Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 1024 | | Number of Logic Elements/Cells | 2432 | | Total RAM Bits | 32768 | | Number of I/O | 256 | | Number of Gates | 25000 | | Voltage - Supply | 4.5V ~ 5.5V | | Mounting Type | Through Hole | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 299-BCPGA | | Supplier Device Package | 299-CPGA (52.32x52.32) | | Purchase URL | https://www.e-xfl.com/product-detail/xillinx/xc4025e-3pg299i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 1: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown) #### Flip-Flops The CLB can pass the combinatorial output(s) to the interconnect network, but can also store the combinatorial results or other incoming data in one or two flip-flops, and connect their outputs to the interconnect network as well. The two edge-triggered D-type flip-flops have common clock (K) and clock enable (EC) inputs. Either or both clock inputs can also be permanently enabled. Storage element functionality is described in Table 2. #### Latches (XC4000X only) The CLB storage elements can also be configured as latches. The two latches have common clock (K) and clock enable (EC) inputs. Storage element functionality is described in Table 2. #### Clock Input Each flip-flop can be triggered on either the rising or falling clock edge. The clock pin is shared by both storage elements. However, the clock is individually invertible for each storage element. Any inverter placed on the clock input is automatically absorbed into the CLB. #### Clock Enable The clock enable signal (EC) is active High. The EC pin is shared by both storage elements. If left unconnected for either, the clock enable for that storage element defaults to the active state. EC is not invertible within the CLB. Table 2: CLB Storage Element Functionality (active rising edge is shown) | Mode | K | EC | SR | D | Q | |--------------------|---|----|----|---|----| | Power-Up or
GSR | Х | Х | Х | Х | SR | | | Х | Х | 1 | Х | SR | | Flip-Flop | | 1* | 0* | D | D | | | 0 | Х | 0* | Х | Q | | Latch | 1 | 1* | 0* | Х | Q | | Lateri | 0 | 1* | 0* | D | D | | Both | Х | 0 | 0* | Х | Ø | Legend: X Don't care Rising edge SR Set or Reset value. Reset is default. 0* Input is Low or unconnected (default value) 1* Input is High or unconnected (default value) #### Fast Carry Logic Each CLB F and G function generator contains dedicated arithmetic logic for the fast generation of carry and borrow signals. This extra output is passed on to the function generator in the adjacent CLB. The carry chain is independent of normal routing resources. Dedicated fast carry logic greatly increases the efficiency and performance of adders, subtractors, accumulators, comparators and counters. It also opens the door to many new applications involving arithmetic operation, where the previous generations of FPGAs were not fast enough or too inefficient. High-speed address offset calculations in microprocessor or graphics systems, and high-speed addition in digital signal processing are two typical applications. The two 4-input function generators can be configured as a 2-bit adder with built-in hidden carry that can be expanded to any length. This dedicated carry circuitry is so fast and efficient that conventional speed-up methods like carry generate/propagate are meaningless even at the 16-bit level, and of marginal benefit at the 32-bit level. This fast carry logic is one of the more significant features of the XC4000 Series, speeding up arithmetic and counting into the 70 MHz range. The carry chain in XC4000E devices can run either up or down. At the top and bottom of the columns where there are no CLBs above or below, the carry is propagated to the right. (See Figure 11.) In order to improve speed in the high-capacity XC4000X devices, which can potentially have very long carry chains, the carry chain travels upward only, as shown in Figure 12. Additionally, standard interconnect can be used to route a carry signal in the downward direction. Figure 13 on page 19 shows an XC4000E CLB with dedicated fast carry logic. The carry logic in the XC4000X is similar, except that COUT exits at the top only, and the signal CINDOWN does not exist. As shown in Figure 13, the carry logic shares operand and control inputs with the function generators. The carry outputs connect to the function generators, where they are combined with the operands to form the sums. Figure 14 on page 20 shows the details of the carry logic for the XC4000E. This diagram shows the contents of the box labeled "CARRY LOGIC" in Figure 13. The XC4000X carry logic is very similar, but a multiplexer on the pass-through carry chain has been eliminated to reduce delay. Additionally, in the XC4000X the multiplexer on the G4 path has a memory-programmable 0 input, which permits G4 to directly connect to COUT. G4 thus becomes an additional high-speed initialization path for carry-in. The dedicated carry logic is discussed in detail in Xilinx document XAPP 013: "Using the Dedicated Carry Logic in *XC4000.*" This discussion also applies to XC4000E devices, and to XC4000X devices when the minor logic changes are taken into account. The fast carry logic can be accessed by placing special library symbols, or by using Xilinx Relationally Placed Macros (RPMs) that already include these symbols. Figure 11: Available XC4000E Carry Propagation Paths Figure 12: Available XC4000X Carry Propagation Paths (dotted lines use general interconnect) Figure 14: Detail of XC4000E Dedicated Carry Logic ### Input/Output Blocks (IOBs) User-configurable input/output blocks (IOBs) provide the interface between external package pins and the internal logic. Each IOB controls one package pin and can be configured for input, output, or bidirectional signals. Figure 15 shows a simplified block diagram of the XC4000E IOB. A more complete diagram which includes the boundary scan logic of the XC4000E IOB can be found in Figure 40 on page 43, in the "Boundary Scan" section. The XC4000X IOB contains some special features not included in the XC4000E IOB. These features are highlighted in a simplified block diagram found in Figure 16, and discussed throughout this section. When XC4000X special features are discussed, they are clearly identified in the text. Any feature not so identified is present in both XC4000E and XC4000X devices. #### IOB Input Signals Two paths, labeled I1 and I2 in Figure 15 and Figure 16, bring input signals into the array. Inputs also connect to an input register that can be programmed as either an edge-triggered flip-flop or a level-sensitive latch. The choice is made by placing the appropriate library symbol. For example, IFD is the basic input flip-flop (rising edge triggered), and ILD is the basic input latch (transparent-High). Variations with inverted clocks are available, and some combinations of latches and flip-flops can be implemented in a single IOB, as described in the *XACT Libraries Guide*. The XC4000E inputs can be globally configured for either TTL (1.2V) or 5.0 volt CMOS thresholds, using an option in the bitstream generation software. There is a slight input hysteresis of about 300mV. The XC4000E output levels are also configurable; the two global adjustments of input threshold and output level are independent. Inputs on the XC4000XL are TTL compatible and 3.3V CMOS compatible. Outputs on the XC4000XL are pulled to the 3.3V positive supply. The inputs of XC4000 Series 5-Volt devices can be driven by the outputs of any 3.3-Volt device, if the 5-Volt inputs are in TTL mode. Supported sources for XC4000 Series device inputs are shown in Table 8. # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays or clear on reset and after configuration. Other than the global GSR net, no user-controlled set/reset signal is available to the I/O flip-flops. The choice of set or clear applies to both the initial state of the flip-flop and the response to the Global Set/Reset pulse. See "Global Set/Reset" on page 11 for a description of how to use GSR. #### **JTAG Support** Embedded logic attached to the IOBs contains test structures compatible with IEEE Standard 1149.1 for boundary scan testing, permitting easy chip and board-level testing. More information is provided in "Boundary Scan" on page 42. #### **Three-State Buffers** A pair of 3-state buffers is associated with each CLB in the array. (See Figure 27 on page 30.) These 3-state buffers can be used to drive signals onto the nearest horizontal longlines above and below the CLB. They can therefore be used to implement multiplexed or bidirectional buses on the horizontal longlines, saving logic resources. Programmable pull-up resistors attached to these longlines help to implement a wide wired-AND function. The buffer enable is an active-High 3-state (i.e. an active-Low enable), as shown in Table 13. Another 3-state buffer with similar access is located near each I/O block along the right and left edges of the array. (See
Figure 33 on page 34.) The horizontal longlines driven by the 3-state buffers have a weak keeper at each end. This circuit prevents undefined floating levels. However, it is overridden by any driver, even a pull-up resistor. Special longlines running along the perimeter of the array can be used to wire-AND signals coming from nearby IOBs or from internal longlines. These longlines form the wide edge decoders discussed in "Wide Edge Decoders" on page 27. #### Three-State Buffer Modes The 3-state buffers can be configured in three modes: - · Standard 3-state buffer - Wired-AND with input on the I pin - Wired OR-AND #### Standard 3-State Buffer All three pins are used. Place the library element BUFT. Connect the input to the I pin and the output to the O pin. The T pin is an active-High 3-state (i.e. an active-Low enable). Tie the T pin to Ground to implement a standard buffer. #### Wired-AND with Input on the I Pin The buffer can be used as a Wired-AND. Use the WAND1 library symbol, which is essentially an open-drain buffer. WAND4, WAND8, and WAND16 are also available. See the *XACT Libraries Guide* for further information. The T pin is internally tied to the I pin. Connect the input to the I pin and the output to the O pin. Connect the outputs of all the WAND1s together and attach a PULLUP symbol. #### **Wired OR-AND** The buffer can be configured as a Wired OR-AND. A High level on either input turns off the output. Use the WOR2AND library symbol, which is essentially an open-drain 2-input OR gate. The two input pins are functionally equivalent. Attach the two inputs to the I0 and I1 pins and tie the output to the O pin. Tie the outputs of all the WOR2ANDs together and attach a PULLUP symbol. #### Three-State Buffer Examples Figure 21 shows how to use the 3-state buffers to implement a wired-AND function. When all the buffer inputs are High, the pull-up resistor(s) provide the High output. Figure 22 shows how to use the 3-state buffers to implement a multiplexer. The selection is accomplished by the buffer 3-state signal. Pay particular attention to the polarity of the T pin when using these buffers in a design. Active-High 3-state (T) is identical to an active-Low output enable, as shown in Table 13. **Table 13: Three-State Buffer Functionality** | IN | Т | OUT | |----|---|-----| | X | 1 | Z | | IN | 0 | IN | Figure 21: Open-Drain Buffers Implement a Wired-AND Function Figure 22: 3-State Buffers Implement a Multiplexer ## Wide Edge Decoders Dedicated decoder circuitry boosts the performance of wide decoding functions. When the address or data field is wider than the function generator inputs, FPGAs need multi-level decoding and are thus slower than PALs. XC4000 Series CLBs have nine inputs. Any decoder of up to nine inputs is, therefore, compact and fast. However, there is also a need for much wider decoders, especially for address decoding in large microprocessor systems. An XC4000 Series FPGA has four programmable decoders located on each edge of the device. The inputs to each decoder are any of the IOB I1 signals on that edge plus one local interconnect per CLB row or column. Each row or column of CLBs provides up to three variables or their compliments., as shown in Figure 23. Each decoder generates a High output (resistor pull-up) when the AND condition of the selected inputs, or their complements, is true. This is analogous to a product term in typical PAL devices. Each of these wired-AND gates is capable of accepting up to 42 inputs on the XC4005E and 72 on the XC4013E. There are up to 96 inputs for each decoder on the XC4028X and 132 on the XC4052X. The decoders may also be split in two when a larger number of narrower decoders are required, for a maximum of 32 decoders per device. The decoder outputs can drive CLB inputs, so they can be combined with other logic to form a PAL-like AND/OR structure. The decoder outputs can also be routed directly to the chip outputs. For fastest speed, the output should be on the same chip edge as the decoder. Very large PALs can be emulated by ORing the decoder outputs in a CLB. This decoding feature covers what has long been considered a weakness of older FPGAs. Users often resorted to external PALs for simple but fast decoding functions. Now, the dedicated decoders in the XC4000 Series device can implement these functions fast and efficiently. To use the wide edge decoders, place one or more of the WAND library symbols (WAND1, WAND4, WAND8, WAND16). Attach a DECODE attribute or property to each WAND symbol. Tie the outputs together and attach a PUL- LUP symbol. Location attributes or properties such as L (left edge) or TR (right half of top edge) should also be used to ensure the correct placement of the decoder inputs. Figure 23: XC4000 Series Edge Decoding Example Figure 24: XC4000 Series Oscillator Symbol #### **On-Chip Oscillator** XC4000 Series devices include an internal oscillator. This oscillator is used to clock the power-on time-out, for configuration memory clearing, and as the source of CCLK in Master configuration modes. The oscillator runs at a nominal 8 MHz frequency that varies with process, Vcc, and temperature. The output frequency falls between 4 and 10 MHz. ### Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays IOB inputs and outputs interface with the octal lines via the single-length interconnect lines. Single-length lines are also used for communication between the octals and double-length lines, quads, and longlines within the CLB array. Segmentation into buffered octals was found to be optimal for distributing signals over long distances around the device. #### **Global Nets and Buffers** Both the XC4000E and the XC4000X have dedicated global networks. These networks are designed to distribute clocks and other high fanout control signals throughout the devices with minimal skew. The global buffers are described in detail in the following sections. The text descriptions and diagrams are summarized in Table 15. The table shows which CLB and IOB clock pins can be sourced by which global buffers. In both XC4000E and XC4000X devices, placement of a library symbol called BUFG results in the software choosing the appropriate clock buffer, based on the timing requirements of the design. The detailed information in these sections is included only for reference. #### Global Nets and Buffers (XC4000E only) Four vertical longlines in each CLB column are driven exclusively by special global buffers. These longlines are in addition to the vertical longlines used for standard interconnect. The four global lines can be driven by either of two types of global buffers. The clock pins of every CLB and IOB can also be sourced from local interconnect. Two different types of clock buffers are available in the XC4000E: - Primary Global Buffers (BUFGP) - Secondary Global Buffers (BUFGS) Four Primary Global buffers offer the shortest delay and negligible skew. Four Secondary Global buffers have slightly longer delay and slightly more skew due to potentially heavier loading, but offer greater flexibility when used to drive non-clock CLB inputs. The Primary Global buffers must be driven by the semi-dedicated pads. The Secondary Global buffers can be sourced by either semi-dedicated pads or internal nets. Each CLB column has four dedicated vertical Global lines. Each of these lines can be accessed by one particular Primary Global buffer, or by any of the Secondary Global buffers, as shown in Figure 34. Each corner of the device has one Primary buffer and one Secondary buffer. IOBs along the left and right edges have four vertical global longlines. Top and bottom IOBs can be clocked from the global lines in the adjacent CLB column. A global buffer should be specified for all timing-sensitive global signal distribution. To use a global buffer, place a BUFGP (primary buffer), BUFGS (secondary buffer), or BUFG (either primary or secondary buffer) element in a schematic or in HDL code. If desired, attach a LOC attribute or property to direct placement to the designated location. For example, attach a LOC=L attribute or property to a BUFGS symbol to direct that a buffer be placed in one of the two Secondary Global buffers on the left edge of the device, or a LOC=BL to indicate the Secondary Global buffer on the bottom edge of the device, on the left. **Table 15: Clock Pin Access** | | XC4 | 000E | | Local | | | | |--|-------|-------|--------|----------------|----------------|-------------------|--| | | BUFGP | BUFGS | BUFGLS | L & R
BUFGE | T & B
BUFGE | Inter-
connect | | | All CLBs in Quadrant | √ | √ | V | V | V | V | | | All CLBs in Device | V | √ | V | | | V | | | IOBs on Adjacent Vertical
Half Edge | √ | V | V | V | √ | V | | | IOBs on Adjacent Vertical
Full Edge | V | V | V | V | | V | | | IOBs on Adjacent Horizontal
Half Edge (Direct) | | | | V | | V | | | IOBs on Adjacent Horizontal
Half Edge (through CLB globals) | V | V | V | 1 | V | V | | | IOBs on Adjacent Horizontal
Full Edge (through CLB globals) | V | V | V | | | V | | L = Left, R = Right, T = Top, B = Bottom #### Global Nets and Buffers (XC4000X only) Eight vertical longlines in each CLB column are driven by special global buffers. These longlines are in addition to the vertical longlines used for standard interconnect. The global lines are broken in the center of the array, to allow faster distribution and to minimize skew across the whole array. Each half-column global line has its own buffered multiplexer, as shown in Figure 35. The top and bottom global lines cannot be connected across the center of the device, as this connection might introduce unacceptable skew. The top and bottom halves of the global lines must be separately driven — although they can be driven by the same global buffer. The eight global lines in each CLB column can be driven by either of
two types of global buffers. They can also be driven by internal logic, because they can be accessed by single, double, and quad lines at the top, bottom, half, and quarter points. Consequently, the number of different clocks that can be used simultaneously in an XC4000X device is very large. There are four global lines feeding the IOBs at the left edge of the device. IOBs along the right edge have eight global lines. There is a single global line along the top and bottom edges with access to the IOBs. All IOB global lines are broken at the center. They cannot be connected across the center of the device, as this connection might introduce unacceptable skew. IOB global lines can be driven from two types of global buffers, or from local interconnect. Alternatively, top and bottom IOBs can be clocked from the global lines in the adjacent CLB column. Two different types of clock buffers are available in the XC4000X: - Global Low-Skew Buffers (BUFGLS) - Global Early Buffers (BUFGE) Global Low-Skew Buffers are the standard clock buffers. They should be used for most internal clocking, whenever a large portion of the device must be driven. Global Early Buffers are designed to provide a faster clock access, but CLB access is limited to one-fourth of the device. They also facilitate a faster I/O interface. Figure 35 is a conceptual diagram of the global net structure in the XC4000X. Global Early buffers and Global Low-Skew buffers share a single pad. Therefore, the same IPAD symbol can drive one buffer of each type, in parallel. This configuration is particularly useful when using the Fast Capture latches, as described in "IOB Input Signals" on page 20. Paired Global Early and Global Low-Skew buffers share a common input; they cannot be driven by two different signals. #### Choosing an XC4000X Clock Buffer The clocking structure of the XC4000X provides a large variety of features. However, it can be simple to use, without understanding all the details. The software automatically handles clocks, along with all other routing, when the appropriate clock buffer is placed in the design. In fact, if a buffer symbol called BUFG is placed, rather than a specific type of buffer, the software even chooses the buffer most appropriate for the design. The detailed information in this section is provided for those users who want a finer level of control over their designs. If fine control is desired, use the following summary and Table 15 on page 35 to choose an appropriate clock buffer. - The simplest thing to do is to use a Global Low-Skew buffer. - If a faster clock path is needed, try a BUFG. The software will first try to use a Global Low-Skew Buffer. If timing requirements are not met, a faster buffer will automatically be used. - If a single quadrant of the chip is sufficient for the clocked logic, and the timing requires a faster clock than the Global Low-Skew buffer, use a Global Early buffer. #### **Global Low-Skew Buffers** Each corner of the XC4000X device has two Global Low-Skew buffers. Any of the eight Global Low-Skew buffers can drive any of the eight vertical Global lines in a column of CLBs. In addition, any of the buffers can drive any of the four vertical lines accessing the IOBs on the left edge of the device, and any of the eight vertical lines accessing the IOBs on the right edge of the device. (See Figure 36 on page 38.) IOBs at the top and bottom edges of the device are accessed through the vertical Global lines in the CLB array, as in the XC4000E. Any Global Low-Skew buffer can, therefore, access every IOB and CLB in the device. The Global Low-Skew buffers can be driven by either semi-dedicated pads or internal logic. To use a Global Low-Skew buffer, instantiate a BUFGLS element in a schematic or in HDL code. If desired, attach a LOC attribute or property to direct placement to the designated location. For example, attach a LOC=T attribute or property to direct that a BUFGLS be placed in one of the two Global Low-Skew buffers on the top edge of the device, or a LOC=TR to indicate the Global Low-Skew buffer on the top edge of the device, on the right. ### **Table 16: Pin Descriptions (Continued)** | | I/O
During | I/O
After | | |--|-----------------|-----------------------|--| | Pin Name | Config. | Config. | Pin Description | | TDI, TCK,
TMS | I | I/O
or I
(JTAG) | If boundary scan is used, these pins are Test Data In, Test Clock, and Test Mode Select inputs respectively. They come directly from the pads, bypassing the IOBs. These pins can also be used as inputs to the CLB logic after configuration is completed. If the BSCAN symbol is not placed in the design, all boundary scan functions are inhibited once configuration is completed, and these pins become user-programmable I/O. The pins can be used automatically or user-constrained. To use them, use "LOC=" or place the library components TDI, TCK, and TMS instead of the usual pad symbols. Input or output buffers must still be used. | | HDC | 0 | I/O | High During Configuration (HDC) is driven High until the I/O go active. It is available as a control output indicating that configuration is not yet completed. After configuration, HDC is a user-programmable I/O pin. | | LDC | 0 | I/O | Low During Configuration (LDC) is driven Low until the I/O go active. It is available as a control output indicating that configuration is not yet completed. After configuration, LDC is a user-programmable I/O pin. | | ĪNĪT | I/O | I/O | Before and during configuration, $\overline{\text{INIT}}$ is a bidirectional signal. A 1 k Ω - 10 k Ω external pull-up resistor is recommended. As an active-Low open-drain output, $\overline{\text{INIT}}$ is held Low during the power stabilization and internal clearing of the configuration memory. As an active-Low input, it can be used to hold the FPGA in the internal WAIT state before the start of configuration. Master mode devices stay in a WAIT state an additional 30 to 300 μ s after $\overline{\text{INIT}}$ has gone High. During configuration, a Low on this output indicates that a configuration data error has occurred. After the I/O go active, $\overline{\text{INIT}}$ is a user-programmable I/O pin. | | PGCK1 -
PGCK4
(XC4000E
only) | Weak
Pull-up | I or I/O | Four Primary Global inputs each drive a dedicated internal global net with short delay and minimal skew. If not used to drive a global buffer, any of these pins is a user-programmable I/O. The PGCK1-PGCK4 pins drive the four Primary Global Buffers. Any input pad symbol connected directly to the input of a BUFGP symbol is automatically placed on one of these pins. | | SGCK1 -
SGCK4
(XC4000E
only) | Weak
Pull-up | I or I/O | Four Secondary Global inputs each drive a dedicated internal global net with short delay and minimal skew. These internal global nets can also be driven from internal logic. If not used to drive a global net, any of these pins is a user-programmable I/O pin. The SGCK1-SGCK4 pins provide the shortest path to the four Secondary Global Buffers. Any input pad symbol connected directly to the input of a BUFGS symbol is automatically placed on one of these pins. | | GCK1 -
GCK8
(XC4000X
only) | Weak
Pull-up | I or I/O | Eight inputs can each drive a Global Low-Skew buffer. In addition, each can drive a Global Early buffer. Each pair of global buffers can also be driven from internal logic, but must share an input signal. If not used to drive a global buffer, any of these pins is a user-programmable I/O. Any input pad symbol connected directly to the input of a BUFGLS or BUFGE symbol is automatically placed on one of these pins. | | FCLK1 -
FCLK4
(XC4000XLA
and
XC4000XV
only) | Weak
Pull-up | I or I/O | Four inputs can each drive a Fast Clock (FCLK) buffer which can deliver a clock signal to any IOB clock input in the octant of the die served by the Fast Clock buffer. Two Fast Clock buffers serve the two IOB octants on the left side of the die and the other two Fast Clock buffers serve the two IOB octants on the right side of the die. On each side of the die, one Fast Clock buffer serves the upper octant and the other serves the lower octant. If not used to drive a Fast Clock buffer, any of these pins is a user-programmable I/O. | # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays **Table 16: Pin Descriptions (Continued)** | | I/O | I/O | | |--|-----------------|---------------|--| | Pin Name | During Config. | After Config.
| Pin Description | | 1 III Name | oomig. | Coming. | These four inputs are used in Asynchronous Peripheral mode. The chip is selected | | CSO, CS1,
WS, RS | ı | I/O | when $\overline{\text{CS0}}$ is Low and CS1 is High. While the chip is selected, a Low on Write Strobe $(\overline{\text{WS}})$ loads the data present on the D0 - D7 inputs into the internal data buffer. A Low on Read Strobe $(\overline{\text{RS}})$ changes D7 into a status output — High if Ready, Low if Busy — and drives D0 - D6 High. In Express mode, CS1 is used as a serial-enable signal for daisy-chaining. $\overline{\text{WS}}$ and $\overline{\text{RS}}$ should be mutually exclusive, but if both are Low simultaneously, the Write Strobe overrides. After configuration, these are user-programmable I/O pins. | | A0 - A17 | 0 | I/O | During Master Parallel configuration, these 18 output pins address the configuration EPROM. After configuration, they are user-programmable I/O pins. | | A18 - A21
(XC4003XL to
XC4085XL) | 0 | I/O | During Master Parallel configuration with an XC4000X master, these 4 output pins add 4 more bits to address the configuration EPROM. After configuration, they are user-programmable I/O pins. (See Master Parallel Configuration section for additional details.) | | D0 - D7 | I | I/O | During Master Parallel and Peripheral configuration, these eight input pins receive configuration data. After configuration, they are user-programmable I/O pins. | | DIN | I | I/O | During Slave Serial or Master Serial configuration, DIN is the serial configuration data input receiving data on the rising edge of CCLK. During Parallel configuration, DIN is the D0 input. After configuration, DIN is a user-programmable I/O pin. | | DOUT | 0 | I/O | During configuration in any mode but Express mode, DOUT is the serial configuration data output that can drive the DIN of daisy-chained slave FPGAs. DOUT data changes on the falling edge of CCLK, one-and-a-half CCLK periods after it was received at the DIN input. In Express modefor XC4000E and XC4000X only, DOUT is the status output that can drive the CS1 of daisy-chained FPGAs, to enable and disable downstream devices. After configuration, DOUT is a user-programmable I/O pin. | | Unrestricted U | ser-Prog | rammabl | e I/O Pins | | I/O | Weak
Pull-up | I/O | These pins can be configured to be input and/or output after configuration is completed. Before configuration is completed, these pins have an internal high-value pull-up resistor (25 k Ω - 100 k Ω) that defines the logic level as High. | # **Boundary Scan** The 'bed of nails' has been the traditional method of testing electronic assemblies. This approach has become less appropriate, due to closer pin spacing and more sophisticated assembly methods like surface-mount technology and multi-layer boards. The IEEE Boundary Scan Standard 1149.1 was developed to facilitate board-level testing of electronic assemblies. Design and test engineers can imbed a standard test logic structure in their device to achieve high fault coverage for I/O and internal logic. This structure is easily implemented with a four-pin interface on any boundary scan-compatible IC. IEEE 1149.1-compatible devices may be serial daisy-chained together, connected in parallel, or a combination of the two. The XC4000 Series implements IEEE 1149.1-compatible BYPASS, PRELOAD/SAMPLE and EXTEST boundary scan instructions. When the boundary scan configuration option is selected, three normal user I/O pins become dedicated inputs for these functions. Another user output pin becomes the dedicated boundary scan output. The details of how to enable this circuitry are covered later in this section. By exercising these input signals, the user can serially load commands and data into these devices to control the driving of their outputs and to examine their inputs. This method is an improvement over bed-of-nails testing. It avoids the need to over-drive device outputs, and it reduces the user interface to four pins. An optional fifth pin, a reset for the control logic, is described in the standard but is not implemented in Xilinx devices. The dedicated on-chip logic implementing the IEEE 1149.1 functions includes a 16-state machine, an instruction register and a number of data registers. The functional details can be found in the IEEE 1149.1 specification and are also discussed in the Xilinx application note XAPP 017: "Boundary Scan in XC4000 Devices." Figure 40 on page 43 shows a simplified block diagram of the XC4000E Input/Output Block with boundary scan implemented. XC4000X boundary scan logic is identical. Figure 41 on page 44 is a diagram of the XC4000 Series boundary scan logic. It includes three bits of Data Register per IOB, the IEEE 1149.1 Test Access Port controller, and the Instruction Register with decodes. XC4000 Series devices can also be configured through the boundary scan logic. See "Readback" on page 55. #### **Data Registers** The primary data register is the boundary scan register. For each IOB pin in the FPGA, bonded or not, it includes three bits for In, Out and 3-State Control. Non-IOB pins have appropriate partial bit population for In or Out only. PROGRAM, CCLK and DONE are not included in the boundary scan register. Each EXTEST CAPTURE-DR state captures all In, Out, and 3-state pins. The data register also includes the following non-pin bits: TDO.T, and TDO.O, which are always bits 0 and 1 of the data register, respectively, and BSCANT.UPD, which is always the last bit of the data register. These three boundary scan bits are special-purpose Xilinx test signals. The other standard data register is the single flip-flop BYPASS register. It synchronizes data being passed through the FPGA to the next downstream boundary scan device. The FPGA provides two additional data registers that can be specified using the BSCAN macro. The FPGA provides two user pins (BSCAN.SEL1 and BSCAN.SEL2) which are the decodes of two user instructions. For these instructions, two corresponding pins (BSCAN.TDO1 and BSCAN.TDO2) allow user scan data to be shifted out on TDO. The data register clock (BSCAN.DRCK) is available for control of test logic which the user may wish to implement with CLBs. The NAND of TCK and RUN-TEST-IDLE is also provided (BSCAN.IDLE). Figure 40: Block Diagram of XC4000E IOB with Boundary Scan (some details not shown). XC4000X Boundary Scan Logic is Identical. Figure 41: XC4000 Series Boundary Scan Logic #### **Instruction Set** The XC4000 Series boundary scan instruction set also includes instructions to configure the device and read back the configuration data. The instruction set is coded as shown in Table 17. #### **Bit Sequence** The bit sequence within each IOB is: In, Out, 3-State. The input-only M0 and M2 mode pins contribute only the In bit to the boundary scan I/O data register, while the output-only M1 pin contributes all three bits. The first two bits in the I/O data register are TDO.T and TDO.O, which can be used for the capture of internal signals. The final bit is BSCANT.UPD, which can be used to drive an internal net. These locations are primarily used by Xilinx for internal testing. From a cavity-up view of the chip (as shown in XDE or Epic), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 42. The device-specific pinout tables for the XC4000 Series include the boundary scan locations for each IOB pin. BSDL (Boundary Scan Description Language) files for XC4000 Series devices are available on the Xilinx FTP site. #### **Including Boundary Scan in a Schematic** If boundary scan is only to be used during configuration, no special schematic elements need be included in the schematic or HDL code. In this case, the special boundary scan pins TDI, TMS, TCK and TDO can be used for user functions after configuration. To indicate that boundary scan remain enabled after configuration, place the BSCAN library symbol and connect the TDI, TMS, TCK and TDO pad symbols to the appropriate pins, as shown in Figure 43. Even if the boundary scan symbol is used in a schematic, the input pins TMS, TCK, and TDI can still be used as inputs to be routed to internal logic. Care must be taken not to force the chip into an undesired boundary scan state by inadvertently applying boundary scan input patterns to these pins. The simplest way to prevent this is to keep TMS High, and then apply whatever signal is desired to TDI and TCK. #### **Setting CCLK Frequency** For Master modes, CCLK can be generated in either of two frequencies. In the default slow mode, the frequency ranges from 0.5 MHz to 1.25 MHz for XC4000E and XC4000EX devices and from 0.6 MHz to 1.8 MHz for XC4000XL devices. In fast CCLK mode, the frequency ranges from 4 MHz to 10 MHz for XC4000E/EX devices and from 5 MHz to 15 MHz for XC4000XL devices. The frequency is selected by an option when running the bitstream generation software. If an XC4000 Series Master is driving an XC3000- or XC2000-family slave, slow CCLK mode must be used. In addition, an XC4000XL device driving a XC4000E or XC4000EX should use slow mode. Slow mode is the default Table 19: XC4000 Series Data Stream Formats | Data Type | All Other
Modes (D0) | |--------------------|-------------------------| | Fill Byte | 11111111b | | Preamble Code | 0010b | | Length Count | COUNT(23:0) | | Fill Bits | 1111b | | Start Field | Ob | | Data Frame | DATA(n-1:0) | | CRC or Constant | xxxx (CRC) | | Field Check | or 0110b | | Extend Write Cycle | _ | | Postamble | 01111111b | | Start-Up Bytes | xxh | | Legend: | | | Not shaded | Once per bitstream | | Light | Once per data frame | | Dark | Once per device | #### **Data Stream Format** The data stream ("bitstream") format is identical for all configuration modes. The data stream formats are shown in Table 19. Bit-serial data is read from left to right, and byte-parallel data is effectively assembled from this serial bitstream, with
the first bit in each byte assigned to D0. The configuration data stream begins with a string of eight ones, a preamble code, followed by a 24-bit length count and a separator field of ones. This header is followed by the actual configuration data in frames. The length and number of frames depends on the device type (see Table 20 and Table 21). Each frame begins with a start field and ends with an error check. A postamble code is required to signal the end of data for a single device. In all cases, additional start-up bytes of data are required to provide four clocks for the startup sequence at the end of configuration. Long daisy chains require additional startup bytes to shift the last data through the chain. All startup bytes are don't-cares; these bytes are not included in bitstreams created by the Xilinx software. A selection of CRC or non-CRC error checking is allowed by the bitstream generation software. The non-CRC error checking tests for a designated end-of-frame field for each frame. For CRC error checking, the software calculates a running CRC and inserts a unique four-bit partial check at the end of each frame. The 11-bit CRC check of the last frame of an FPGA includes the last seven data bits. Detection of an error results in the suspension of data loading and the pulling down of the $\overline{\text{INIT}}$ pin. In Master modes, CCLK and address signals continue to operate externally. The user must detect $\overline{\text{INIT}}$ and initialize a new configuration by pulsing the $\overline{\text{PROGRAM}}$ pin Low or cycling Vcc. Table 20: XC4000E Program Data | Device | XC4003E | XC4005E | XC4006E | XC4008E | XC4010E | XC4013E | XC4020E | XC4025E | |---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Max Logic Gates | 3,000 | 5,000 | 6,000 | 8,000 | 10,000 | 13,000 | 20,000 | 25,000 | | CLBs | 100 | 196 | 256 | 324 | 400 | 576 | 784 | 1,024 | | (Row x Col.) | (10 x 10) | (14 x 14) | (16 x 16) | (18 x 18) | (20 x 20) | (24 x 24) | (28 x 28) | (32 x 32) | | IOBs | 80 | 112 | 128 | 144 | 160 | 192 | 224 | 256 | | Flip-Flops | 360 | 616 | 768 | 936 | 1,120 | 1,536 | 2,016 | 2,560 | | Bits per Frame | 126 | 166 | 186 | 206 | 226 | 266 | 306 | 346 | | Frames | 428 | 572 | 644 | 716 | 788 | 932 | 1,076 | 1,220 | | Program Data | 53,936 | 94,960 | 119,792 | 147,504 | 178,096 | 247,920 | 329,264 | 422,128 | | PROM Size
(bits) | 53,984 | 95,008 | 119,840 | 147,552 | 178,144 | 247,968 | 329,312 | 422,176 | Notes: 1. Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1 Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits PROM Size = Program Data + 40 (header) + 8 2. The user can add more "one" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra "one" bits, even for extra leading ones at the beginning of the header. Table 21: XC4000EX/XL Program Data | Device | XC4002XL | XC4005 | XC4010 | XC4013 | XC4020 | XC4028 | XC4036 | XC4044 | XC4052 | XC4062 | XC4085 | |---------------------------|---------------|------------------|------------------|------------------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | Max Logic
Gates | 2,000 | 5,000 | 10,000 | 13,000 | 20,000 | 28,000 | 36,000 | 44,000 | 52,000 | 62,000 | 85,000 | | CLBs
(Row x
Column) | 64
(8 x 8) | 196
(14 x 14) | 400
(20 x 20) | 576
(24 x 24) | 784
(28 x 28) | 1,024
(32 x 32) | 1,296
(36 x 36) | 1,600
(40 x 40) | 1,936
(44 x 44) | 2,304
(48 x 48) | 3,136
(56 x 56) | | IOBs | 64 | 112 | 160 | 192 | 224 | 256 | 288 | 320 | 352 | 384 | 448 | | Flip-Flops | 256 | 616 | 1,120 | 1,536 | 2,016 | 2,560 | 3,168 | 3,840 | 4,576 | 5,376 | 7,168 | | Bits per
Frame | 133 | 205 | 277 | 325 | 373 | 421 | 469 | 517 | 565 | 613 | 709 | | Frames | 459 | 741 | 1,023 | 1,211 | 1,399 | 1,587 | 1,775 | 1,963 | 2,151 | 2,339 | 2,715 | | Program Data | 61,052 | 151,910 | 283,376 | 393,580 | 521,832 | 668,124 | 832,480 | 1,014,876 | 1,215,320 | 1,433,804 | 1,924,940 | | PROM Size
(bits) | 61,104 | 151,960 | 283,424 | 393,632 | 521,880 | 668,172 | 832,528 | 1,014,924 | 1,215,368 | 1,433,852 | 1,924,992 | Notes: 1. Bits per frame = (13 x number of rows) + 9 for the top + 17 for the bottom + 8 + 1 start bit + 4 error check bits. Frames = (47 x number of columns) + 27 for the left edge + 52 for the right edge + 4. Program data = (bits per frame x number of frames) + 5 postamble bits. PROM size = (program data + 40 header bits + 8 start bits) rounded up to the nearest byte. 2. The user can add more "one" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra "one" bits, even for extra leading "ones" at the beginning of the header. # Cyclic Redundancy Check (CRC) for Configuration and Readback The Cyclic Redundancy Check is a method of error detection in data transmission applications. Generally, the transmitting system performs a calculation on the serial bitstream. The result of this calculation is tagged onto the data stream as additional check bits. The receiving system performs an identical calculation on the bitstream and compares the result with the received checksum. Each data frame of the configuration bitstream has four error bits at the end, as shown in Table 19. If a frame data error is detected during the loading of the FPGA, the con- figuration process with a potentially corrupted bitstream is terminated. The FPGA pulls the $\overline{\text{INIT}}$ pin Low and goes into a Wait state. During Readback, 11 bits of the 16-bit checksum are added to the end of the Readback data stream. The checksum is computed using the CRC-16 CCITT polynomial, as shown in Figure 45. The checksum consists of the 11 most significant bits of the 16-bit code. A change in the checksum indicates a change in the Readback bitstream. A comparison to a previous checksum is meaningful only if the readback data is independent of the current device state. CLB outputs should not be included (Read Capture option not Figure 49: Readback Schematic Example #### **Readback Options** Readback options are: Read Capture, Read Abort, and Clock Select. They are set with the bitstream generation software. #### Read Capture When the Read Capture option is selected, the readback data stream includes sampled values of CLB and IOB signals. The rising edge of RDBK.TRIG latches the inverted values of the four CLB outputs, the IOB output flip-flops and the input signals I1 and I2. Note that while the bits describing configuration (interconnect, function generators, and RAM content) are *not* inverted, the CLB and IOB output signals *are* inverted. When the Read Capture option is not selected, the values of the capture bits reflect the configuration data originally written to those memory locations. If the RAM capability of the CLBs is used, RAM data are available in readback, since they directly overwrite the F and G function-table configuration of the CLB. RDBK.TRIG is located in the lower-left corner of the device, as shown in Figure 50. #### Read Abort When the Read Abort option is selected, a High-to-Low transition on RDBK.TRIG terminates the readback operation and prepares the logic to accept another trigger. After an aborted readback, additional clocks (up to one readback clock per configuration frame) may be required to re-initialize the control logic. The status of readback is indicated by the output control net RDBK.RIP. RDBK.RIP is High whenever a readback is in progress. #### Clock Select CCLK is the default clock. However, the user can insert another clock on RDBK.CLK. Readback control and data are clocked on rising edges of RDBK.CLK. If readback must be inhibited for security reasons, the readback control nets are simply not connected. RDBK.CLK is located in the lower right chip corner, as shown in Figure 50. Figure 50: READBACK Symbol in Graphical Editor # Violating the Maximum High and Low Time Specification for the Readback Clock The readback clock has a maximum High and Low time specification. In some cases, this specification cannot be met. For example, if a processor is controlling readback, an interrupt may force it to stop in the middle of a readback. This necessitates stopping the clock, and thus violating the specification. The specification is mandatory only on clocking data at the end of a frame prior to the next start bit. The transfer mechanism will load the data to a shift register during the last six clock cycles of the frame, prior to the start bit of the following frame. This loading process is dynamic, and is the source of the maximum High and Low time requirements. Therefore, the specification only applies to the six clock cycles prior to and including any start bit, including the clocks before the first start bit in the readback data stream. At other times, the frame data is already in the register and the register is not dynamic. Thus, it can be shifted out just like a regular shift register. The user must precisely calculate the location of the readback data relative to the frame. The system must keep track of the position within a data frame, and disable interrupts before frame boundaries. Frame lengths and data formats are listed in Table 19, Table 20 and Table 21. #### Readback with the XChecker Cable The XChecker Universal Download/Readback Cable and Logic Probe uses the readback feature for bitstream verification. It can also display selected internal signals on the PC or
workstation screen, functioning as a low-cost in-circuit emulator. ### XC4000E/EX/XL Program Readback Switching Characteristic Guidelines Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Internal timing parameters are not measured directly. They are derived from benchmark timing patterns that are taken at device introduction, prior to any process improvements. The following guidelines reflect worst-case values over the recommended operating conditions. #### E/EX | | Description | 5 | Symbol | Min | Max | Units | |-----------|--|---|-------------------|-----|-----|-------| | rdbk.TRIG | rdbk.TRIG setup to initiate and abort Readback | 1 | T _{RTRC} | 200 | - | ns | | | rdbk.TRIG hold to initiate and abort Readback | 2 | T _{RCRT} | 50 | - | ns | | rdclk.1 | rdbk.DATA delay | 7 | T _{RCRD} | - | 250 | ns | | | rdbk.RIP delay | 6 | T _{RCRR} | - | 250 | ns | | | High time | 5 | T _{RCH} | 250 | 500 | ns | | | Low time | 4 | T _{RCL} | 250 | 500 | ns | Note 1: Timing parameters apply to all speed grades. Note 2: If rdbk.TRIG is High prior to Finished, Finished will trigger the first Readback. #### XL | | Description | | Symbol | Min | Max | Units | |-----------|--|---|-------------------|-----|-----|-------| | rdbk.TRIG | rdbk.TRIG setup to initiate and abort Readback | 1 | T _{RTRC} | 200 | - | ns | | | rdbk.TRIG hold to initiate and abort Readback | 2 | T _{RCRT} | 50 | - | ns | | rdclk.1 | rdbk.DATA delay | 7 | T _{RCRD} | - | 250 | ns | | | rdbk.RIP delay | 6 | T _{RCRR} | - | 250 | ns | | | High time | 5 | T _{RCH} | 250 | 500 | ns | | | Low time | 4 | T _{RCL} | 250 | 500 | ns | Note 1: Timing parameters apply to all speed grades. Note 2: If rdbk.TRIG is High prior to Finished, Finished will trigger the first Readback. **Table 22: Pin Functions During Configuration** | SLAVE
SERIAL
<1:1:1> | MASTER
SERIAL
<0:0:0> | SYNCH.
PERIPHERAL
<0:1:1> | ASYNCH. PERIPHERAL <1:0:1> | MASTER
PARALLEL DOWN
<1:1:0> | MASTER
PARALLEL UP
<1:0:0> | USER
OPERATION | |----------------------------|-----------------------------|---------------------------------|----------------------------|------------------------------------|----------------------------------|-------------------| | M2(HIGH) (I) | M2(LOW) (I) | M2(LOW) (I) | M2(HIGH) (I) | M2(HIGH) (I) | M2(HIGH) (I) | (I) | | M1(HIGH) (I) | M1(LOW) (I) | M1(HIGH) (I) | M1(LOW) (I) | M1(HIGH) (I) | M1(LOW) (I) | (O) | | M0(HIGH) (I) | M0(LOW) (I) | M0(HIGH) (I) | M0(HIGH) (I) | M0(LOW) (I) | M0(LOW) (I) | (I) | | HDC (HIGH) | I/O | | LDC (LOW) | I/O | | ĪNIT | ĪNIT | ĪNIT | ĪNIT | ĪNIT | ĪNIT | I/O | | DONE | PROGRAM (I) | PROGRAM | | CCLK (I) | CCLK (O) | CCLK (I) | CCLK (O) | CCLK (O) | CCLK (O) | CCLK (I) | | | | RDY/BUSY (O) | RDY/BUSY (O) | RCLK (O) | RCLK (O) | I/O | | | | | RS (I) | | | I/O | | | | | CSO (I) | | | I/O | | | | DATA 7 (I) | DATA 7 (I) | DATA 7 (I) | DATA 7 (I) | I/O | | | | DATA 6 (I) | DATA 6 (I) | DATA 6 (I) | DATA 6 (I) | I/O | | | | DATA 5 (I) | DATA 5 (I) | DATA 5 (I) | DATA 5 (I) | I/O | | | | DATA 4 (I) | DATA 4 (I) | DATA 4 (I) | DATA 4 (I) | I/O | | | | DATA 3 (I) | DATA 3 (I) | DATA 3 (I) | DATA 3 (I) | I/O | | | | DATA 2 (I) | DATA 2 (I) | DATA 2 (I) | DATA 2 (I) | I/O | | | | DATA 1 (I) | DATA 1 (I) | DATA 1 (I) | DATA 1 (I) | I/O | | DIN (I) | DIN (I) | DATA 0 (I) | DATA 0 (I) | DATA 0 (I) | DATA 0 (I) | I/O | | DOUT | DOUT | DOUT | DOUT | DOUT | DOUT | SGCK4-GCK6-I/O | | TDI | TDI | TDI | TDI | TDI | TDI | TDI-I/O | | TCK | TCK | TCK | TCK | TCK | TCK | TCK-I/O | | TMS | TMS | TMS | TMS | TMS | TMS | TMS-I/O | | TDO | TDO | TDO | TDO | TDO | TDO | TDO-(O) | | | | | WS (I) | A0 | A0 | I/O | | | | | | A1 | A1 | PGCK4-GCK7-I/O | | | | | CS1 | A2 | A2 | I/O | | | | | • | A3 | A3 | I/O | | | | | | A4 | A4 | I/O | | | | | | A5 | A5 | I/O | | | | | | A6 | A6 | I/O | | | | | | A7 | A7 | I/O | | | | | | A8 | A8 | I/O | | | | | | A9 | A9 | I/O | | | | | | A10 | A10 | I/O | | | | | | A11 | A11 | I/O | | | | | | A12 | A12 | I/O | | | | | | A13 | A13 | I/O | | | | | | A14 | A14 | I/O | | | | | | A15 | A15 | SGCK1-GCK8-I/O | | | | | | A16 | A16 | PGCK1-GCK1-I/O | | | | | | A17 | A17 | I/O | | | | | | A18* | A18* | I/O | | | | | | A19* | A19* | I/O | | | | | | A20* | A20* | I/O | | | | | | A21* | A21* | I/O | | | | | | | | ALL OTHERS | #### Master Serial Mode In Master Serial mode, the CCLK output of the lead FPGA drives a Xilinx Serial PROM that feeds the FPGA DIN input. Each rising edge of the CCLK output increments the Serial PROM internal address counter. The next data bit is put on the SPROM data output, connected to the FPGA DIN pin. The lead FPGA accepts this data on the subsequent rising CCLK edge. The lead FPGA then presents the preamble data—and all data that overflows the lead device—on its DOUT pin. There is an internal pipeline delay of 1.5 CCLK periods, which means that DOUT changes on the falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge. In the bitstream generation software, the user can specify Fast ConfigRate, which, starting several bits into the first frame, increases the CCLK frequency by a factor of eight. For actual timing values please refer to "Configuration Switching Characteristics" on page 68. Be sure that the serial PROM and slaves are fast enough to support this data rate. XC2000, XC3000/A, and XC3100A devices do not support the Fast ConfigRate option. The SPROM CE input can be driven from either LDC or DONE. Using LDC avoids potential contention on the DIN pin, if this pin is configured as user-I/O, but LDC is then restricted to be a permanently High user output after configuration. Using DONE can also avoid contention on DIN, provided the early DONE option is invoked. Figure 51 on page 60 shows a full master/slave system. The leftmost device is in Master Serial mode. Master Serial mode is selected by a <000> on the mode pins (M2, M1, M0). | | Description | , | Symbol | Min | Max | Units | |------|-------------|---|-------------------|-----|-----|-------| | CCLK | DIN setup | 1 | T _{DSCK} | 20 | | ns | | | DIN hold | 2 | T _{CKDS} | 0 | | ns | Notes: 1. At power-up, Vcc must rise from 2.0 V to Vcc min in less than 25 ms, otherwise delay configuration by pulling PROGRAM Low until Vcc is valid. 2. Master Serial mode timing is based on testing in slave mode. Figure 53: Master Serial Mode Programming Switching Characteristics | | Description | , | Symbol | Min | Max | Units | |---------|--|---|-------------------|-----|-----|-----------------| | \\/#ito | Effective Write time (CSO, WS=Low; RS, CS1=High) | 1 | T _{CA} | 100 | | ns | | Write | DIN setup time | 2 | T _{DC} | 60 | | ns | | | DIN hold time | 3 | T _{CD} | 0 | | ns | | | RDY/BUSY delay after end of Write or Read | 4 | T _{WTRB} | | 60 | ns | | RDY | RDY/BUSY active after beginning of Read | 7 | | | 60 | ns | | | RDY/BUSY Low output (Note 4) | 6 | T _{BUSY} | 2 | 9 | CCLK
periods | - Notes: 1. Configuration must be delayed until the NIT pins of all daisy-chained FPGAs are High. - 2. The time from the end of WS to CCLK cycle for the new byte of data depends on the completion of previous byte processing and the phase of the internal timing generator for CCLK. - 3. CCLK and DOUT timing is tested in slave mode. - 4. T_{RUSY} indicates that the double-buffered parallel-to-serial converter is not yet ready to receive new data. The shortest T_{BUSY} occurs when a byte is loaded into an empty parallel-to-serial converter. The longest T_{BUSY} occurs when a new word is loaded into the input register before the second-level buffer has started shifting out data This timing diagram shows very relaxed requirements. Data need not be held beyond the rising edge of WS. RDY/BUSY will go active within 60 ns after the end of WS. A new write may be asserted immediately after RDY/BUSY goes Low, but write may not be terminated until RDY/BUSY has been High for one CCLK period. Figure 59: Asynchronous Peripheral Mode Programming Switching Characteristics # **Configuration Switching Characteristics** # Master Modes (XC4000E/EX) | Description | | Symbol | Min | Max | Units | |----------------------------|-----------|-------------------|-----|------|------------| | | M0 = High | T _{POR} | 10 | 40 | ms | | Power-On Reset | M0 = Low | T _{POR} | 40 | 130 | ms | | Program Latency | | T _{Pl} | 30 | 200 | μs per | | | | | | | CLB column | | CCLK (output) Delay | | T _{ICCK} | 40 | 250 | μs | | CCLK (output) Period, slow | | T _{CCLK} | 640 | 2000 | ns | | CCLK (output) Period, fast | | T _{CCLK} | 80 | 250 | ns | # Master Modes (XC4000XL) | Description | | Symbol | Min | Max | Units | |----------------------------|-----------|-------------------|-----|------|------------| | | M0 = High | T _{POR} | 10 | 40 | ms | | Power-On Reset | M0 = Low | T _{POR} | 40 | 130 | ms | | Program Latency | | T _{Pl} | 30 | 200 | μs per | | | | | | | CLB column | | CCLK (output) Delay | | T _{ICCK} | 40 | 250 | μs | | CCLK (output) Period, slow | | T _{CCLK} | 540 | 1600 | ns | | CCLK (output) Period, fast | | T _{CCLK} | 67 | 200 | ns | # Slave and Peripheral Modes (All) | Description | Symbol | Min | Max | Units | |--------------------------------|-------------------|-----|-----|----------------------| | Power-On Reset | T _{POR} | 10 | 33 | ms | | Program Latency | T _{Pl} | 30 | 200 | μs per
CLB column | | CCLK (input) Delay (required) | T _{ICCK} | 4 | | μs | | CCLK (input) Period (required) | T _{CCLK} | 100 | | ns | # XC4000 Series Electrical Characteristics and Device-Specific Pinout Table For the latest Electrical Characteristics and package/pinout information for each XC4000 Family, see the Xilinx web site at http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp # **Ordering Information** X9020 #### **Revision Control** | Version | Description | | | |---------------|---|--|--| | 3/30/98 (1.5) | Updated XC4000XL timing and added XC4002XL | | | | 1/29/99 (1.5) | Updated pin diagrams | | | | 5/14/99 (1.6) | Replaced Electrical Specification and pinout pages for E, EX, and XL families with separate updates and | | | | | added URL link for electrical specifications/pinouts for Web users | | |