which includes the boundary scan logic of the XC4000E IOB can be found in Figure 40 on page 43, in the "Boundary Scan" section. The XC4000X IOB contains some special features not included in the XC4000E IOB. These features are highlighted in a simplified block diagram found in Figure 16, and discussed throughout this section. When XC4000X special features are discussed, they are clearly identified in the text. Any feature not so identified is present in both XC4000E and XC4000X devices. #### IOB Input Signals Two paths, labeled I1 and I2 in Figure 15 and Figure 16, bring input signals into the array. Inputs also connect to an input register that can be programmed as either an edge-triggered flip-flop or a level-sensitive latch. The choice is made by placing the appropriate library symbol. For example, IFD is the basic input flip-flop (rising edge triggered), and ILD is the basic input latch (transparent-High). Variations with inverted clocks are available, and some combinations of latches and flip-flops can be implemented in a single IOB, as described in the *XACT Libraries Guide*. The XC4000E inputs can be globally configured for either TTL (1.2V) or 5.0 volt CMOS thresholds, using an option in the bitstream generation software. There is a slight input hysteresis of about 300mV. The XC4000E output levels are also configurable; the two global adjustments of input threshold and output level are independent. Inputs on the XC4000XL are TTL compatible and 3.3V CMOS compatible. Outputs on the XC4000XL are pulled to the 3.3V positive supply. The inputs of XC4000 Series 5-Volt devices can be driven by the outputs of any 3.3-Volt device, if the 5-Volt inputs are in TTL mode. Supported sources for XC4000 Series device inputs are shown in Table 8. Table 8: Supported Sources for XC4000 Series Device Inputs | | XC4000E/EX
Series Inputs | | XC4000XL
Series Inputs | |---|-----------------------------|---------------|---------------------------| | Source | 5 V,
TTL | 5 V,
CMOS | 3.3 V
CMOS | | Any device, Vcc = 3.3 V,
CMOS outputs | V | Unreli | √ | | XC4000 Series, Vcc = 5 V, TTL outputs | V | -able
Data | √ | | Any device, $Vcc = 5 \text{ V}$, TTL outputs $(Voh \le 3.7 \text{ V})$ | √ | Data | √ | | Any device, Vcc = 5 V,
CMOS outputs | V | √ | √ | #### XC4000XL 5-Volt Tolerant I/Os The I/Os on the XC4000XL are fully 5-volt tolerant even though the $V_{\rm CC}$ is 3.3 volts. This allows 5 V signals to directly connect to the XC4000XL inputs without damage, as shown in Table 8. In addition, the 3.3 volt $V_{\rm CC}$ can be applied before or after 5 volt signals are applied to the I/Os. This makes the XC4000XL immune to power supply sequencing problems. ### **Registered Inputs** The I1 and I2 signals that exit the block can each carry either the direct or registered input signal. The input and output storage elements in each IOB have a common clock enable input, which, through configuration, can be activated individually for the input or output flip-flop, or both. This clock enable operates exactly like the EC pin on the XC4000 Series CLB. It cannot be inverted within the IOB. The storage element behavior is shown in Table 9. Table 9: Input Register Functionality (active rising edge is shown) | Mode | Clock | Clock
Enable | D | Q | |-----------------|-------|-----------------|---|----| | Power-Up or GSR | X | Х | Х | SR | | Flip-Flop | | 1* | D | D | | | 0 | Х | Х | Q | | Latch | 1 | 1* | Х | Q | | | 0 | 1* | D | D | | Both | Χ | 0 | Х | Q | Legend: X Don't care Rising edge SR Set or Reset value. Reset is default. 0* Input is Low or unconnected (default value) 1* Input is High or unconnected (default value) ### **Optional Delay Guarantees Zero Hold Time** The data input to the register can optionally be delayed by several nanoseconds. With the delay enabled, the setup time of the input flip-flop is increased so that normal clock routing does not result in a positive hold-time requirement. A positive hold time requirement can lead to unreliable, temperature- or processing-dependent operation. The input flip-flop setup time is defined between the data measured at the device I/O pin and the clock input at the IOB (not at the clock pin). Any routing delay from the device clock pin to the clock input of the IOB must, therefore, be subtracted from this setup time to arrive at the real setup time requirement relative to the device pins. A short specified setup time might, therefore, result in a negative setup time at the device pins, i.e., a positive hold-time requirement. When a delay is inserted on the data line, more clock delay can be tolerated without causing a positive hold-time requirement. Sufficient delay eliminates the possibility of a data hold-time requirement at the external pin. The maximum delay is therefore inserted as the default. The XC4000E IOB has a one-tap delay element: either the delay is inserted (default), or it is not. The delay guarantees a zero hold time with respect to clocks routed through any of the XC4000E global clock buffers. (See "Global Nets and Buffers (XC4000E only)" on page 35 for a description of the global clock buffers in the XC4000E.) For a shorter input register setup time, with non-zero hold, attach a NODELAY attribute or property to the flip-flop. The XC4000X IOB has a two-tap delay element, with choices of a full delay, a partial delay, or no delay. The attributes or properties used to select the desired delay are shown in Table 10. The choices are no added attribute, MEDDELAY, and NODELAY. The default setting, with no added attribute, ensures no hold time with respect to any of the XC4000X clock buffers, including the Global Low-Skew buffers. MEDDELAY ensures no hold time with respect to the Global Early buffers. Inputs with NODELAY may have a positive hold time with respect to all clock buffers. For a description of each of these buffers, see "Global Nets and
Buffers (XC4000X only)" on page 37. Table 10: XC4000X IOB Input Delay Element | Value | When to Use | |------------------|--| | full delay | Zero Hold with respect to Global | | (default, no | Low-Skew Buffer, Global Early Buffer | | attribute added) | | | MEDDELAY | Zero Hold with respect to Global Early | | | Buffer | | NODELAY | Short Setup, positive Hold time | ### Additional Input Latch for Fast Capture (XC4000X only) The XC4000X IOB has an additional optional latch on the input. This latch, as shown in Figure 16, is clocked by the output clock — the clock used for the output flip-flop — rather than the input clock. Therefore, two different clocks can be used to clock the two input storage elements. This additional latch allows the very fast capture of input data, which is then synchronized to the internal clock by the IOB flip-flop or latch. To use this Fast Capture technique, drive the output clock pin (the Fast Capture latching signal) from the output of one of the Global Early buffers supplied in the XC4000X. The second storage element should be clocked by a Global Low-Skew buffer, to synchronize the incoming data to the internal logic. (See Figure 17.) These special buffers are described in "Global Nets and Buffers (XC4000X only)" on page 37. The Fast Capture latch (FCL) is designed primarily for use with a Global Early buffer. For Fast Capture, a single clock signal is routed through both a Global Early buffer and a Global Low-Skew buffer. (The two buffers share an input pad.) The Fast Capture latch is clocked by the Global Early buffer, and the standard IOB flip-flop or latch is clocked by the Global Low-Skew buffer. This mode is the safest way to use the Fast Capture latch, because the clock buffers on both storage elements are driven by the same pad. There is no external skew between clock pads to create potential problems. To place the Fast Capture latch in a design, use one of the special library symbols, ILFFX or ILFLX. ILFFX is a transparent-Low Fast Capture latch followed by an active-High input flip-flop. ILFLX is a transparent-Low Fast Capture latch followed by a transparent-High input latch. Any of the clock inputs can be inverted before driving the library element, and the inverter is absorbed into the IOB. If a single BUFG output is used to drive both clock inputs, the software automatically runs the clock through both a Global Low-Skew buffer and a Global Early buffer, and clocks the Fast Capture latch appropriately. Figure 16 on page 21 also shows a two-tap delay on the input. By default, if the Fast Capture latch is used, the Xilinx software assumes a Global Early buffer is driving the clock, and selects MEDDELAY to ensure a zero hold time. Select Figure 17: Examples Using XC4000X FCL the desired delay based on the discussion in the previous subsection. ### IOB Output Signals Output signals can be optionally inverted within the IOB, and can pass directly to the pad or be stored in an edge-triggered flip-flop. The functionality of this flip-flop is shown in Table 11. An active-High 3-state signal can be used to place the output buffer in a high-impedance state, implementing 3-state outputs or bidirectional I/O. Under configuration control, the output (OUT) and output 3-state (T) signals can be inverted. The polarity of these signals is independently configured for each IOB. The 4-mA maximum output current specification of many FPGAs often forces the user to add external buffers, which are especially cumbersome on bidirectional I/O lines. The XC4000E and XC4000EX/XL devices solve many of these problems by providing a guaranteed output sink current of 12 mA. Two adjacent outputs can be interconnected externally to sink up to 24 mA. The XC4000E and XC4000EX/XL FPGAs can thus directly drive buses on a printed circuit board. By default, the output pull-up structure is configured as a TTL-like totem-pole. The High driver is an n-channel pull-up transistor, pulling to a voltage one transistor threshold below Vcc. Alternatively, the outputs can be globally configured as CMOS drivers, with p-channel pull-up transistors pulling to Vcc. This option, applied using the bitstream generation software, applies to all outputs on the device. It is not individually programmable. In the XC4000XL, all outputs are pulled to the positive supply rail. Table 11: Output Flip-Flop Functionality (active rising edge is shown) | Mode | Clock | Clock
Enable | Т | D | Q | |-----------------|-------|-----------------|----|---|----| | Power-Up or GSR | Х | Х | 0* | Х | SR | | | Х | 0 | 0* | Х | Q | | Flip-Flop | /_ | 1* | 0* | D | D | | | Х | Х | 1 | Х | Z | | | 0 | Х | 0* | Х | Q | Legend: X Don't care Rising edge SR Set or Reset value. Reset is default. 0* Input is Low or unconnected (default value) 1* Input is High or unconnected (default value) 7 3-state or clear on reset and after configuration. Other than the global GSR net, no user-controlled set/reset signal is available to the I/O flip-flops. The choice of set or clear applies to both the initial state of the flip-flop and the response to the Global Set/Reset pulse. See "Global Set/Reset" on page 11 for a description of how to use GSR. #### **JTAG Support** Embedded logic attached to the IOBs contains test structures compatible with IEEE Standard 1149.1 for boundary scan testing, permitting easy chip and board-level testing. More information is provided in "Boundary Scan" on page 42. ### **Three-State Buffers** A pair of 3-state buffers is associated with each CLB in the array. (See Figure 27 on page 30.) These 3-state buffers can be used to drive signals onto the nearest horizontal longlines above and below the CLB. They can therefore be used to implement multiplexed or bidirectional buses on the horizontal longlines, saving logic resources. Programmable pull-up resistors attached to these longlines help to implement a wide wired-AND function. The buffer enable is an active-High 3-state (i.e. an active-Low enable), as shown in Table 13. Another 3-state buffer with similar access is located near each I/O block along the right and left edges of the array. (See Figure 33 on page 34.) The horizontal longlines driven by the 3-state buffers have a weak keeper at each end. This circuit prevents undefined floating levels. However, it is overridden by any driver, even a pull-up resistor. Special longlines running along the perimeter of the array can be used to wire-AND signals coming from nearby IOBs or from internal longlines. These longlines form the wide edge decoders discussed in "Wide Edge Decoders" on page 27. ## Three-State Buffer Modes The 3-state buffers can be configured in three modes: - · Standard 3-state buffer - Wired-AND with input on the I pin - Wired OR-AND #### Standard 3-State Buffer All three pins are used. Place the library element BUFT. Connect the input to the I pin and the output to the O pin. The T pin is an active-High 3-state (i.e. an active-Low enable). Tie the T pin to Ground to implement a standard buffer. #### Wired-AND with Input on the I Pin The buffer can be used as a Wired-AND. Use the WAND1 library symbol, which is essentially an open-drain buffer. WAND4, WAND8, and WAND16 are also available. See the *XACT Libraries Guide* for further information. The T pin is internally tied to the I pin. Connect the input to the I pin and the output to the O pin. Connect the outputs of all the WAND1s together and attach a PULLUP symbol. #### Wired OR-AND The buffer can be configured as a Wired OR-AND. A High level on either input turns off the output. Use the WOR2AND library symbol, which is essentially an open-drain 2-input OR gate. The two input pins are functionally equivalent. Attach the two inputs to the I0 and I1 pins and tie the output to the O pin. Tie the outputs of all the WOR2ANDs together and attach a PULLUP symbol. ## Three-State Buffer Examples Figure 21 shows how to use the 3-state buffers to implement a wired-AND function. When all the buffer inputs are High, the pull-up resistor(s) provide the High output. Figure 22 shows how to use the 3-state buffers to implement a multiplexer. The selection is accomplished by the buffer 3-state signal. Pay particular attention to the polarity of the T pin when using these buffers in a design. Active-High 3-state (T) is identical to an active-Low output enable, as shown in Table 13. **Table 13: Three-State Buffer Functionality** | IN | Т | OUT | |----|---|-----| | X | 1 | Z | | IN | 0 | IN | Figure 21: Open-Drain Buffers Implement a Wired-AND Function The oscillator output is optionally available after configuration. Any two of four resynchronized taps of a built-in divider are also available. These taps are at the fourth, ninth, fourteenth and nineteenth bits of the divider. Therefore, if the primary oscillator output is running at the nominal 8 MHz, the user has access to an 8 MHz clock, plus any two of 500 kHz, 16kHz, 490Hz and 15Hz (up to 10% lower for low-voltage devices). These frequencies can vary by as much as -50% or +25%. These signals can be accessed by placing the OSC4 library element in a schematic or in HDL code (see Figure 24). The oscillator is automatically disabled after configuration if the OSC4 symbol is not used in the design. ## **Programmable Interconnect** All internal connections are composed of metal segments with programmable switching points and switching matrices to implement the desired routing. A structured, hierarchical matrix of routing resources is provided to achieve efficient automated routing. The XC4000E and XC4000X share a basic interconnect structure. XC4000X devices, however, have additional routing not available in the XC4000E. The extra routing resources allow high utilization in high-capacity devices. All XC4000X-specific routing resources are clearly identified throughout this section. Any resources not identified as XC4000X-specific are present in all XC4000 Series devices. This section describes the varied
routing resources available in XC4000 Series devices. The implementation software automatically assigns the appropriate resources based on the density and timing requirements of the design. ## **Interconnect Overview** There are several types of interconnect. - CLB routing is associated with each row and column of the CLB array. - IOB routing forms a ring (called a VersaRing) around the outside of the CLB array. It connects the I/O with the internal logic blocks. Global routing consists of dedicated networks primarily designed to distribute clocks throughout the device with minimum delay and skew. Global routing can also be used for other high-fanout signals. Five interconnect types are distinguished by the relative length of their segments: single-length lines, double-length lines, quad and octal lines (XC4000X only), and longlines. In the XC4000X, direct connects allow fast data flow between adjacent CLBs, and between IOBs and CLBs. Extra routing is included in the IOB pad ring. The XC4000X also includes a ring of octal interconnect lines near the IOBs to improve pin-swapping and routing to locked pins. XC4000E/X devices include two types of global buffers. These global buffers have different properties, and are intended for different purposes. They are discussed in detail later in this section. ## **CLB Routing Connections** A high-level diagram of the routing resources associated with one CLB is shown in Figure 25. The shaded arrows represent routing present only in XC4000X devices. Table 14 shows how much routing of each type is available in XC4000E and XC4000X CLB arrays. Clearly, very large designs, or designs with a great deal of interconnect, will route more easily in the XC4000X. Smaller XC4000E designs, typically requiring significantly less interconnect, do not require the additional routing. Figure 27 on page 30 is a detailed diagram of both the XC4000E and the XC4000X CLB, with associated routing. The shaded square is the programmable switch matrix, present in both the XC4000E and the XC4000X. The L-shaped shaded area is present only in XC4000X devices. As shown in the figure, the XC4000X block is essentially an XC4000E block with additional routing. CLB inputs and outputs are distributed on all four sides, providing maximum routing flexibility. In general, the entire architecture is symmetrical and regular. It is well suited to established placement and routing algorithms. Inputs, outputs, and function generators can freely swap positions within a CLB to avoid routing congestion during the placement and routing operation. Figure 25: High-Level Routing Diagram of XC4000 Series CLB (shaded arrows indicate XC4000X only) Table 14: Routing per CLB in XC4000 Series Devices | | XC4 | 1000E | XC4 | 4000X | |-------------|----------|------------|----------|------------| | | Vertical | Horizontal | Vertical | Horizontal | | Singles | 8 | 8 | 8 | 8 | | Doubles | 4 | 4 | 4 | 4 | | Quads | 0 | 0 | 12 | 12 | | Longlines | 6 | 6 | 10 | 6 | | Direct | 0 | 0 | 2 | 2 | | Connects | | | | | | Globals | 4 | 0 | 8 | 0 | | Carry Logic | 2 | 0 | 1 | 0 | | Total | 24 | 18 | 45 | 32 | ## **Programmable Switch Matrices** The horizontal and vertical single- and double-length lines intersect at a box called a programmable switch matrix (PSM). Each switch matrix consists of programmable pass transistors used to establish connections between the lines (see Figure 26). For example, a single-length signal entering on the right side of the switch matrix can be routed to a single-length line on the top, left, or bottom sides, or any combination thereof, if multiple branches are required. Similarly, a double-length signal can be routed to a double-length line on any or all of the other three edges of the programmable switch matrix. Figure 26: Programmable Switch Matrix (PSM) ## Single-Length Lines Single-length lines provide the greatest interconnect flexibility and offer fast routing between adjacent blocks. There are eight vertical and eight horizontal single-length lines associated with each CLB. These lines connect the switching matrices that are located in every row and a column of CLBs. Single-length lines are connected by way of the programmable switch matrices, as shown in Figure 28. Routing connectivity is shown in Figure 27. Single-length lines incur a delay whenever they go through a switching matrix. Therefore, they are not suitable for routing signals for long distances. They are normally used to conduct signals within a localized area and to provide the branching for nets with fanout greater than one. Figure 28: Single- and Double-Length Lines, with Programmable Switch Matrices (PSMs) ## **Double-Length Lines** The double-length lines consist of a grid of metal segments, each twice as long as the single-length lines: they run past two CLBs before entering a switch matrix. Double-length lines are grouped in pairs with the switch matrices staggered, so that each line goes through a switch matrix at every other row or column of CLBs (see Figure 28). There are four vertical and four horizontal double-length lines associated with each CLB. These lines provide faster signal routing over intermediate distances, while retaining routing flexibility. Double-length lines are connected by way of the programmable switch matrices. Routing connectivity is shown in Figure 27. ## Quad Lines (XC4000X only) XC4000X devices also include twelve vertical and twelve horizontal quad lines per CLB row and column. Quad lines are four times as long as the single-length lines. They are interconnected via buffered switch matrices (shown as diamonds in Figure 27 on page 30). Quad lines run past four CLBs before entering a buffered switch matrix. They are grouped in fours, with the buffered switch matrices staggered, so that each line goes through a buffered switch matrix at every fourth CLB location in that row or column. (See Figure 29.) The buffered switch matrixes have four pins, one on each edge. All of the pins are bidirectional. Any pin can drive any or all of the other pins. Each buffered switch matrix contains one buffer and six pass transistors. It resembles the programmable switch matrix shown in Figure 26, with the addition of a programmable buffer. There can be up to two independent inputs Figure 29: Quad Lines (XC4000X only) and up to two independent outputs. Only one of the independent inputs can be buffered. The place and route software automatically uses the timing requirements of the design to determine whether or not a quad line signal should be buffered. A heavily loaded signal is typically buffered, while a lightly loaded one is not. One scenario is to alternate buffers and pass transistors. This allows both vertical and horizontal quad lines to be buffered at alternating buffered switch matrices. Due to the buffered switch matrices, quad lines are very fast. They provide the fastest available method of routing heavily loaded signals for long distances across the device. #### Longlines Longlines form a grid of metal interconnect segments that run the entire length or width of the array. Longlines are intended for high fan-out, time-critical signal nets, or nets that are distributed over long distances. In XC4000X devices, quad lines are preferred for critical nets, because the buffered switch matrices make them faster for high fan-out nets. Two horizontal longlines per CLB can be driven by 3-state or open-drain drivers (TBUFs). They can therefore implement unidirectional or bidirectional buses, wide multiplexers, or wired-AND functions. (See "Three-State Buffers" on page 26 for more details.) Each horizontal longline driven by TBUFs has either two (XC4000E) or eight (XC4000X) pull-up resistors. To activate these resistors, attach a PULLUP symbol to the long-line net. The software automatically activates the appropriate number of pull-ups. There is also a weak keeper at each end of these two horizontal longlines. This ## Global Nets and Buffers (XC4000X only) Eight vertical longlines in each CLB column are driven by special global buffers. These longlines are in addition to the vertical longlines used for standard interconnect. The global lines are broken in the center of the array, to allow faster distribution and to minimize skew across the whole array. Each half-column global line has its own buffered multiplexer, as shown in Figure 35. The top and bottom global lines cannot be connected across the center of the device, as this connection might introduce unacceptable skew. The top and bottom halves of the global lines must be separately driven — although they can be driven by the same global buffer. The eight global lines in each CLB column can be driven by either of two types of global buffers. They can also be driven by internal logic, because they can be accessed by single, double, and quad lines at the top, bottom, half, and quarter points. Consequently, the number of different clocks that can be used simultaneously in an XC4000X device is very large. There are four global lines feeding the IOBs at the left edge of the device. IOBs along the right edge have eight global lines. There is a single global line along the top and bottom edges with access to the IOBs. All IOB global lines are broken at the center. They cannot be connected across the center of the device, as this connection might introduce unacceptable skew. IOB global lines can be driven from two types of global buffers, or from local interconnect. Alternatively, top and bottom IOBs can be clocked from the global lines in the adjacent CLB column. Two different types of clock buffers are available in the XC4000X: - Global Low-Skew Buffers (BUFGLS) - Global Early Buffers (BUFGE) Global Low-Skew Buffers are the standard clock buffers. They should be used for most internal clocking, whenever a large portion of the device must be driven. Global Early Buffers are designed to provide a faster clock access, but CLB access is limited to one-fourth of the device. They
also facilitate a faster I/O interface. Figure 35 is a conceptual diagram of the global net structure in the XC4000X. Global Early buffers and Global Low-Skew buffers share a single pad. Therefore, the same IPAD symbol can drive one buffer of each type, in parallel. This configuration is particularly useful when using the Fast Capture latches, as described in "IOB Input Signals" on page 20. Paired Global Early and Global Low-Skew buffers share a common input; they cannot be driven by two different signals. #### Choosing an XC4000X Clock Buffer The clocking structure of the XC4000X provides a large variety of features. However, it can be simple to use, without understanding all the details. The software automatically handles clocks, along with all other routing, when the appropriate clock buffer is placed in the design. In fact, if a buffer symbol called BUFG is placed, rather than a specific type of buffer, the software even chooses the buffer most appropriate for the design. The detailed information in this section is provided for those users who want a finer level of control over their designs. If fine control is desired, use the following summary and Table 15 on page 35 to choose an appropriate clock buffer. - The simplest thing to do is to use a Global Low-Skew buffer. - If a faster clock path is needed, try a BUFG. The software will first try to use a Global Low-Skew Buffer. If timing requirements are not met, a faster buffer will automatically be used. - If a single quadrant of the chip is sufficient for the clocked logic, and the timing requires a faster clock than the Global Low-Skew buffer, use a Global Early buffer. #### **Global Low-Skew Buffers** Each corner of the XC4000X device has two Global Low-Skew buffers. Any of the eight Global Low-Skew buffers can drive any of the eight vertical Global lines in a column of CLBs. In addition, any of the buffers can drive any of the four vertical lines accessing the IOBs on the left edge of the device, and any of the eight vertical lines accessing the IOBs on the right edge of the device. (See Figure 36 on page 38.) IOBs at the top and bottom edges of the device are accessed through the vertical Global lines in the CLB array, as in the XC4000E. Any Global Low-Skew buffer can, therefore, access every IOB and CLB in the device. The Global Low-Skew buffers can be driven by either semi-dedicated pads or internal logic. To use a Global Low-Skew buffer, instantiate a BUFGLS element in a schematic or in HDL code. If desired, attach a LOC attribute or property to direct placement to the designated location. For example, attach a LOC=T attribute or property to direct that a BUFGLS be placed in one of the two Global Low-Skew buffers on the top edge of the device, or a LOC=TR to indicate the Global Low-Skew buffer on the top edge of the device, on the right. **Table 16: Pin Descriptions** | | I/O
During | I/O
After | | |---------------|---------------|------------------------------|---| | Pin Name | Config. | Config. | Pin Description | | Permanently D | Jealcated | Pins | | | VCC | I | I | Eight or more (depending on package) connections to the nominal +5 V supply voltage (+3.3 V for low-voltage devices). All must be connected, and each must be decoupled with a 0.01 - 0.1 μ F capacitor to Ground. | | GND | I | I | Eight or more (depending on package type) connections to Ground. All must be connected. | | CCLK | I or O | I | During configuration, Configuration Clock (CCLK) is an output in Master modes or Asynchronous Peripheral mode, but is an input in Slave mode and Synchronous Peripheral mode. After configuration, CCLK has a weak pull-up resistor and can be selected as the Readback Clock. There is no CCLK High or Low time restriction on XC4000 Series devices, except during Readback. See "Violating the Maximum High and Low Time Specification for the Readback Clock" on page 56 for an explanation of this exception. | | DONE | I/O | 0 | DONE is a bidirectional signal with an optional internal pull-up resistor. As an output, it indicates the completion of the configuration process. As an input, a Low level on DONE can be configured to delay the global logic initialization and the enabling of outputs. The optional pull-up resistor is selected as an option in the XACT step program that creates the configuration bitstream. The resistor is included by default. | | PROGRAM | I | I | PROGRAM is an active Low input that forces the FPGA to clear its configuration memory. It is used to initiate a configuration cycle. When PROGRAM goes High, the FPGA finishes the current clear cycle and executes another complete clear cycle, before it goes into a WAIT state and releases INIT. The PROGRAM pin has a permanent weak pull-up, so it need not be externally pulled up to Vcc. | | User I/O Pins | That Can | Have Spe | ecial Functions | | RDY/BUSY | 0 | I/O | During Peripheral mode configuration, this pin indicates when it is appropriate to write another byte of data into the FPGA. The same status is also available on D7 in Asynchronous Peripheral mode, if a read operation is performed when the device is selected. After configuration, RDY/BUSY is a user-programmable I/O pin. RDY/BUSY is pulled High with a high-impedance pull-up prior to INIT going High. | | RCLK | 0 | I/O | During Master Parallel configuration, each change on the A0-A17 outputs (A0 - A21 for XC4000X) is preceded by a rising edge on \overline{RCLK} , a redundant output signal. \overline{RCLK} is useful for clocked PROMs. It is rarely used during configuration. After configuration, \overline{RCLK} is a user-programmable I/O pin. | | M0, M1, M2 | I | I (M0),
O (M1),
I (M2) | As Mode inputs, these pins are sampled after $\overline{\text{INIT}}$ goes High to determine the configuration mode to be used. After configuration, M0 and M2 can be used as inputs, and M1 can be used as a 3-state output. These three pins have no associated input or output registers. During configuration, these pins have weak pull-up resistors. For the most popular configuration mode, Slave Serial, the mode pins can thus be left unconnected. The three mode inputs can be individually configured with or without weak pull-up or pull-down resistors. A pull-down resistor value of 4.7 k Ω is recommended. These pins can only be used as inputs or outputs when called out by special schematic definitions. To use these pins, place the library components MD0, MD1, and MD2 instead of the usual pad symbols. Input or output buffers must still be used. | | TDO | 0 | 0 | If boundary scan is used, this pin is the Test Data Output. If boundary scan is not used, this pin is a 3-state output without a register, after configuration is completed. This pin can be user output only when called out by special schematic definitions. To use this pin, place the library component TDO instead of the usual pad symbol. An output buffer must still be used. | ## **Setting CCLK Frequency** For Master modes, CCLK can be generated in either of two frequencies. In the default slow mode, the frequency ranges from 0.5 MHz to 1.25 MHz for XC4000E and XC4000EX devices and from 0.6 MHz to 1.8 MHz for XC4000XL devices. In fast CCLK mode, the frequency ranges from 4 MHz to 10 MHz for XC4000E/EX devices and from 5 MHz to 15 MHz for XC4000XL devices. The frequency is selected by an option when running the bitstream generation software. If an XC4000 Series Master is driving an XC3000- or XC2000-family slave, slow CCLK mode must be used. In addition, an XC4000XL device driving a XC4000E or XC4000EX should use slow mode. Slow mode is the default Table 19: XC4000 Series Data Stream Formats | Data Type | All Other
Modes (D0) | |--------------------|-------------------------| | Fill Byte | 11111111b | | Preamble Code | 0010b | | Length Count | COUNT(23:0) | | Fill Bits | 1111b | | Start Field | Ob | | Data Frame | DATA(n-1:0) | | CRC or Constant | xxxx (CRC) | | Field Check | or 0110b | | Extend Write Cycle | _ | | Postamble | 01111111b | | Start-Up Bytes | xxh | | Legend: | | | Not shaded | Once per bitstream | | Light | Once per data frame | | Dark | Once per device | #### **Data Stream Format** The data stream ("bitstream") format is identical for all configuration modes. The data stream formats are shown in Table 19. Bit-serial data is read from left to right, and byte-parallel data is effectively assembled from this serial bitstream, with the first bit in each byte assigned to D0. The configuration data stream begins with a string of eight ones, a preamble code, followed by a 24-bit length count and a separator field of ones. This header is followed by the actual configuration data in frames. The length and number of frames depends on the device type (see Table 20 and Table 21). Each frame begins with a start field and ends with an error check. A postamble code is required to signal the end of data for a single device. In all cases, additional start-up bytes of data are required to provide four clocks for the startup sequence at the end of configuration. Long daisy chains require additional startup bytes to shift the last data through
the chain. All startup bytes are don't-cares; these bytes are not included in bitstreams created by the Xilinx software. A selection of CRC or non-CRC error checking is allowed by the bitstream generation software. The non-CRC error checking tests for a designated end-of-frame field for each frame. For CRC error checking, the software calculates a running CRC and inserts a unique four-bit partial check at the end of each frame. The 11-bit CRC check of the last frame of an FPGA includes the last seven data bits. Detection of an error results in the suspension of data loading and the pulling down of the $\overline{\text{INIT}}$ pin. In Master modes, CCLK and address signals continue to operate externally. The user must detect $\overline{\text{INIT}}$ and initialize a new configuration by pulsing the $\overline{\text{PROGRAM}}$ pin Low or cycling Vcc. Table 20: XC4000E Program Data | Device | XC4003E | XC4005E | XC4006E | XC4008E | XC4010E | XC4013E | XC4020E | XC4025E | |---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Max Logic Gates | 3,000 | 5,000 | 6,000 | 8,000 | 10,000 | 13,000 | 20,000 | 25,000 | | CLBs | 100 | 196 | 256 | 324 | 400 | 576 | 784 | 1,024 | | (Row x Col.) | (10 x 10) | (14 x 14) | (16 x 16) | (18 x 18) | (20 x 20) | (24 x 24) | (28 x 28) | (32 x 32) | | IOBs | 80 | 112 | 128 | 144 | 160 | 192 | 224 | 256 | | Flip-Flops | 360 | 616 | 768 | 936 | 1,120 | 1,536 | 2,016 | 2,560 | | Bits per Frame | 126 | 166 | 186 | 206 | 226 | 266 | 306 | 346 | | Frames | 428 | 572 | 644 | 716 | 788 | 932 | 1,076 | 1,220 | | Program Data | 53,936 | 94,960 | 119,792 | 147,504 | 178,096 | 247,920 | 329,264 | 422,128 | | PROM Size
(bits) | 53,984 | 95,008 | 119,840 | 147,552 | 178,144 | 247,968 | 329,312 | 422,176 | Notes: 1. Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1 Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits PROM Size = Program Data + 40 (header) + 8 2. The user can add more "one" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra "one" bits, even for extra leading ones at the beginning of the header. Table 21: XC4000EX/XL Program Data | Device | XC4002XL | XC4005 | XC4010 | XC4013 | XC4020 | XC4028 | XC4036 | XC4044 | XC4052 | XC4062 | XC4085 | |---------------------------|---------------|------------------|------------------|------------------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | Max Logic
Gates | 2,000 | 5,000 | 10,000 | 13,000 | 20,000 | 28,000 | 36,000 | 44,000 | 52,000 | 62,000 | 85,000 | | CLBs
(Row x
Column) | 64
(8 x 8) | 196
(14 x 14) | 400
(20 x 20) | 576
(24 x 24) | 784
(28 x 28) | 1,024
(32 x 32) | 1,296
(36 x 36) | 1,600
(40 x 40) | 1,936
(44 x 44) | 2,304
(48 x 48) | 3,136
(56 x 56) | | IOBs | 64 | 112 | 160 | 192 | 224 | 256 | 288 | 320 | 352 | 384 | 448 | | Flip-Flops | 256 | 616 | 1,120 | 1,536 | 2,016 | 2,560 | 3,168 | 3,840 | 4,576 | 5,376 | 7,168 | | Bits per
Frame | 133 | 205 | 277 | 325 | 373 | 421 | 469 | 517 | 565 | 613 | 709 | | Frames | 459 | 741 | 1,023 | 1,211 | 1,399 | 1,587 | 1,775 | 1,963 | 2,151 | 2,339 | 2,715 | | Program Data | 61,052 | 151,910 | 283,376 | 393,580 | 521,832 | 668,124 | 832,480 | 1,014,876 | 1,215,320 | 1,433,804 | 1,924,940 | | PROM Size
(bits) | 61,104 | 151,960 | 283,424 | 393,632 | 521,880 | 668,172 | 832,528 | 1,014,924 | 1,215,368 | 1,433,852 | 1,924,992 | Notes: 1. Bits per frame = (13 x number of rows) + 9 for the top + 17 for the bottom + 8 + 1 start bit + 4 error check bits. Frames = (47 x number of columns) + 27 for the left edge + 52 for the right edge + 4. Program data = (bits per frame x number of frames) + 5 postamble bits. PROM size = (program data + 40 header bits + 8 start bits) rounded up to the nearest byte. 2. The user can add more "one" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra "one" bits, even for extra leading "ones" at the beginning of the header. ## Cyclic Redundancy Check (CRC) for Configuration and Readback The Cyclic Redundancy Check is a method of error detection in data transmission applications. Generally, the transmitting system performs a calculation on the serial bitstream. The result of this calculation is tagged onto the data stream as additional check bits. The receiving system performs an identical calculation on the bitstream and compares the result with the received checksum. Each data frame of the configuration bitstream has four error bits at the end, as shown in Table 19. If a frame data error is detected during the loading of the FPGA, the con- figuration process with a potentially corrupted bitstream is terminated. The FPGA pulls the $\overline{\text{INIT}}$ pin Low and goes into a Wait state. During Readback, 11 bits of the 16-bit checksum are added to the end of the Readback data stream. The checksum is computed using the CRC-16 CCITT polynomial, as shown in Figure 45. The checksum consists of the 11 most significant bits of the 16-bit code. A change in the checksum indicates a change in the Readback bitstream. A comparison to a previous checksum is meaningful only if the readback data is independent of the current device state. CLB outputs should not be included (Read Capture option not used), and if RAM is present, the RAM content must be unchanged. Statistically, one error out of 2048 might go undetected. ## **Configuration Sequence** There are four major steps in the XC4000 Series power-up configuration sequence. - Configuration Memory Clear - Initialization - Configuration - Start-Up The full process is illustrated in Figure 46. ## Configuration Memory Clear When power is first applied or is reapplied to an FPGA, an internal circuit forces initialization of the configuration logic. When Vcc reaches an operational level, and the circuit passes the write and read test of a sample pair of configuration bits, a time delay is started. This time delay is nominally 16 ms, and up to 10% longer in the low-voltage devices. The delay is four times as long when in Master Modes (M0 Low), to allow ample time for all slaves to reach a stable Vcc. When all $\overline{\text{INIT}}$ pins are tied together, as recommended, the longest delay takes precedence. Therefore, devices with different time delays can easily be mixed and matched in a daisy chain. This delay is applied only on power-up. It is not applied when re-configuring an FPGA by pulsing the $\overline{\text{PROGRAM}}$ pin Figure 45: Circuit for Generating CRC-16 Figure 46: Power-up Configuration Sequence Figure 48: Start-up Logic ## Readback The user can read back the content of configuration memory and the level of certain internal nodes without interfering with the normal operation of the device. Readback not only reports the downloaded configuration bits, but can also include the present state of the device, represented by the content of all flip-flops and latches in CLBs and IOBs, as well as the content of function generators used as RAMs. Note that in XC4000 Series devices, configuration data is *not* inverted with respect to configuration as it is in XC2000 and XC3000 families. XC4000 Series Readback does not use any dedicated pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA, RDBK.RIP and RDBK.CLK) that can be routed to any IOB. To access the internal Readback signals, place the READ- BACK library symbol and attach the appropriate pad symbols, as shown in Figure 49. After Readback has been initiated by a High level on RDBK.TRIG after configuration, the RDBK.RIP (Read In Progress) output goes High on the next rising edge of RDBK.CLK. Subsequent rising edges of this clock shift out Readback data on the RDBK.DATA net. Readback data does not include the preamble, but starts with five dummy bits (all High) followed by the Start bit (Low) of the first frame. The first two data bits of the first frame are always High. Each frame ends with four error check bits. They are read back as High. The last seven bits of the last frame are also read back as High. An additional Start bit (Low) and an 11-bit Cyclic Redundancy Check (CRC) signature follow, before RDBK.RIP returns Low. | | Description | | Symbol | Min | Max | Units | |------|------------------------|---|------------------|-----|-----|-------| | | Delay to Address valid | 1 | T _{RAC} | 0 | 200 | ns | | RCLK | Data setup time | 2 | T _{DRC} | 60 | | ns | | | Data hold time | 3 | T _{RCD} | 0 | | ns | Notes: 1. At power-up, Vcc must rise from 2.0 V to Vcc min in less than 25 ms, otherwise delay configuration by pulling PROGRAM Low until Vcc is valid. 2. The first Data byte is loaded and CCLK starts at the end of the first RCLK active cycle (rising edge). This timing diagram shows that the EPROM requirements are extremely relaxed. EPROM access time can be longer than 500 ns. EPROM data output has no hold-time requirements. Figure 55: Master Parallel Mode Programming Switching Characteristics ## **Product Availability** Table 24, Table 25, and Table 26 show the planned packages and speed grades for XC4000-Series devices. Call your local sales office for the latest availability information, or see the Xilinx website at http://www.xilinx.com for the latest revision of the specifications. Table 24: Component Availability Chart for XC4000XL FPGAs | | PINS | 84 | 100 | 100 | 144 | 144 | 160 | 160 | 176 | 176 | 208 | 208 | 240 | 240 | 256 | 299 | 304 | 352 | 411 | 432 |
475 | 559 | 560 | |-------------|------------|----------------|----------------|----------------|----------------|--------------------|-------------------|----------------|----------------|--------------------|-------------------|----------------|-------------------|----------------|---------------|---------------|-------------------|---------------|---------------|---------------|---------------|---------------|---------------| TYPE | | Plast.
PLCC | Plast.
PQFP | Plast.
VQFP | Plast.
TQFP | High-Perf.
TQFP | High-Perf.
QFP | Plast.
PQFP | Plast.
TQFP | High-Perf.
TQFP | High-Perf.
QFP | Plast.
PQFP | High-Perf.
QFP | Plast.
PQFP | Plast.
BGA | Ceram.
PGA | High-Perf.
QFP | Plast.
BGA | Ceram.
PGA | Plast.
BGA | Ceram.
PGA | Ceram.
PGA | Plast.
BGA | | CC | ODE | PC84 | PQ100 | VQ100 | TQ144 | HT144 | HQ160 | PQ160 | TQ176 | HT176 | HQ208 | PQ208 | HQ240 | PQ240 | BG256 | PG299 | HQ304 | BG352 | PG411 | BG432 | PG475 | PG559 | BG560 | | | -3 | СІ | СІ | СІ | XC4002XL | -2 | СІ | СІ | СІ | XO4002XL | -1 | СІ | СІ | СІ | -09C | С | С | С | -3 | | СІ | СІ | СІ | CI | | | СІ | | | | СІ | | | | | | | | | | | | | XC4005XL | -2 | CI | С | CI | CI | | | CI | | | | CI | | | | | | | | | | | | | | -1
-09C | C I | CI | C I | C I | | | C I | | | | C I | | | | | | | | | | | | | | -3 | CI | CI | | CI | | | CI | СІ | | | CI | | | СІ | | | | | | | | | | XC4010XL | -2 | СІ | СІ | | СІ | | | СІ | CI | | | CI | | | CI | | | | | | | | | | AC40 IUAL | -1 | СІ | СІ | | СІ | | | СІ | СІ | | | СІ | | | CI | | | | | | | | | | | -09C | С | С | | С | | | С | С | | | С | | | С | | | | | | | | | | | -3
-2 | | | | | CI | CI | | | | | | | | | | XC4013XL | -1 | | | | | CI | CI | | | | | | | | | | AC4013AL | -09C | | | | | C | | C | | C | | C | | C | C | | | | | | | | | | | -08C | | | | | С | | С | | С | | С | | С | С | | | | | | | | | | | -3 | | | | | СІ | | CI | | CI | | СІ | | CI | СІ | | | | | | | | | | XC4020XL | -2 | | | | | СІ | СІ | | | | | | | | | | AC4020AL | -1 | | | | | СІ | | СІ | | СІ | | СІ | | CI | СІ | | | | | | | | | | | -09C | | | | | С | | С | | С | | С | | С | С | | | | | | | | | | | -3 | | | | | | CI | | | | CI | | CI | | CI | CI | CI | CI | | | | | | | XC4028XL | -2
-1 | | | | | | CI | | | | CI | | CI | | CI | CI | CI | CI | | | | | | | | -09C | | | | | | C | | | | C | | С | | С | С | C | C | | | | | | | | -3 | | | | | | CI | | | | CI | | CI | | | | CI | CI | СІ | CI | | | | | | -2 | | | | | | СІ | | | | СІ | | С | | | | CI | CI | CI | СІ | | | | | XC4036XL | -1 | | | | | | СІ | | | | СІ | | СІ | | | | СІ | СІ | СІ | СІ | | | | | | -09C | | | | | | O | | | | С | | С | | | | С | С | С | С | | | | | | -08C | | | | | | С | | | | С | | С | | | | С | С | С | С | | | | | | -3 | | | | | | CI | | | | CI | | CI | | | | CI | CI | CI | CI | | | | | XC4044XL | -2
-1 | | | | | | CI | | | | CI | | CI | | | | CI | CI | CI | CI | | | | | - | -09C | | | | | | С | | | | С | | С | | | | С | C | C | С | | | | | | -3 | | | | | | | | | | | | CI | | | | CI | <u> </u> | CI | CI | | | СІ | | VC4050VI | -2 | | | | | | | | | | | | CI | | | | CI | | CI | CI | | | CI | | XC4052XL | -1 | | | | | | | | | | | | СІ | | | | СІ | | СІ | СІ | | | СІ | | | -09C | | | | | | | | | | | | С | | | | С | | С | С | | | С | | | -3 | | | | | | | | | | | | CI | | | | CI | | | CI | CI | | CI | | VO 4000V! | -2 | | | | | | | | | | | | CI | | | | CI | | | CI | CI | | CI | | XC4062XL | -1
-09C | | | | | | | | | | | | C1 | | | | CI | | | C I | C I | | CI
C | | | -09C | | | | | | | | | | | | С | | - | | С | | | С | С | | С | | | -3 | | | | | | | | | | | | | | | | | | | CI | | CI | CI | | \\ 0 | -2 | | | | | | | | | | | | | | | | | | | CI | | CI | CI | | XC4085XL | -1 | | | | | | | | | | | | | | | | | | | CI | | CI | CI | | | -09C | | | | | | | | | | | | | | | | | | | С | | С | С | | 1/29/99 | 550 | | | | | | | | | | | | | | | | | | | J | | | | 1/29/99 $C = Commercial \ T_J = 0^{\circ} \ to \ +85^{\circ}C$ I= Industrial $T_J = -40^{\circ}C$ to $+100^{\circ}C$ Table 25: Component Availability Chart for XC4000E FPGAs | F | PINS | 84 | 100 | 100 | 120 | 144 | 156 | 160 | 191 | 208 | 208 | 223 | 225 | 240 | 240 | 299 | 304 | |----------|------|----------------|----------------|----------------|---------------|----------------|---------------|----------------|---------------|-------------------|----------------|---------------|---------------|-------------------|----------------|---------------|------------------| | TYPE | | Plast.
PLCC | Plast.
PQFP | Plast.
VQFP | Ceram.
PGA | Plast.
TQFP | Ceram.
PGA | Plast.
PQFP | Ceram.
PGA | High-Perf.
QFP | Plast.
PQFP | Ceram.
PGA | Plast.
BGA | High-Perf.
QFP | Plast.
PQFP | Ceram.
PGA | High-Perf.
QF | | co | DDE | PC84 | PQ100 | VQ100 | PG120 | TQ144 | PG156 | PQ160 | PG191 | HQ208 | PQ208 | PG223 | BG225 | HQ240 | PQ240 | PG299 | HQ304 High-Perf. | | | -4 | CI | CI | CI | CI | | | | | | | | | | | | | | XC4003E | -3 | СІ | СІ | СІ | СІ | | | | | | | | | | | | | | AC4003E | -2 | СІ | СІ | СІ | CI | | | | | | | | | | | | | | | -1 | С | С | С | С | | | | | | | | | | | | | | | -4 | СІ | СІ | | | СІ | СІ | CI | | | CI | | | | | | | | XC4005E | -3 | СІ | СІ | | | СІ | СІ | СІ | | | СІ | | | | | | | | AC4005E | -2 | CI | СІ | | | СІ | СІ | СІ | | | СІ | | | | | | | | | -1 | С | С | | | С | С | С | | | С | | | | | | | | | -4 | CI | | | | CI | СІ | СІ | | | CI | | | | | | | | XC4006E | -3 | СІ | | | | CI | СІ | СІ | | | CI | | | | | | | | | -2 | CI | | | | CI | CI | CI | | | CI | | | | | | | | Ī | -1 | С | | | | С | С | С | | | С | | | | | | | | | -4 | СІ | | | | | | CI | CI | | CI | | | | | | | | XC4008E | -3 | СІ | | | | | | СІ | CI | | CI | | | | | | | | AC4000L | -2 | CI | | | | | | CI | CI | | CI | | | | | | | | | -1 | С | | | | | | С | С | | С | | | | | | | | | -4 | CI | | | | | | CI | CI | CI | CI | | CI | | | | | | XC4010E | -3 | CI | | | | | | CI | CI | CI | CI | | CI | | | | | | AC4010L | -2 | CI | | | | | | CI | CI | CI | CI | | CI | | | | | | | -1 | С | | | | | | С | С | С | С | | С | | | | | | | -4 | | | | | | | CI | | CI | CI | CI | CI | CI | CI | | | | XC4013E | -3 | | | | | | | CI | | CI | CI | CI | CI | CI | CI | | | | NO-1010L | -2 | | | | | | | CI | | CI | CI | CI | CI | CI | CI | | | | | -1 | | | | | | | С | | С | С | С | С | С | С | | | | | -4 | | | | | | | | | CI | | CI | | CI | | | | | XC4020E | -3 | | | | | | | | | CI | | CI | | CI | | | | | 7.0-020L | -2 | | | | | | | | | CI | | CI | | CI | | | | | | -1 | | | | | | | | | С | | С | | С | | | | | | -4 | | | | | | | | | | | CI | | CI | | CI | CI | | XC4025E | -3 | | | | | | | | | | | CI | | CI | | CI | CI | | 1/29/99 | -2 | | | | | | | | | | | С | | С | | С | С | C = Commercial $T_J = 0^{\circ}$ to +85°C I= Industrial $T_J = -40^{\circ}$ C to +100°C Table 26: Component Availability Chart for XC4000EX FPGAs | F | PINS 208 | | 240 | 299 | 304 | 352 | 411 | 432 | |----------|----------|-------------------|-------------------|---------------|-------------------|---------------|---------------|---------------| | TYPE | | High-Perf.
QFP | High-Perf.
QFP | Ceram.
PGA | High-Perf.
QFP | Plast.
BGA | Ceram.
PGA | Plast.
BGA | | C | ODE | HQ208 | HQ240 | PG299 | HQ304 | BG352 | PG411 | BG432 | | | -4 | CI | CI | CI | CI | CI | | | | XC4028EX | -3 | CI | CI | CI | CI | CI | | | | | -2 | С | С | С | С | С | | | | | -4 | | CI | | CI | CI | CI | CI | | XC4036EX | -3 | | CI | | CI | CI | CI | CI | | | -2 | | С | | С | С | С | С | 1/29/99 C = Commercial $T_J = 0^{\circ}$ to +85°C I= Industrial $T_J = -40^{\circ}$ C to +100°C