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Set/Reset

An asynchronous storage element input (SR) can be con-
figured as either set or reset. This configuration option
determines the state in which each flip-flop becomes oper-
ational after configuration. It also determines the effect of a
Global Set/Reset pulse during normal operation, and the
effect of a pulse on the SR pin of the CLB. All three
set/reset functions for any single flip-flop are controlled by
the same configuration data bit.

The set/reset state can be independently specified for each
flip-flop. This input can also be independently disabled for
either flip-flop.

The set/reset state is specified by using the INIT attribute,
or by placing the appropriate set or reset flip-flop library
symbol.

SR is active High. It is not invertible within the CLB.
Global Set/Reset

A separate Global Set/Reset line (not shown in Figure 1)
sets or clears each storage element during power-up,
re-configuration, or when a dedicated Reset net is driven
active. This global net (GSR) does not compete with other
routing resources; it uses a dedicated distribution network.

Each flip-flop is configured as either globally set or reset in
the same way that the local set/reset (SR) is specified.
Therefore, if a flip-flop is set by SR, it is also set by GSR.
Similarly, a reset flip-flop is reset by both SR and GSR.

STARTUP
PAD } GSR Q2 —
IBUF —{ GTS Q3 —
QlQ4 | —
—> CLK DONEIN —
X5260

Figure 2: Schematic Symbols for Global Set/Reset

GSR can be driven from any user-programmable pin as a
global reset input. To use this global net, place an input pad
and input buffer in the schematic or HDL code, driving the
GSR pin of the STARTUP symbol. (See Figure 2.) A spe-
cific pin location can be assigned to this input using a LOC
attribute or property, just as with any other user-program-
mable pad. An inverter can optionally be inserted after the
input buffer to invert the sense of the Global Set/Reset sig-
nal.

Alternatively, GSR can be driven from any internal node.

Data Inputs and Outputs

The source of a storage element data input is programma-
ble. It is driven by any of the functions F’, G’, and H’, or by
the Direct In (DIN) block input. The flip-flops or latches drive
the XQ and YQ CLB outputs.

Two fast feed-through paths are available, as shown in
Figure 1. A two-to-one multiplexer on each of the XQ and
YQ outputs selects between a storage element output and
any of the control inputs. This bypass is sometimes used by
the automated router to repower internal signals.

Control Signals

Multiplexers in the CLB map the four control inputs (C1 - C4
in Figure 1) into the four internal control signals (H1,
DIN/H2, SR/HO, and EC). Any of these inputs can drive any
of the four internal control signals.

When the logic function is enabled, the four inputs are:

 EC — Enable Clock

¢ SR/HO — Asynchronous Set/Reset or H function
generator Input O

¢ DIN/H2 — Direct In or H function generator Input 2

e H1 — H function generator Input 1.

When the memory function is enabled, the four inputs are:

e EC — Enable Clock

« WE — Write Enable

« DO — Data Input to F and/or G function generator

¢ D1 — Data input to G function generator (16x1 and
16x2 modes) or 5th Address bit (32x1 mode).

Using FPGA Flip-Flops and Latches

The abundance of flip-flops in the XC4000 Series invites
pipelined designs. This is a powerful way of increasing per-
formance by breaking the function into smaller subfunc-
tions and executing them in parallel, passing on the results
through pipeline flip-flops. This method should be seriously
considered wherever throughput is more important than
latency.

To include a CLB flip-flop, place the appropriate library
symbol. For example, FDCE is a D-type flip-flop with clock
enable and asynchronous clear. The corresponding latch
symbol (for the XC4000X only) is called LDCE.

In XC4000 Series devices, the flip flops can be used as reg-
isters or shift registers without blocking the function gener-
ators from performing a different, perhaps unrelated task.
This ability increases the functional capacity of the devices.

The CLB setup time is specified between the function gen-
erator inputs and the clock input K. Therefore, the specified
CLB flip-flop setup time includes the delay through the
function generator.

Using Function Generators as RAM

Optional modes for each CLB make the memory look-up
tables in the F and G’ function generators usable as an
array of Read/Write memory cells. Available modes are
level-sensitive (similar to the XC4000/A/H families),
edge-triggered, and dual-port edge-triggered. Depending
on the selected mode, a single CLB can be configured as
either a 16x2, 32x1, or 16x1 bit array.
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Dual-Port Edge-Triggered Mode

In dual-port mode, both the F and G function generators
are used to create a single 16x1 RAM array with one write
port and two read ports. The resulting RAM array can be
read and written simultaneously at two independent
addresses. Simultaneous read and write operations at the
same address are also supported.

Dual-port mode always has edge-triggered write timing, as
shown in Figure 3.

Figure 6 shows a simple model of an XC4000 Series CLB
configured as dual-port RAM. One address port, labeled
A[3:0], supplies both the read and write address for the F
function generator. This function generator behaves the
same as a 16x1 single-port edge-triggered RAM array. The
RAM output, Single Port Out (SPO), appears at the F func-
tion generator output. SPO, therefore, reflects the data at
address A[3:0].

The other address port, labeled DPRA[3:0] for Dual Port
Read Address, supplies the read address for the G function
generator. The write address for the G function generator,
however, comes from the address A[3:0]. The output from
this 16x1 RAM array, Dual Port Out (DPO), appears at the
G function generator output. DPO, therefore, reflects the
data at address DPRA[3:0].

Therefore, by using A[3:0] for the write address and
DPRA][3:0] for the read address, and reading only the DPO
output, a FIFO that can read and write simultaneously is
easily generated. Simultaneous access doubles the effec-
tive throughput of the FIFO.

The relationships between CLB pins and RAM inputs and
outputs for dual-port, edge-triggered mode are shown in
Table 6. See Figure 7 on page 16 for a block diagram of a
CLB configured in this mode.
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Figure 6: XC4000 Series Dual-Port RAM, Simple
Model

Table 6: Dual-Port Edge-Triggered RAM Signals

RAM Signal CLB Pin Function
D DO Data In
A[3:0] F1-F4 Read Address for F,
Write Address for F and G
DPRAJ[3:0] G1-G4 Read Address for G
WE WE Write Enable
WCLK K Clock
SPO F Single Port Out
(addressed by A[3:0])
DPO G’ Dual Port Out
(addressed by DPRA[3:0])

Note: The pulse following the active edge of WCLK (T\yps
in Figure 3) must be less than one millisecond wide. For
most applications, this requirement is not overly restrictive;
however, it must not be forgotten. Stopping WCLK at this
point in the write cycle could result in excessive current and
even damage to the larger devices if many CLBs are con-
figured as edge-triggered RAM.

Single-Port Level-Sensitive Timing Mode

Note: Edge-triggered mode is recommended for all new
designs. Level-sensitive mode, also called asynchronous
mode, is still supported for XC4000 Series backward-com-
patibility with the XC4000 family.

Level-sensitive RAM timing is simple in concept but can be
complicated in execution. Data and address signals are
presented, then a positive pulse on the write enable pin
(WE) performs a write into the RAM at the designated
address. As indicated by the “level-sensitive” label, this
RAM acts like a latch. During the WE High pulse, changing
the data lines results in new data written to the old address.
Changing the address lines while WE is High results in spu-
rious data written to the new address—and possibly at
other addresses as well, as the address lines inevitably do
not all change simultaneously.

The user must generate a carefully timed WE signal. The
delay on the WE signal and the address lines must be care-
fully verified to ensure that WE does not become active
until after the address lines have settled, and that WE goes
inactive before the address lines change again. The data
must be stable before and after the falling edge of WE.

In practical terms, WE is usually generated by a 2X clock. If
a 2X clock is not available, the falling edge of the system
clock can be used. However, there are inherent risks in this
approach, since the WE pulse must be guaranteed inactive
before the next rising edge of the system clock. Several
older application notes are available from Xilinx that dis-
cuss the design of level-sensitive RAMSs.

However, the edge-triggered RAM available in the XC4000
Series is superior to level-sensitive RAM for almost every
application.
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Figure 7: 16x1 Edge-Triggered Dual-Port RAM

Figure 8 shows the write timing for level-sensitive, sin- attached to the RAM or ROM symbol, as described in the
gle-port RAM. schematic library guide. If not defined, all RAM contents

The relationships between CLB pins and RAM inputs and are initialized to all zeros, by default.

outputs for single-port level-sensitive mode are shown in RAM initialization occurs only during configuration. The
Table 7. RAM content is not affected by Global Set/Reset.

Figure 9 and Figure 10 show block diagrams of a CLB con- Table 7: Single-Port Level-Sensitive RAM Signals
figured as 16x2 and 32x1 level-sensitive, single-port RAM.

RAM Signal CLB Pin Function

Initializing RAM at Configuration D DO or D1 Data In

. . A[3:0] F1-F4 or G1-G4 Address
Both RAM and ROM implementations of the XC4000 WE WE Write Enable
Series devices are initialized during configuration. The ini- 0 ForG Data Out
tial contents are defined via an INIT attribute or property

Twc
ADDRESS
Tas [ Twp | TAH —>|
WRITE ENABLE k #\ ‘
Tps —> <« TpH

-
DATA IN * REQUIRED

Figure 8: Level-Sensitive RAM Write Timing

X6462
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Any XC4000 Series 5-Volt device with its outputs config-
ured in TTL mode can drive the inputs of any typical
3.3-Volt device. (For a detailed discussion of how to inter-
face between 5 V and 3.3 V devices, see the 3V Products
section of The Programmable Logic Data Book.)

Supported destinations for XC4000 Series device outputs
are shown in Table 12.

An output can be configured as open-drain (open-collector)
by placing an OBUFT symbol in a schematic or HDL code,
then tying the 3-state pin (T) to the output signal, and the
input pin (1) to Ground. (See Figure 18.)

Table 12: Supported Destinations for XC4000 Series
Outputs

XC4000 Series
Outputs
Destination 3.3V, 5V, 5y,

CMOS| TTL | CMOS
Any typical device, Vcc=3.3V, v v somel
CMOS-threshold inputs
Any device, Vcc =5V, v v v
TTL-threshold inputs
Any device, Vcc =5V, Unreliable v
CMOS-threshold inputs Data

1. Only if destination device has 5-V tolerant inputs

o

L > OPAD |

OBUFT

X6702

Figure 18: Open-Drain Output

Output Slew Rate

The slew rate of each output buffer is, by default, reduced,
to minimize power bus transients when switching non-criti-
cal signals. For critical signals, attach a FAST attribute or
property to the output buffer or flip-flop.

For XC4000E devices, maximum total capacitive load for
simultaneous fast mode switching in the same direction is
200 pF for all package pins between each Power/Ground
pin pair. For XC4000X devices, additional internal

Power/Ground pin pairs are connected to special Power
and Ground planes within the packages, to reduce ground
bounce. Therefore, the maximum total capacitive load is
300 pF between each external Power/Ground pin pair.
Maximum loading may vary for the low-voltage devices.

For slew-rate limited outputs this total is two times larger for
each device type: 400 pF for XC4000E devices and 600 pF
for XC4000X devices. This maximum capacitive load
should not be exceeded, as it can result in ground bounce
of greater than 1.5 V amplitude and more than 5 ns dura-
tion. This level of ground bounce may cause undesired
transient behavior on an output, or in the internal logic. This
restriction is common to all high-speed digital ICs, and is
not particular to Xilinx or the XC4000 Series.

XC4000 Series devices have a feature called “Soft
Start-up,” designed to reduce ground bounce when all out-
puts are turned on simultaneously at the end of configura-
tion. When the configuration process is finished and the
device starts up, the first activation of the outputs is auto-
matically slew-rate limited. Immediately following the initial
activation of the 1/O, the slew rate of the individual outputs
is determined by the individual configuration option for each
IOB.

Global Three-State

A separate Global 3-State line (not shown in Figure 15 or
Figure 16) forces all FPGA outputs to the high-impedance
state, unless boundary scan is enabled and is executing an
EXTEST instruction. This global net (GTS) does not com-
pete with other routing resources; it uses a dedicated distri-
bution network.

GTS can be driven from any user-programmable pin as a
global 3-state input. To use this global net, place an input
pad and input buffer in the schematic or HDL code, driving
the GTS pin of the STARTUP symbol. A specific pin loca-
tion can be assigned to this input using a LOC attribute or
property, just as with any other user-programmable pad. An
inverter can optionally be inserted after the input buffer to
invert the sense of the Global 3-State signal. Using GTS is
similar to GSR. See Figure 2 on page 11 for details.

Alternatively, GTS can be driven from any internal node.

6-24
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Figure 22: 3-State Buffers Implement a Multiplexer

Wide Edge Decoders

Dedicated decoder circuitry boosts the performance of
wide decoding functions. When the address or data field is
wider than the function generator inputs, FPGAs need
multi-level decoding and are thus slower than PALs.
XC4000 Series CLBs have nine inputs. Any decoder of up
to nine inputs is, therefore, compact and fast. However,
there is also a need for much wider decoders, especially for
address decoding in large microprocessor systems.

An XC4000 Series FPGA has four programmable decoders
located on each edge of the device. The inputs to each
decoder are any of the I0B 11 signals on that edge plus one
local interconnect per CLB row or column. Each row or col-
umn of CLBs provides up to three variables or their compli-
ments., as shown in Figure 23. Each decoder generates a
High output (resistor pull-up) when the AND condition of
the selected inputs, or their complements, is true. This is
analogous to a product term in typical PAL devices.

Each of these wired-AND gates is capable of accepting up
to 42 inputs on the XC4005E and 72 on the XC4013E.
There are up to 96 inputs for each decoder on the
XC4028X and 132 on the XC4052X. The decoders may
also be split in two when a larger number of narrower
decoders are required, for a maximum of 32 decoders per
device.

The decoder outputs can drive CLB inputs, so they can be
combined with other logic to form a PAL-like AND/OR struc-
ture. The decoder outputs can also be routed directly to the
chip outputs. For fastest speed, the output should be on the
same chip edge as the decoder. Very large PALs can be
emulated by ORing the decoder outputs in a CLB. This
decoding feature covers what has long been considered a
weakness of older FPGAs. Users often resorted to external
PALs for simple but fast decoding functions. Now, the dedi-
cated decoders in the XC4000 Series device can imple-
ment these functions fast and efficiently.

To use the wide edge decoders, place one or more of the
WAND library symbols (WAND1, WAND4, WANDS,
WAND16). Attach a DECODE attribute or property to each
WAND symbol. Tie the outputs together and attach a PUL-

LUP symbol. Location attributes or properties such as L
(left edge) or TR (right half of top edge) should also be used
to ensure the correct placement of the decoder inputs.

INTERCONNECT

10B 10B

11 1

A c B

O O O
( C) ...
(A*B-C)....
(AeB+C)...
(A*B-C)....

X2627

Figure 23: XC4000 Series Edge Decoding Example
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Figure 24: XC4000 Series Oscillator Symbol

On-Chip Oscillator

XC4000 Series devices include an internal oscillator. This
oscillator is used to clock the power-on time-out, for config-
uration memory clearing, and as the source of CCLK in
Master configuration modes. The oscillator runs at a nomi-
nal 8 MHz frequency that varies with process, Vcc, and
temperature. The output frequency falls between 4 and 10
MHz.

May 14, 1999 (Version 1.6)
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Figure 32: XC4000X Octal I/0 Routing
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IOB inputs and outputs interface with the octal lines via the
single-length interconnect lines. Single-length lines are
also used for communication between the octals and dou-
ble-length lines, quads, and longlines within the CLB array.

Segmentation into buffered octals was found to be optimal
for distributing signals over long distances around the
device.

Global Nets and Buffers

Both the XC4000E and the XC4000X have dedicated glo-
bal networks. These networks are designed to distribute
clocks and other high fanout control signals throughout the
devices with minimal skew. The global buffers are
described in detail in the following sections. The text
descriptions and diagrams are summarized in Table 15.
The table shows which CLB and IOB clock pins can be
sourced by which global buffers.

In both XC4000E and XC4000X devices, placement of a
library symbol called BUFG results in the software choos-
ing the appropriate clock buffer, based on the timing
requirements of the design. The detailed information in
these sections is included only for reference.

Global Nets and Buffers (XC4000E only)

Four vertical longlines in each CLB column are driven
exclusively by special global buffers. These longlines are
in addition to the vertical longlines used for standard inter-
connect. The four global lines can be driven by either of two
types of global buffers. The clock pins of every CLB and
IOB can also be sourced from local interconnect.

Table 15: Clock Pin Access

Two different types of clock buffers are available in the
XC4000E:

e Primary Global Buffers (BUFGP)
¢ Secondary Global Buffers (BUFGS)

Four Primary Global buffers offer the shortest delay and
negligible skew. Four Secondary Global buffers have
slightly longer delay and slightly more skew due to poten-
tially heavier loading, but offer greater flexibility when used
to drive non-clock CLB inputs.

The Primary Global buffers must be driven by the
semi-dedicated pads. The Secondary Global buffers can
be sourced by either semi-dedicated pads or internal nets.

Each CLB column has four dedicated vertical Global lines.
Each of these lines can be accessed by one particular Pri-
mary Global buffer, or by any of the Secondary Global buff-
ers, as shown in Figure 34. Each corner of the device has
one Primary buffer and one Secondary buffer.

I0OBs along the left and right edges have four vertical global
longlines. Top and bottom IOBs can be clocked from the
global lines in the adjacent CLB column.

A global buffer should be specified for all timing-sensitive
global signal distribution. To use a global buffer, place a
BUFGP (primary buffer), BUFGS (secondary buffer), or
BUFG (either primary or secondary buffer) element in a
schematic or in HDL code. If desired, attach a LOC
attribute or property to direct placement to the designated
location. For example, attach a LOC=L attribute or property
to a BUFGS symbol to direct that a buffer be placed in one
of the two Secondary Global buffers on the left edge of the
device, or a LOC=BL to indicate the Secondary Global
buffer on the bottom edge of the device, on the left.

XC4000E XC4000X Local
L&R T&B Inter-
BUFGP BUFGS BUFGLS BUFGE BUFGE connect
All CLBs in Quadrant v v v v
All CLBs in Device v v
IOBs on Adjacent Vertical v v v v
Half Edge
IOBs on Adjacent Vertical v v v
Full Edge
IOBs on Adjacent Horizontal v v
Half Edge (Direct)
IOBs on Adjacent Horizontal v v v v
Half Edge (through CLB globals)
IOBs on Adjacent Horizontal v v
Full Edge (through CLB globals)
L = Left, R = Right, T = Top, B = Bottom
May 14, 1999 (Version 1.6) 6-35
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Figure 36: Any BUFGLS (GCKL1 - GCK8) Can
Drive Any or All Clock Inputs on the Device

Global Early Buffers

Each corner of the XC4000X device has two Global Early
buffers. The primary purpose of the Global Early buffers is
to provide an earlier clock access than the potentially
heavily-loaded Global Low-Skew buffers. A clock source
applied to both buffers will result in the Global Early clock
edge occurring several nanoseconds earlier than the Glo-
bal Low-Skew buffer clock edge, due to the lighter loading.

Global Early buffers also facilitate the fast capture of device
inputs, using the Fast Capture latches described in “IOB
Input Signals” on page 20. For Fast Capture, take a single
clock signal, and route it through both a Global Early buffer
and a Global Low-Skew buffer. (The two buffers share an
input pad.) Use the Global Early buffer to clock the Fast
Capture latch, and the Global Low-Skew buffer to clock the
normal input flip-flop or latch, as shown in Figure 17 on
page 23.

The Global Early buffers can also be used to provide a fast
Clock-to-Out on device output pins. However, an early clock
in the output flip-flop IOB must be taken into consideration
when calculating the internal clock speed for the design.

The Global Early buffers at the left and right edges of the
chip have slightly different capabilities than the ones at the
top and bottom. Refer to Figure 37, Figure 38, and
Figure 35 on page 36 while reading the following explana-
tion.

Each Global Early buffer can access the eight vertical Glo-
bal lines for all CLBs in the quadrant. Therefore, only
one-fourth of the CLB clock pins can be accessed. This
restriction is in large part responsible for the faster speed of
the buffers, relative to the Global Low-Skew buffers.

8 7
> | 0B | | 0B B¢
1v v 6
I [
(0] CLB CLB o
B B
I [
(¢} CLB CLB o
B B
A A
2 D OB | 10B R 5
3 4

X6751

Figure 37: Left and Right BUFGEs Can Drive Any or
All Clock Inputs in Same Quadrant or Edge (GCK1 is
shown. GCK2, GCK5 and GCKG6 are similar.)

The left-side Global Early buffers can each drive two of the
four vertical lines accessing the I0Bs on the entire left edge
of the device. The right-side Global Early buffers can each
drive two of the eight vertical lines accessing the IOBs on
the entire right edge of the device. (See Figure 37.)

Each left and right Global Early buffer can also drive half of
the I0Bs along either the top or bottom edge of the device,
using a dedicated line that can only be accessed through
the Global Early buffers.

The top and bottom Global Early buffers can drive half of
the 10Bs along either the left or right edge of the device, as
shown in Figure 38. They can only access the top and bot-
tom 10Bs via the CLB global lines.

8 7
| 0B | | I0B |
1v v 6
I I
0] CLB CLB o
B B
I I
] CLB CLB o
B
A A
2 > 10B | 10B | < 5
3 4
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Figure 38: Top and Bottom BUFGEs Can Drive Any
or All Clock Inputs in Same Quadrant (GCK8 is
shown. GCK3, GCK4 and GCK?7 are similar.)
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Table 16: Pin Descriptions

I/0 I/0
During | After
Pin Name | Config. | Config. Pin Description

Permanently Dedicated Pins

Eight or more (depending on package) connections to the nominal +5 V supply voltage
VCC | I (+3.3 V for low-voltage devices). All must be connected, and each must be decoupled
with a 0.01 - 0.1 pF capacitor to Ground.

Eight or more (depending on package type) connections to Ground. All must be con-

GND ! ! nected.
During configuration, Configuration Clock (CCLK) is an output in Master modes or Asyn-
chronous Peripheral mode, but is an input in Slave mode and Synchronous Peripheral
CCLK lor O | mode. After configuration, CCLK has a weak pull-up resistor and can be selected as the

Readback Clock. There is no CCLK High or Low time restriction on XC4000 Series de-
vices, except during Readback. See “Violating the Maximum High and Low Time Spec-
ification for the Readback Clock” on page 56 for an explanation of this exception.

DONE is a bidirectional signal with an optional internal pull-up resistor. As an output, it
indicates the completion of the configuration process. As an input, a Low level on DONE
DONE /0 (@] can be configured to delay the global logic initialization and the enabling of outputs.
The optional pull-up resistor is selected as an option in the XACTstep program that cre-
ates the configuration bitstream. The resistor is included by default.

PROGRAM is an active Low input that forces the FPGA to clear its configuration mem-
ory. Itis used to initiate a configuration cycle. When PROGRAM goes High, the FPGA
finishes the current clear cycle and executes another complete clear cycle, before it
goes into a WAIT state and releases INIT.

The PROGRAM pin has a permanent weak pull-up, so it need not be externally pulled
up to Vcc.

User I/0O Pins That Can Have Special Functions

During Peripheral mode configuration, this pin indicates when it is appropriate to write
another byte of data into the FPGA. The same status is also available on D7 in Asyn-
RDY/BUSY (@) I/O  |chronous Peripheral mode, if a read operation is performed when the device is selected.
After configuration, RDY/BUSY is a user-programmable 1/O pin.

RDY/BUSY is pulled High with a high-impedance pull-up prior to INIT going High.
During Master Parallel configuration, each change on the A0-A17 outputs (AO - A21 for
XC4000X) is preceded by a rising edge on RCLK, a redundant output signal. RCLK is
useful for clocked PROMs. It is rarely used during configuration. After configuration,
RCLK is a user-programmable /O pin.

As Mode inputs, these pins are sampled after INIT goes High to determine the configu-
ration mode to be used. After configuration, MO and M2 can be used as inputs, and M1
can be used as a 3-state output. These three pins have no associated input or output
registers.

| (M0O), |During configuration, these pins have weak pull-up resistors. For the most popular con-
MO, M1, M2 | O (M1), |figuration mode, Slave Serial, the mode pins can thus be left unconnected. The three

I (M2) |mode inputs can be individually configured with or without weak pull-up or pull-down re-
sistors. A pull-down resistor value of 4.7 kQ is recommended.

These pins can only be used as inputs or outputs when called out by special schematic
definitions. To use these pins, place the library components MDO, MD1, and MD2 in-
stead of the usual pad symbols. Input or output buffers must still be used.

If boundary scan is used, this pin is the Test Data Output. If boundary scan is not used,
this pin is a 3-state output without a register, after configuration is completed.

TDO o] 0] This pin can be user output only when called out by special schematic definitions. To
use this pin, place the library component TDO instead of the usual pad symbol. An out-
put buffer must still be used.

PROGRAM I |

RCLK O I/0
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Figure 41 on page 44 is a diagram of the XC4000 Series
boundary scan logic. It includes three bits of Data Register
per IOB, the IEEE 1149.1 Test Access Port controller, and
the Instruction Register with decodes.

XC4000 Series devices can also be configured through the
boundary scan logic. See “Readback” on page 55.

Data Registers

The primary data register is the boundary scan register. For
each 10B pin in the FPGA, bonded or not, it includes three
bits for In, Out and 3-State Control. Non-IOB pins have
appropriate partial bit population for In or Out only. PRO-
GRAM, CCLK and DONE are not included in the boundary
scan register. Each EXTEST CAPTURE-DR state captures
all In, Out, and 3-state pins.

The data register also includes the following non-pin bits:
TDO.T, and TDO.O, which are always bits 0 and 1 of the

3-State TS

Boundary
Scan
TS-update |

OUTPUT

INVERT

OUTPUT

TS INV
TSIOE 3
7i
TS - capture Vee
L

data register, respectively, and BSCANT.UPD, which is
always the last bit of the data register. These three bound-
ary scan bits are special-purpose Xilinx test signals.

The other standard data register is the single flip-flop
BYPASS register. It synchronizes data being passed
through the FPGA to the next downstream boundary scan
device.

The FPGA provides two additional data registers that can
be specified using the BSCAN macro. The FPGA provides
two user pins (BSCAN.SEL1 and BSCAN.SEL2) which are
the decodes of two user instructions. For these instructions,
two corresponding pins (BSCAN.TDO1 and
BSCAN.TDO?2) allow user scan data to be shifted out on
TDO. The data register clock (BSCAN.DRCK) is available
for control of test logic which the user may wish to imple-
ment with CLBs. The NAND of TCK and RUN-TEST-IDLE
is also provided (BSCAN.IDLE).

EXTEST PULL

DOWN upP

SLEW PULL

RATE

[

N

sd
Ouput Data O ) > b Q
EC
@\INVERT
Ouput Clock OK ,D
rd

L] sm

Clock Enable
Scan

O - capture -
Boundary | Q - capture <—
O - update »——

ouT
SEL

| - capture

Boundary P —
Scan

=,

S

| - update T ) N

Input Data 1 11

—/
0
8

©

D
DELAY] ¢
%mvaﬂ Qu
Input Clock IK ID
rd

Input Data 2 12

INPUT

L] s

GLOBAL
SIR

L~

FLIP-FLOP/LATCH

X5792

Figure 40: Block Diagram of XC4000E IOB with Boundary Scan (some details not shown).

XC4000X Boundary Scan Logic is Identical.
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Figure 41: XC4000 Series Boundary Scan Logic

Instruction Set

The XC4000 Series boundary scan instruction set also
includes instructions to configure the device and read back
the configuration data. The instruction set is coded as
shown in Table 17.

Bit Sequence

The bit sequence within each 10B is: In, Out, 3-State. The
input-only MO and M2 mode pins contribute only the In bit
to the boundary scan I/O data register, while the out-
put-only M1 pin contributes all three bits.

The first two bits in the 1/0O data register are TDO.T and
TDO.O, which can be used for the capture of internal sig-
nals. The final bit is BSCANT.UPD, which can be used to
drive an internal net. These locations are primarily used by
Xilinx for internal testing.

From a cavity-up view of the chip (as shown in XDE or
Epic), starting in the upper right chip corner, the boundary
scan data-register bits are ordered as shown in Figure 42.
The device-specific pinout tables for the XC4000 Series
include the boundary scan locations for each I0B pin.

SHIFT/
CAPTURE

DATAOUT

CLOCK DATA
REGISTER

UPDATE EXTEST

X9016

BSDL (Boundary Scan Description Language) files for
XC4000 Series devices are available on the Xilinx FTP site.

Including Boundary Scan in a Schematic

If boundary scan is only to be used during configuration, no
special schematic elements need be included in the sche-
matic or HDL code. In this case, the special boundary scan
pins TDI, TMS, TCK and TDO can be used for user func-
tions after configuration.

To indicate that boundary scan remain enabled after config-
uration, place the BSCAN library symbol and connect the
TDI, TMS, TCK and TDO pad symbols to the appropriate
pins, as shown in Figure 43.

Even if the boundary scan symbol is used in a schematic,
the input pins TMS, TCK, and TDI can still be used as
inputs to be routed to internal logic. Care must be taken not
to force the chip into an undesired boundary scan state by
inadvertently applying boundary scan input patterns to
these pins. The simplest way to prevent this is to keep TMS
High, and then apply whatever signal is desired to TDI and
TCK.
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Configuration Modes

XC4000E devices have six configuration modes. XC4000X
devices have the same six modes, plus an additional con-
figuration mode. These modes are selected by a 3-bit input
code applied to the M2, M1, and MO inputs. There are three
self-loading Master modes, two Peripheral modes, and a
Serial Slave mode, which is used primarily for
daisy-chained devices. The coding for mode selection is
shown in Table 18.

Table 18: Configuration Modes

Mode M2 | M1 | MO | CCLK Data
Master Serial output Bit-Serial
Slave Serial 1 1 1 input Bit-Serial
Master 1 output | Byte-Wide,
Parallel Up increment

from 00000
Master 1 1 0 | output | Byte-Wide,
Parallel Down decrement
from 3FFFF
Peripheral 0 1 1 input Byte-Wide
Synchronous*
Peripheral 1 0 1 | output Byte-Wide
Asynchronous
Reserved 0 1 0 — —
Reserved 0 0 1 — —

* Can be considered byte-wide Slave Parallel

A detailed description of each configuration mode, with tim-
ing information, is included later in this data sheet. During
configuration, some of the 1/O pins are used temporarily for
the configuration process. All pins used during configura-
tion are shown in Table 22 on page 58.

Master Modes

The three Master modes use an internal oscillator to gener-
ate a Configuration Clock (CCLK) for driving potential slave
devices. They also generate address and timing for exter-
nal PROM(s) containing the configuration data.

Master Parallel (Up or Down) modes generate the CCLK
signal and PROM addresses and receive byte parallel data.
The data is internally serialized into the FPGA data-frame
format. The up and down selection generates starting
addresses at either zero or 3FFFF (3FFFFF when 22
address lines are used), for compatibility with different
microprocessor addressing conventions. The Master Serial
mode generates CCLK and receives the configuration data
in serial form from a Xilinx serial-configuration PROM.

CCLK speed is selectable as either 1 MHz (default) or 8
MHz. Configuration always starts at the default slow fre-
qguency, then can switch to the higher frequency during the
first frame. Frequency tolerance is -50% to +25%.

Additional Address lines in XC4000 devices

The XC4000X devices have additional address lines
(A18-A21) allowing the additional address space required
to daisy-chain several large devices.

The extra address lines are programmable in XC4000EX
devices. By default these address lines are not activated. In
the default mode, the devices are compatible with existing
XC4000 and XC4000E products. If desired, the extra
address lines can be used by specifying the address lines
option in bitgen as 22 (bitgen -g AddressLines:22). The
lines (A18-A21) are driven when a master device detects,
via the bitstream, that it should be using all 22 address
lines. Because these pins will initially be pulled high by
internal pull-ups, designers using Master Parallel Up mode
should use external pull down resistors on pins A18-A21. If
Master Parallel Down mode is used external resistors are
not necessary.

All 22 address lines are always active in Master Parallel
modes with XC4000XL devices. The additional address
lines behave identically to the lower order address lines. If
the Address Lines option in bitgen is set to 18, it will be
ignored by the XC4000XL device.

The additional address lines (A18-A21) are not available in
the PC84 package.

Peripheral Modes

The two Peripheral modes accept byte-wide data from a
bus. A RDY/BUSY status is available as a handshake sig-
nal. In Asynchronous Peripheral mode, the internal oscilla-
tor generates a CCLK burst signal that serializes the
byte-wide data. CCLK can also drive slave devices. In the
synchronous mode, an externally supplied clock input to
CCLK serializes the data.

Slave Serial Mode

In Slave Serial mode, the FPGA receives serial configura-
tion data on the rising edge of CCLK and, after loading its
configuration, passes additional data out, resynchronized
on the next falling edge of CCLK.

Multiple slave devices with identical configurations can be
wired with parallel DIN inputs. In this way, multiple devices
can be configured simultaneously.

Serial Daisy Chain

Multiple devices with different configurations can be con-
nected together in a “daisy chain,” and a single combined
bitstream used to configure the chain of slave devices.

To configure a daisy chain of devices, wire the CCLK pins
of all devices in parallel, as shown in Figure 51 on page
60. Connect the DOUT of each device to the DIN of the
next. The lead or master FPGA and following slaves each
passes resynchronized configuration data coming from a
single source. The header data, including the length count,
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is passed through and is captured by each FPGA when it
recognizes the 0010 preamble. Following the length-count
data, each FPGA outputs a High on DOUT until it has
received its required number of data frames.

After an FPGA has received its configuration data, it
passes on any additional frame start bits and configuration
data on DOUT. When the total number of configuration
clocks applied after memory initialization equals the value
of the 24-bit length count, the FPGAs begin the start-up
sequence and become operational together. FPGA I/O are
normally released two CCLK cycles after the last configura-
tion bit is received. Figure 47 on page 53 shows the
start-up timing for an XC4000 Series device.

The daisy-chained bitstream is not simply a concatenation
of the individual bitstreams. The PROM file formatter must
be used to combine the bitstreams for a daisy-chained con-
figuration.

Multi-Family Daisy Chain

All Xilinx FPGAs of the XC2000, XC3000, and XC4000
Series use a compatible bitstream format and can, there-
fore, be connected in a daisy chain in an arbitrary
sequence. There is, however, one limitation. The lead
device must belong to the highest family in the chain. If the
chain contains XC4000 Series devices, the master nor-
mally cannot be an XC2000 or XC3000 device.

The reason for this rule is shown in Figure 47 on page 53.
Since all devices in the chain store the same length count
value and generate or receive one common sequence of
CCLK pulses, they all recognize length-count match on the
same CCLK edge, as indicated on the left edge of
Figure 47. The master device then generates additional
CCLK pulses until it reaches its finish point F. The different
families generate or require different numbers of additional
CCLK pulses until they reach F. Not reaching F means that
the device does not really finish its configuration, although
DONE may have gone High, the outputs became active,
and the internal reset was released. For the XC4000 Series
device, not reaching F means that readback cannot be ini-

tiated and most boundary scan instructions cannot be
used.

The user has some control over the relative timing of these
events and can, therefore, make sure that they occur at the
proper time and the finish point F is reached. Timing is con-
trolled using options in the bitstream generation software.

XC3000 Master with an XC4000 Series Slave

Some designers want to use an inexpensive lead device in
peripheral mode and have the more precious I/O pins of the
XC4000 Series devices all available for user 1/0O. Figure 44
provides a solution for that case.

This solution requires one CLB, one IOB and pin, and an
internal oscillator with a frequency of up to 5 MHz as a
clock source. The XC3000 master device must be config-
ured with late Internal Reset, which is the default option.

One CLB and one IOB in the lead XC3000-family device
are used to generate the additional CCLK pulse required by
the XC4000 Series devices. When the lead device removes
the internal RESET signal, the 2-bit shift register responds
to its clock input and generates an active Low output signal
for the duration of the subsequent clock period. An external
connection between this output and CCLK thus creates the
extra CCLK pulse.

OEIT
Output
Connected
Reset to CCLK

Active Low Output
Active High Output

>

corro
PrRrPROO

L etc
X5223

Figure 44: CCLK Generation for XC3000 Master
Driving an XC4000 Series Slave

May 14, 1999 (Version 1.6)

6-47



. Product Obsolete or Under Obsolescence
XX"JNX XC4000E and XC4000X Series Field Programmable Gate Arrays

Table 20: XC4000E Program Data

Device XC4003E | XC4005E | XC4006E | XC4008E | XC4010E | XC4013E | XC4020E | XC4025E
Max Logic Gates 3,000 5,000 6,000 8,000 10,000 13,000 20,000 25,000
CLBs 100 196 256 324 400 576 784 1,024
(Row x Col.) (10x10) | (14x14) | (16x16) | (18x18) | (20x20) | (24x24) | (28x28) | (32x32)
I0Bs 80 112 128 144 160 192 224 256
Flip-Flops 360 616 768 936 1,120 1,536 2,016 2,560
Bits per Frame 126 166 186 206 226 266 306 346
Frames 428 572 644 716 788 932 1,076 1,220
Program Data 53,936 94,960 119,792 147,504 178,096 247,920 329,264 422,128
PROM Size 53,984 95,008 119,840 147,552 178,144 247,968 329,312 422,176
(bits)

Notes: 1. Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits
Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1
Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits
PROM Size = Program Data + 40 (header) + 8
2. The user can add more “one” bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of
any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra “one”
bits, even for extra leading ones at the beginning of the header.

Table 21: XC4000EX/XL Program Data

Device XC4002XL | XC4005 |XC4010 |XC4013 |XC4020 [XC4028 |XC4036 | XC4044 | XC4052 | XC4062 | XC4085
Max Logic 2,000 5,000 10,000 | 13,000 | 20,000 | 28,000 | 36,000 44,000 52,000 62,000 85,000
Gates
CLBs 64 196 400 576 784 1,024 1,296 1,600 1,936 2,304 3,136
(Row x (8x8) |[(14x14)[(20x20)[(24x24)|(28x28)|(32x32)|(36x36)| (40x40) | (44x44) | (48x48) | (56 x 56)
Column)

I0Bs 64 112 160 192 224 256 288 320 352 384 448
Flip-Flops 256 616 1,120 1,536 2,016 2,560 3,168 3,840 4,576 5,376 7,168
Bits per 133 205 277 325 373 421 469 517 565 613 709
Frame

Frames 459 741 1,023 1,211 1,399 1,587 1,775 1,963 2,151 2,339 2,715
Program Data 61,052 | 151,910 | 283,376 | 393,580 | 521,832 | 668,124 | 832,480 | 1,014,876 | 1,215,320 | 1,433,804 | 1,924,940
PROM Size 61,104 | 151,960 | 283,424 | 393,632 | 521,880 | 668,172 | 832,528 | 1,014,924 | 1,215,368 | 1,433,852 | 1,924,992
(bits)

Notes: 1. Bits per frame = (13 x number of rows) + 9 for the top + 17 for the bottom + 8 + 1 start bit + 4 error check bits.
Frames = (47 x number of columns) + 27 for the left edge + 52 for the right edge + 4.
Program data = (bits per frame x number of frames) + 5 postamble bits.
PROM size = (program data + 40 header bits + 8 start bits) rounded up to the nearest byte.
2. The user can add more “one” bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end
of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra “one”
bits, even for extra leading “ones” at the beginning of the header.

Cyclic Redundancy Check (CRC) for figuration process with a potentially corrupted bitstream is
Configuration and Readback terminated. The FPGA pulls the INIT pin Low and goes into
a Wait state.

The Cyclic Redundancy Check is a method of error detec-
tion in data transmission applications. Generally, the trans-
mitting system performs a calculation on the serial
bitstream. The result of this calculation is tagged onto the
data stream as additional check bits. The receiving system
performs an identical calculation on the bitstream and com-
pares the result with the received checksum.

During Readback, 11 bits of the 16-bit checksum are added
to the end of the Readback data stream. The checksum is
computed using the CRC-16 CCITT polynomial, as shown
in Figure 45. The checksum consists of the 11 most signif-
icant bits of the 16-bit code. A change in the checksum indi-
cates a change in the Readback bitstream. A comparison
to a previous checksum is meaningful only if the readback
Each data frame of the configuration bitstream has four data is independent of the current device state. CLB out-

error bits at the end, as shown in Table 19. If a frame data puts should not be included (Read Capture Option not
error is detected during the loading of the FPGA, the con-
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used), and if RAM is present, the RAM content must be
unchanged.

Statistically, one error out of 2048 might go undetected.

Configuration Sequence

There are four major steps in the XC4000 Series power-up
configuration sequence.

» Configuration Memory Clear
 Initialization

» Configuration

e Start-Up

The full process is illustrated in Figure 46.

Configuration Memory Clear

When power is first applied or is reapplied to an FPGA, an
internal circuit forces initialization of the configuration logic.
When Vcc reaches an operational level, and the circuit
passes the write and read test of a sample pair of configu-
ration bits, a time delay is started. This time delay is nomi-
nally 16 ms, and up to 10% longer in the low-voltage
devices. The delay is four times as long when in Master
Modes (MO Low), to allow ample time for all slaves to reach
a stable Vcc. When all INIT pins are tied together, as rec-
ommended, the longest delay takes precedence. There-
fore, devices with different time delays can easily be mixed
and matched in a daisy chain.

This delay is applied only on power-up. It is not applied
when re-configuring an FPGA by pulsing the PROGRAM

pin
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Figure 45: Circuit for Generating CRC-16
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Low. During this time delay, or as long as the PROGRAM
input is asserted, the configuration logic is held in a Config-
uration Memory Clear state. The configuration-memory
frames are consecutively initialized, using the internal oscil-
lator.

At the end of each complete pass through the frame
addressing, the power-on time-out delay circuitry and the
level of the PROGRAM pin are tested. If neither is asserted,
the logic initiates one additional clearing of the configura-
tion frames and then tests the INIT input.

Initialization

During initialization and configuration, user pins HDC, LDC,
INIT and DONE provide status outputs for the system inter-
face. The outputs LDC, INIT and DONE are held Low and
HDC is held High starting at the initial application of power.

The open drain INIT pin is released after the final initializa-
tion pass through the frame addresses. There is a deliber-
ate delay of 50 to 250 ps (up to 10% longer for low-voltage
devices) before a Master-mode device recognizes an inac-
tive INIT. Two internal clocks after the INIT pin is recognized
as High, the FPGA samples the three mode lines to deter-
mine the configuration mode. The appropriate interface
lines become active and the configuration preamble and
data can be loaded.Configuration

The 0010 preamble code indicates that the following 24 bits
represent the length count. The length count is the total
number of configuration clocks needed to load the com-
plete configuration data. (Four additional configuration
clocks are required to complete the configuration process,
as discussed below.) After the preamble and the length
count have been passed through to all devices in the daisy
chain, DOUT is held High to prevent frame start bits from
reaching any daisy-chained devices.

A specific configuration bit, early in the first frame of a mas-
ter device, controls the configuration-clock rate and can
increase it by a factor of eight. Therefore, if a fast configu-
ration clock is selected by the bitstream, the slower clock
rate is used until this configuration bit is detected.

Each frame has a start field followed by the frame-configu-
ration data bits and a frame error field. If a frame data error
is detected, the FPGA halts loading, and signals the error
by pulling the open-drain INIT pin Low. After all configura-
tion frames have been loaded into an FPGA, DOUT again
follows the input data so that the remaining data is passed
on to the next device.

Delaying Configuration After Power-Up

There are two methods of delaying configuration after
power-up: put a logic Low on the PROGRAM input, or pull
the bidirectional INIT pin Low, using an open-collector
(open-drain) driver. (See Figure 46 on page 50.)

A Low on the PROGRAM input is the more radical
approach, and is recommended when the power-supply

rise time is excessive or poorly defined. As long as PRO-
GRAM is Low, the FPGA keeps clearing its configuration
memory. When PROGRAM goes High, the configuration
memory is cleared one more time, followed by the begin-
ning of configuration, provided the INIT input is not exter-
nally held Low. Note that a Low on the PROGRAM input
automatically forces a Low on the INIT output. The XC4000
Series PROGRAM pin has a permanent weak pull-up.

Using an open-collector or open-drain driver to hold INIT
Low before the beginning of configuration causes the
FPGA to wait after completing the configuration memory
clear operation. When INIT is no longer held Low exter-
nally, the device determines its configuration mode by cap-
turing its mode pins, and is ready to start the configuration
process. A master device waits up to an additional 250 ps
to make sure that any slaves in the optional daisy chain
have seen that INIT is High.

Start-Up

Start-up is the transition from the configuration process to
the intended user operation. This transition involves a
change from one clock source to another, and a change
from interfacing parallel or serial configuration data where
most outputs are 3-stated, to normal operation with 1/0 pins
active in the user-system. Start-up must make sure that the
user-logic ‘wakes up’ gracefully, that the outputs become
active without causing contention with the configuration sig-
nals, and that the internal flip-flops are released from the
global Reset or Set at the right time.

Figure 47 describes start-up timing for the three Xilinx fam-
ilies in detail. The configuration modes can use any of the
four timing sequences.

To access the internal start-up signals, place the STARTUP
library symbol.

Start-up Timing
Different FPGA families have different start-up sequences.

The XC2000 family goes through a fixed sequence. DONE
goes High and the internal global Reset is de-activated one
CCLK period after the 1/O become active.

The XC3000A family offers some flexibility. DONE can be
programmed to go High one CCLK period before or after
the I/O become active. Independent of DONE, the internal
global Reset is de-activated one CCLK period before or
after the 1/0 become active.

The XC4000 Series offers additional flexibility. The three
events — DONE going High, the internal Set/Reset being
de-activated, and the user 1/0 going active — can all occur
in any arbitrary sequence. Each of them can occur one
CCLK period before or after, or simultaneous with, any of
the others. This relative timing is selected by means of soft-
ware options in the bitstream generation software.
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Synchronous Peripheral Mode

Synchronous Peripheral mode can also be considered
Slave Parallel mode. An external signal drives the CCLK
input(s) of the FPGA(s). The first byte of parallel configura-
tion data must be available at the Data inputs of the lead
FPGA a short setup time before the rising CCLK edge.
Subsequent data bytes are clocked in on every eighth con-
secutive rising CCLK edge.

The same CCLK edge that accepts data, also causes the
RDY/BUSY output to go High for one CCLK period. The pin
name is a misnomer. In Synchronous Peripheral mode it is
really an ACKNOWLEDGE signal. Synchronous operation
does not require this response, but it is a meaningful signal
for test purposes. Note that RDY/BUSY is pulled High with
a high-impedance pullup prior to INIT going High.

NOTE:

The lead FPGA serializes the data and presents the pre-
amble data (and all data that overflows the lead device) on
its DOUT pin. There is an internal delay of 1.5 CCLK peri-
ods, which means that DOUT changes on the falling CCLK
edge, and the next FPGA in the daisy chain accepts data
on the subsequent rising CCLK edge.

In order to complete the serial shift operation, 10 additional
CCLK rising edges are required after the last data byte has
been loaded, plus one more CCLK cycle for each
daisy-chained device.

Synchronous Peripheral mode is selected by a <011> on
the mode pins (M2, M1, MO).

M2 can be shorted to Ground
if not used as 1/0

N/C 4.7 kQ N/C
— ’_/\/\/\,j ——
MO M1 M2 MO M1 M2
CLOCK CCLK CCLK
OPTIONAL
DAISY-CHAINED
DATA BUS D0-7 FPGAs
DOUT DIN DOUT |—
vee XC4000E/X XC4000E/X
SYNCHRO- SLAVE
47K0 NOUS
PERIPHERAL
CONTROL { I @/BUSY e
SIGNALS INIT DONE INIT DONE
4.7 kQ%
PROGRAM . PROGRAM PROGRAM

Figure 56: Synchronous Peripheral Mode Circuit Diagram

X9027
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&X"JNX XC4000E and XC4000X Series Field Programmable Gate Arrays
Write to LCA Read Status
WS/CS0 \ / RS, CSO
RS, CS1 WS, CS1
-~ @ Tea

N , ,
<—@ — ®TCD @ @
Toc
1/ READY
bo-b7 _< BUSY b7
; A 5 5 ; A ;
CCLK R \ B \ ’ y ’
S LU W \_/ \_
—>|

RDY/BUSY N

DOUT X Previous Byte D6 X D7 X DO X D1 X D2

X6097

Description Symbol Min Max Units
Effective Write time 1 Tca 100 ns
. (CS0, WS=Low; RS, CS1=High)

write DIN setup time 2 Toc 60 ns
DIN hold time 3 Tep 0 ns
RDY/BUSY delay after end of 4 TwWTRB 60 ns
Write or Read

RDY RDY/BUSY active after beginning 7 60 ns
of Read
RDY/BUSY Low output (Note 4) 6 Tgusy 2 9 CCLK

periods

Notes: 1. Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High.
2. The time from the end of WS to CCLK cycle for the new byte of data depends on the completion of previous byte
processing and the phase of the internal timing generator for CCLK.
3. CCLK and DOUT timing is tested in slave mode.
4. Tgysy indicates that the double-buffered parallel-to-serial converter is not yet ready to receive new data. The shortest
Tgusy occurs when a byte is loaded into an empty parallel-to-serial converter. The longest Tgygy occurs when a new word
is loaded into the input register before the second-level buffer has started shifting out data

This timing diagram shows very relaxed requirements. Data need not be held beyond the rising edge of WS. RDY/BUSY wiill
go active within 60 ns after the end of WS. A new write may be asserted immediately after RDY/BUSY goes Low, but write
may not be terminated until RDY/BUSY has been High for one CCLK period.

Figure 59: Asynchronous Peripheral Mode Programming Switching Characteristics

May 14, 1999 (Version 1.6) 6-67



Product Obsolete or Under Obsolescence .
XC4000E and XC4000X Series Field Programmable Gate Arrays XX"JNX

Configuration Switching Characteristics

Vce V

>

- Tror
_/

RE-PROGRAM

PROGRAM

INIT

CCLK OUTPUT or INPUT

—b <+— >300ns
v - [
— >

4— <300 ns

?’éoéq“ﬂﬁég")z VALID X DONE RESPONSE N
X1582 —» |&— <300ns
110
Master Modes (XC4000E/EX)
Description Symbol Min Max Units
MO = High Tpor 10 40 ms
Power-On Reset MO = Low TrPoR 40 130 ms
Program Latency Tp 30 200 Us per
CLB column
CCLK (output) Delay Ticck 40 250 Hs
CCLK (output) Period, slow Teelk 640 2000 ns
CCLK (output) Period, fast Teelk 80 250 ns
Master Modes (XC4000XL)
Description Symbol Min Max Units
MO = High Tror 10 40 ms
Power-On Reset MO = Low Tror 40 130 ms
Program Latency Tp 30 200 us per
CLB column
CCLK (output) Delay Ticck 40 250 Hs
CCLK (output) Period, slow Teolk 540 1600 ns
CCLK (output) Period, fast Teelk 67 200 ns
Slave and Peripheral Modes (All)
Description Symbol Min Max Units
Power-On Reset TroRr 10 33 ms
Program Latency Tp 30 200 us per
CLB column
CCLK (input) Delay (required) Ticck 4 V&S
CCLK (input) Period (required) Tcelk 100 ns
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Product Availability

Table 24, Table 25, and Table 26 show the planned packages and speed grades for XC4000-Series devices. Call your local
sales office for the latest availability information, or see the Xilinx website at http://www.xilinx.com for the latest revision of
the specifications.

Table 24: Component Availability Chart for XC4000XL FPGAs

PINS 84 | 100 | 100 | 144 | 144 | 160 | 160 | 176 | 176 | 208 | 208 | 240 | 240 | 256 | 299 | 304 | 352 | 411 | 432 | 475 | 559 | 560
SO |l | s | |20 | O S0 | | 90 | O o | o PN T ) £ [} - £ i} £ £ o
I I I I I I
< 8 8 g [T [l |||l |l o [N [N || |O
o S [ | o~ | K|[O|lO|S S |w ||l |d|®m |~ | |O
CODE Sdla|lglg |2 [ |d |+ |N [N |N|N|[N[N[O| ™| [ || 0O |0
a ol o|Oo|lE|OQ|O|O|E|OQ|CC|O|IC|O[OICOIO|O O[O0 |O0|O
o > = I T o = I T o T o m o T m o m o o m
-3 cI | cr| cl
XC4002XL [ —ferfer et
-1 cl | ci Cl
0C g ¢ C c
3 clI | ci Cl cl cl cl
XC4005XL 2 cl [¢ cl | ci cl cl
-1 cit|ci|ci|cl Cl cl
ooc | C [& c c [& [
3 ci | ci cl cl | ci cl cl
2 c1 | ci cl cl | ci cl Cl
XC4010XL -1 ci | ci cl ci | ci cl cl
ooc | C [¢ c ¢ [¢ c [¢
-3 cl Cl cl cl cl | ci
2 cl cl cl cl ci | ci
XC4013XL | 1 cl cl cl cl ci | ci
09C c [ ¢ c ¢ ¢
08C [ [ c c c ¢
3 cl cl cl cl ci | ci
2 cl cl cl cl ci | ci
XC4020XL -1 cl cl cl cl ci | ci
09C c c [¢ c [ [
3 cl cl cl ct|ci|ci]ci
2 [ cl [ cit|ci|ci]cl
XCA4028XL -1 cl cl cl ct|ci|ci]cl
09C c o] [ [ c c c
3 [ cl cl ci|cit|ci]ci
2 cl cl c cli|ci|cri]ecl
XC4036XL | 1 cl cl cl ci|ci|ci]ci
09C [ c c c c c ¢
08C [ c [ c c [ ¢
3 cl cl cl ci|cit|ci]ci
2 cl cl cl ci|ci|ci]eci
XC4044XL El cl cl cl cl|ci|cri|ecl
09C c c c c c c [
3 cl cl cl | ci cl
2 cl cl cl | ci cl
XCA4052XL -1 [ cl cl | ci cl
09C c c [ c c
-3 cl cl c1 | ci cl
2 [ cl ci | ci cl
XC4062XL | -1 [ cl ci | ci cl
09C [ c [ c c
08C c c c ¢ c
3 cl cl | ci
2 cl cl | ci
XC4085XL —; o SRR
-09C c [¢ c

1/29/99
C = Commercial T;=0°to +85°C
I= Industrial T;=-40°C to +100°C
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