Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 1024 | | Number of Logic Elements/Cells | 2432 | | Total RAM Bits | 32768 | | Number of I/O | 256 | | Number of Gates | 25000 | | Voltage - Supply | 4.75V ~ 5.25V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 304-BFQFP Exposed Pad | | Supplier Device Package | 304-PQFP (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xc4025e-4hq304c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong tions of the CLB, with the exception of the redefinition of the control signals. In 16x2 and 16x1 modes, the H' function generator can be used to implement Boolean functions of F', G', and D1, and the D flip-flops can latch the F', G', H', or D0 signals. #### Single-Port Edge-Triggered Mode Edge-triggered (synchronous) RAM simplifies timing requirements. XC4000 Series edge-triggered RAM timing operates like writing to a data register. Data and address are presented. The register is enabled for writing by a logic High on the write enable input, WE. Then a rising or falling clock edge loads the data into the register, as shown in Figure 3. Figure 3: Edge-Triggered RAM Write Timing Complex timing relationships between address, data, and write enable signals are not required, and the external write enable pulse becomes a simple clock enable. The active edge of WCLK latches the address, input data, and WE sig- nals. An internal write pulse is generated that performs the write. See Figure 4 and Figure 5 for block diagrams of a CLB configured as 16x2 and 32x1 edge-triggered, single-port RAM. The relationships between CLB pins and RAM inputs and outputs for single-port, edge-triggered mode are shown in Table 5. The Write Clock input (WCLK) can be configured as active on either the rising edge (default) or the falling edge. It uses the same CLB pin (K) used to clock the CLB flip-flops, but it can be independently inverted. Consequently, the RAM output can optionally be registered within the same CLB either by the same clock edge as the RAM, or by the opposite edge of this clock. The sense of WCLK applies to both function generators in the CLB when both are configured as RAM. The WE pin is active-High and is not invertible within the CLB. **Note:** The pulse following the active edge of WCLK (T_{WPS} in Figure 3) must be less than one millisecond wide. For most applications, this requirement is not overly restrictive; however, it must not be forgotten. Stopping WCLK at this point in the write cycle could result in excessive current and even damage to the larger devices if many CLBs are configured as edge-triggered RAM. Table 5: Single-Port Edge-Triggered RAM Signals | RAM Signal | CLB Pin | Function | |------------|------------------|-----------------| | D | D0 or D1 (16x2, | Data In | | | 16x1), D0 (32x1) | | | A[3:0] | F1-F4 or G1-G4 | Address | | A[4] | D1 (32x1) | Address | | WE | WE | Write Enable | | WCLK | K | Clock | | SPO | F' or G' | Single Port Out | | (Data Out) | | (Data Out) | #### **Dual-Port Edge-Triggered Mode** In dual-port mode, both the F and G function generators are used to create a single 16x1 RAM array with one write port and two read ports. The resulting RAM array can be read and written simultaneously at two independent addresses. Simultaneous read and write operations at the same address are also supported. Dual-port mode always has edge-triggered write timing, as shown in Figure 3. Figure 6 shows a simple model of an XC4000 Series CLB configured as dual-port RAM. One address port, labeled A[3:0], supplies both the read and write address for the F function generator. This function generator behaves the same as a 16x1 single-port edge-triggered RAM array. The RAM output, Single Port Out (SPO), appears at the F function generator output. SPO, therefore, reflects the data at address A[3:0]. The other address port, labeled DPRA[3:0] for Dual Port Read Address, supplies the read address for the G function generator. The write address for the G function generator, however, comes from the address A[3:0]. The output from this 16x1 RAM array, Dual Port Out (DPO), appears at the G function generator output. DPO, therefore, reflects the data at address DPRA[3:0]. Therefore, by using A[3:0] for the write address and DPRA[3:0] for the read address, and reading only the DPO output, a FIFO that can read and write simultaneously is easily generated. Simultaneous access doubles the effective throughput of the FIFO. The relationships between CLB pins and RAM inputs and outputs for dual-port, edge-triggered mode are shown in Table 6. See Figure 7 on page 16 for a block diagram of a CLB configured in this mode. Figure 6: XC4000 Series Dual-Port RAM, Simple Model Table 6: Dual-Port Edge-Triggered RAM Signals | RAM Signal | CLB Pin | Function | |------------|---------|---------------------------| | D | D0 | Data In | | A[3:0] | F1-F4 | Read Address for F, | | | | Write Address for F and G | | DPRA[3:0] | G1-G4 | Read Address for G | | WE | WE | Write Enable | | WCLK | K | Clock | | SPO | F' | Single Port Out | | | | (addressed by A[3:0]) | | DPO | G' | Dual Port Out | | | | (addressed by DPRA[3:0]) | **Note:** The pulse following the active edge of WCLK (T_{WPS} in Figure 3) must be less than one millisecond wide. For most applications, this requirement is not overly restrictive; however, it must not be forgotten. Stopping WCLK at this point in the write cycle could result in excessive current and even damage to the larger devices if many CLBs are configured as edge-triggered RAM. #### Single-Port Level-Sensitive Timing Mode **Note:** Edge-triggered mode is recommended for all new designs. Level-sensitive mode, also called asynchronous mode, is still supported for XC4000 Series backward-compatibility with the XC4000 family. Level-sensitive RAM timing is simple in concept but can be complicated in execution. Data and address signals are presented, then a positive pulse on the write enable pin (WE) performs a write into the RAM at the designated address. As indicated by the "level-sensitive" label, this RAM acts like a latch. During the WE High pulse, changing the data lines results in new data written to the old address. Changing the address lines while WE is High results in spurious data written to the new address—and possibly at other addresses as well, as the address lines inevitably do not all change simultaneously. The user must generate a carefully timed WE signal. The delay on the WE signal and the address lines must be carefully verified to ensure that WE does not become active until after the address lines have settled, and that WE goes inactive before the address lines change again. The data must be stable before and after the falling edge of WE. In practical terms, WE is usually generated by a 2X clock. If a 2X clock is not available, the falling edge of the system clock can be used. However, there are inherent risks in this approach, since the WE pulse must be guaranteed inactive before the next rising edge of the system clock. Several older application notes are available from Xilinx that discuss the design of level-sensitive RAMs. However, the edge-triggered RAM available in the XC4000 Series is superior to level-sensitive RAM for almost every application. ## Fast Carry Logic Each CLB F and G function generator contains dedicated arithmetic logic for the fast generation of carry and borrow signals. This extra output is passed on to the function generator in the adjacent CLB. The carry chain is independent of normal routing resources. Dedicated fast carry logic greatly increases the efficiency and performance of adders, subtractors, accumulators, comparators and counters. It also opens the door to many new applications involving arithmetic operation, where the previous generations of FPGAs were not fast enough or too inefficient. High-speed address offset calculations in microprocessor or graphics systems, and high-speed addition in digital signal processing are two typical applications. The two 4-input function generators can be configured as a 2-bit adder with built-in hidden carry that can be expanded to any length. This dedicated carry circuitry is so fast and efficient that conventional speed-up methods like carry generate/propagate are meaningless even at the 16-bit level, and of marginal benefit at the 32-bit level. This fast carry logic is one of the more significant features of the XC4000 Series, speeding up arithmetic and counting into the 70 MHz range. The carry chain in XC4000E devices can run either up or down. At the top and bottom of the columns where there are no CLBs above or below, the carry is propagated to the right. (See Figure 11.) In order to improve speed in the high-capacity XC4000X devices, which can potentially have very long carry chains, the carry chain travels upward only, as shown in Figure 12. Additionally, standard interconnect can be used to route a carry signal in the downward direction. Figure 13 on page 19 shows an XC4000E CLB with dedicated fast carry
logic. The carry logic in the XC4000X is similar, except that COUT exits at the top only, and the signal CINDOWN does not exist. As shown in Figure 13, the carry logic shares operand and control inputs with the function generators. The carry outputs connect to the function generators, where they are combined with the operands to form the sums. Figure 14 on page 20 shows the details of the carry logic for the XC4000E. This diagram shows the contents of the box labeled "CARRY LOGIC" in Figure 13. The XC4000X carry logic is very similar, but a multiplexer on the pass-through carry chain has been eliminated to reduce delay. Additionally, in the XC4000X the multiplexer on the G4 path has a memory-programmable 0 input, which permits G4 to directly connect to COUT. G4 thus becomes an additional high-speed initialization path for carry-in. The dedicated carry logic is discussed in detail in Xilinx document XAPP 013: "Using the Dedicated Carry Logic in *XC4000.*" This discussion also applies to XC4000E devices, and to XC4000X devices when the minor logic changes are taken into account. The fast carry logic can be accessed by placing special library symbols, or by using Xilinx Relationally Placed Macros (RPMs) that already include these symbols. Figure 11: Available XC4000E Carry Propagation Paths Figure 12: Available XC4000X Carry Propagation Paths (dotted lines use general interconnect) Table 8: Supported Sources for XC4000 Series Device Inputs | | | 0E/EX
Inputs | XC4000XL
Series Inputs | |---|-------------|-----------------|---------------------------| | Source | 5 V,
TTL | 5 V,
CMOS | 3.3 V
CMOS | | Any device, Vcc = 3.3 V,
CMOS outputs | V | Unreli | V | | XC4000 Series, Vcc = 5 V, TTL outputs | V | -able
Data | √ | | Any device, $Vcc = 5 \text{ V}$, TTL outputs $(Voh \le 3.7 \text{ V})$ | √ | Data | √ | | Any device, Vcc = 5 V,
CMOS outputs | V | √ | √ | #### XC4000XL 5-Volt Tolerant I/Os The I/Os on the XC4000XL are fully 5-volt tolerant even though the $V_{\rm CC}$ is 3.3 volts. This allows 5 V signals to directly connect to the XC4000XL inputs without damage, as shown in Table 8. In addition, the 3.3 volt $V_{\rm CC}$ can be applied before or after 5 volt signals are applied to the I/Os. This makes the XC4000XL immune to power supply sequencing problems. ### **Registered Inputs** The I1 and I2 signals that exit the block can each carry either the direct or registered input signal. The input and output storage elements in each IOB have a common clock enable input, which, through configuration, can be activated individually for the input or output flip-flop, or both. This clock enable operates exactly like the EC pin on the XC4000 Series CLB. It cannot be inverted within the IOB. The storage element behavior is shown in Table 9. Table 9: Input Register Functionality (active rising edge is shown) | Mode | Clock | Clock
Enable | D | Q | |-----------------|-------|-----------------|---|----| | Power-Up or GSR | X | X | Х | SR | | Flip-Flop | | 1* | D | D | | | 0 | Х | Х | Q | | Latch | 1 | 1* | Х | Q | | | 0 | 1* | D | D | | Both | Χ | 0 | Х | Q | Legend: X Don't care Rising edge SR Set or Reset value. Reset is default. 0* Input is Low or unconnected (default value) 1* Input is High or unconnected (default value) #### **Optional Delay Guarantees Zero Hold Time** The data input to the register can optionally be delayed by several nanoseconds. With the delay enabled, the setup time of the input flip-flop is increased so that normal clock routing does not result in a positive hold-time requirement. A positive hold time requirement can lead to unreliable, temperature- or processing-dependent operation. The input flip-flop setup time is defined between the data measured at the device I/O pin and the clock input at the IOB (not at the clock pin). Any routing delay from the device clock pin to the clock input of the IOB must, therefore, be subtracted from this setup time to arrive at the real setup time requirement relative to the device pins. A short specified setup time might, therefore, result in a negative setup time at the device pins, i.e., a positive hold-time requirement. When a delay is inserted on the data line, more clock delay can be tolerated without causing a positive hold-time requirement. Sufficient delay eliminates the possibility of a data hold-time requirement at the external pin. The maximum delay is therefore inserted as the default. The XC4000E IOB has a one-tap delay element: either the delay is inserted (default), or it is not. The delay guarantees a zero hold time with respect to clocks routed through any of the XC4000E global clock buffers. (See "Global Nets and Buffers (XC4000E only)" on page 35 for a description of the global clock buffers in the XC4000E.) For a shorter input register setup time, with non-zero hold, attach a NODELAY attribute or property to the flip-flop. The XC4000X IOB has a two-tap delay element, with choices of a full delay, a partial delay, or no delay. The attributes or properties used to select the desired delay are shown in Table 10. The choices are no added attribute, MEDDELAY, and NODELAY. The default setting, with no added attribute, ensures no hold time with respect to any of the XC4000X clock buffers, including the Global Low-Skew buffers. MEDDELAY ensures no hold time with respect to the Global Early buffers. Inputs with NODELAY may have a positive hold time with respect to all clock buffers. For a description of each of these buffers, see "Global Nets and Buffers (XC4000X only)" on page 37. Table 10: XC4000X IOB Input Delay Element | Value | When to Use | |------------------|--| | full delay | Zero Hold with respect to Global | | (default, no | Low-Skew Buffer, Global Early Buffer | | attribute added) | | | MEDDELAY | Zero Hold with respect to Global Early | | | Buffer | | NODELAY | Short Setup, positive Hold time | Any XC4000 Series 5-Volt device with its outputs configured in TTL mode can drive the inputs of any typical 3.3-Volt device. (For a detailed discussion of how to interface between 5 V and 3.3 V devices, see the 3V Products section of *The Programmable Logic Data Book*.) Supported destinations for XC4000 Series device outputs are shown in Table 12. An output can be configured as open-drain (open-collector) by placing an OBUFT symbol in a schematic or HDL code, then tying the 3-state pin (T) to the output signal, and the input pin (I) to Ground. (See Figure 18.) Table 12: Supported Destinations for XC4000 Series Outputs | | XC4000 Series
Outputs | | | |----------------------------------|--------------------------|-------------|-------------------| | Destination | 3.3 V,
CMOS | 5 V,
TTL | 5 V,
CMOS | | Any typical device, Vcc = 3.3 V, | V V | | some ¹ | | CMOS-threshold inputs | | | | | Any device, Vcc = 5 V, | V | V | √ | | TTL-threshold inputs | | | | | Any device, Vcc = 5 V, | Unreliable | | √ | | CMOS-threshold inputs | Data | | | 1. Only if destination device has 5-V tolerant inputs Figure 18: Open-Drain Output #### **Output Slew Rate** The slew rate of each output buffer is, by default, reduced, to minimize power bus transients when switching non-critical signals. For critical signals, attach a FAST attribute or property to the output buffer or flip-flop. For XC4000E devices, maximum total capacitive load for simultaneous fast mode switching in the same direction is 200 pF for all package pins between each Power/Ground pin pair. For XC4000X devices, additional internal Power/Ground pin pairs are connected to special Power and Ground planes within the packages, to reduce ground bounce. Therefore, the maximum total capacitive load is 300 pF between each external Power/Ground pin pair. Maximum loading may vary for the low-voltage devices. For slew-rate limited outputs this total is two times larger for each device type: 400 pF for XC4000E devices and 600 pF for XC4000X devices. This maximum capacitive load should not be exceeded, as it can result in ground bounce of greater than 1.5 V amplitude and more than 5 ns duration. This level of ground bounce may cause undesired transient behavior on an output, or in the internal logic. This restriction is common to all high-speed digital ICs, and is not particular to Xilinx or the XC4000 Series. XC4000 Series devices have a feature called "Soft Start-up," designed to reduce ground bounce when all outputs are turned on simultaneously at the end of configuration. When the configuration process is finished and the device starts up, the first activation of the outputs is automatically slew-rate limited. Immediately following the initial activation of the I/O, the slew rate of the individual outputs is determined by the individual configuration option for each IOB. #### **Global Three-State** A separate Global 3-State line (not shown in Figure 15 or Figure 16) forces all FPGA outputs to the high-impedance state, unless boundary scan is enabled and is executing an EXTEST instruction. This global net (GTS) does not compete with other routing resources; it uses a dedicated distribution network. GTS can be driven from any user-programmable pin as a global 3-state input. To use this global net, place an input pad and input buffer in the schematic or HDL code, driving the GTS pin of the STARTUP symbol. A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the Global 3-State signal. Using GTS is similar to GSR. See Figure 2 on page 11 for details. Alternatively, GTS can be driven from any internal node. Figure 22: 3-State Buffers Implement a Multiplexer ## Wide Edge Decoders Dedicated decoder circuitry boosts the performance of wide decoding functions. When the address or data field is wider than the function
generator inputs, FPGAs need multi-level decoding and are thus slower than PALs. XC4000 Series CLBs have nine inputs. Any decoder of up to nine inputs is, therefore, compact and fast. However, there is also a need for much wider decoders, especially for address decoding in large microprocessor systems. An XC4000 Series FPGA has four programmable decoders located on each edge of the device. The inputs to each decoder are any of the IOB I1 signals on that edge plus one local interconnect per CLB row or column. Each row or column of CLBs provides up to three variables or their compliments., as shown in Figure 23. Each decoder generates a High output (resistor pull-up) when the AND condition of the selected inputs, or their complements, is true. This is analogous to a product term in typical PAL devices. Each of these wired-AND gates is capable of accepting up to 42 inputs on the XC4005E and 72 on the XC4013E. There are up to 96 inputs for each decoder on the XC4028X and 132 on the XC4052X. The decoders may also be split in two when a larger number of narrower decoders are required, for a maximum of 32 decoders per device. The decoder outputs can drive CLB inputs, so they can be combined with other logic to form a PAL-like AND/OR structure. The decoder outputs can also be routed directly to the chip outputs. For fastest speed, the output should be on the same chip edge as the decoder. Very large PALs can be emulated by ORing the decoder outputs in a CLB. This decoding feature covers what has long been considered a weakness of older FPGAs. Users often resorted to external PALs for simple but fast decoding functions. Now, the dedicated decoders in the XC4000 Series device can implement these functions fast and efficiently. To use the wide edge decoders, place one or more of the WAND library symbols (WAND1, WAND4, WAND8, WAND16). Attach a DECODE attribute or property to each WAND symbol. Tie the outputs together and attach a PUL- LUP symbol. Location attributes or properties such as L (left edge) or TR (right half of top edge) should also be used to ensure the correct placement of the decoder inputs. Figure 23: XC4000 Series Edge Decoding Example Figure 24: XC4000 Series Oscillator Symbol ### **On-Chip Oscillator** XC4000 Series devices include an internal oscillator. This oscillator is used to clock the power-on time-out, for configuration memory clearing, and as the source of CCLK in Master configuration modes. The oscillator runs at a nominal 8 MHz frequency that varies with process, Vcc, and temperature. The output frequency falls between 4 and 10 MHz. Figure 27: Detail of Programmable Interconnect Associated with XC4000 Series CLB 6-30 May 14, 1999 (Version 1.6) # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays IOB inputs and outputs interface with the octal lines via the single-length interconnect lines. Single-length lines are also used for communication between the octals and double-length lines, quads, and longlines within the CLB array. Segmentation into buffered octals was found to be optimal for distributing signals over long distances around the device. ### **Global Nets and Buffers** Both the XC4000E and the XC4000X have dedicated global networks. These networks are designed to distribute clocks and other high fanout control signals throughout the devices with minimal skew. The global buffers are described in detail in the following sections. The text descriptions and diagrams are summarized in Table 15. The table shows which CLB and IOB clock pins can be sourced by which global buffers. In both XC4000E and XC4000X devices, placement of a library symbol called BUFG results in the software choosing the appropriate clock buffer, based on the timing requirements of the design. The detailed information in these sections is included only for reference. ### Global Nets and Buffers (XC4000E only) Four vertical longlines in each CLB column are driven exclusively by special global buffers. These longlines are in addition to the vertical longlines used for standard interconnect. The four global lines can be driven by either of two types of global buffers. The clock pins of every CLB and IOB can also be sourced from local interconnect. Two different types of clock buffers are available in the XC4000E: - Primary Global Buffers (BUFGP) - Secondary Global Buffers (BUFGS) Four Primary Global buffers offer the shortest delay and negligible skew. Four Secondary Global buffers have slightly longer delay and slightly more skew due to potentially heavier loading, but offer greater flexibility when used to drive non-clock CLB inputs. The Primary Global buffers must be driven by the semi-dedicated pads. The Secondary Global buffers can be sourced by either semi-dedicated pads or internal nets. Each CLB column has four dedicated vertical Global lines. Each of these lines can be accessed by one particular Primary Global buffer, or by any of the Secondary Global buffers, as shown in Figure 34. Each corner of the device has one Primary buffer and one Secondary buffer. IOBs along the left and right edges have four vertical global longlines. Top and bottom IOBs can be clocked from the global lines in the adjacent CLB column. A global buffer should be specified for all timing-sensitive global signal distribution. To use a global buffer, place a BUFGP (primary buffer), BUFGS (secondary buffer), or BUFG (either primary or secondary buffer) element in a schematic or in HDL code. If desired, attach a LOC attribute or property to direct placement to the designated location. For example, attach a LOC=L attribute or property to a BUFGS symbol to direct that a buffer be placed in one of the two Secondary Global buffers on the left edge of the device, or a LOC=BL to indicate the Secondary Global buffer on the bottom edge of the device, on the left. Table 15: Clock Pin Access | | XC4 | XC4000E | | XC4000X | | | |--|-------|---------|--------|----------------|----------------|-------------------| | | BUFGP | BUFGS | BUFGLS | L & R
BUFGE | T & B
BUFGE | Inter-
connect | | All CLBs in Quadrant | √ | √ | V | V | V | V | | All CLBs in Device | V | √ | V | | | V | | IOBs on Adjacent Vertical
Half Edge | √ | V | V | V | √ | V | | IOBs on Adjacent Vertical
Full Edge | V | V | V | V | | V | | IOBs on Adjacent Horizontal
Half Edge (Direct) | | | | V | | V | | IOBs on Adjacent Horizontal
Half Edge (through CLB globals) | V | V | V | 1 | V | V | | IOBs on Adjacent Horizontal
Full Edge (through CLB globals) | V | V | V | | | V | L = Left, R = Right, T = Top, B = Bottom The top and bottom Global Early buffers are about 1 ns slower clock to out than the left and right Global Early buffers. The Global Early buffers can be driven by either semi-dedicated pads or internal logic. They share pads with the Global Low-Skew buffers, so a single net can drive both global buffers, as described above. To use a Global Early buffer, place a BUFGE element in a schematic or in HDL code. If desired, attach a LOC attribute or property to direct placement to the designated location. For example, attach a LOC=T attribute or property to direct that a BUFGE be placed in one of the two Global Early buffers on the top edge of the device, or a LOC=TR to indicate the Global Early buffer on the top edge of the device, on the right. ## **Power Distribution** Power for the FPGA is distributed through a grid to achieve high noise immunity and isolation between logic and I/O. Inside the FPGA, a dedicated Vcc and Ground ring surrounding the logic array provides power to the I/O drivers, as shown in Figure 39. An independent matrix of Vcc and Ground lines supplies the interior logic of the device. This power distribution grid provides a stable supply and ground for all internal logic, providing the external package power pins are all connected and appropriately de-coupled. Typically, a 0.1 μ F capacitor connected between each Vcc pin and the board's Ground plane will provide adequate de-coupling. Output buffers capable of driving/sinking the specified 12 mA loads under specified worst-case conditions may be capable of driving/sinking up to 10 times as much current under best case conditions. Noise can be reduced by minimizing external load capacitance and reducing simultaneous output transitions in the same direction. It may also be beneficial to locate heavily loaded output buffers near the Ground pads. The I/O Block output buffers have a slew-rate limited mode (default) which should be used where output rise and fall times are not speed-critical. Figure 39: XC4000 Series Power Distribution ## **Pin Descriptions** There are three types of pins in the XC4000 Series devices: - · Permanently dedicated pins - User I/O pins that can have special functions - · Unrestricted user-programmable I/O pins. Before and during configuration, all outputs not used for the configuration process are 3-stated with a 50 k Ω - 100 k Ω pull-up resistor. After configuration, if an IOB is unused it is configured as an input with a 50 k Ω - 100 k Ω pull-up resistor. XC4000 Series devices have no dedicated Reset input. Any user I/O can be configured to drive the Global Set/Reset net, GSR. See "Global Set/Reset" on page 11 for more information on GSR. XC4000 Series devices have no Powerdown control input, as the XC3000 and XC2000 families do. The XC3000/XC2000 Powerdown control also 3-stated all of the device I/O pins. For XC4000 Series devices, use the global 3-state net, GTS, instead. This net 3-states all outputs, but does not place the device in low-power mode. See "IOB Output Signals" on page 23 for more information on GTS. Device pins for XC4000 Series devices are described in Table 16. Pin functions during configuration for each of the seven configuration modes are summarized in Table 22 on page 58, in the "Configuration
Timing" section. # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays **Table 16: Pin Descriptions** | | 1/0 | I/O | | |---------------|----------------|------------------------------|---| | Pin Name | During Config. | After Config. | Pin Description | | Permanently [| _ | | 1 2000pus | | VCC | I | I | Eight or more (depending on package) connections to the nominal +5 V supply voltage (+3.3 V for low-voltage devices). All must be connected, and each must be decoupled with a $0.01 - 0.1 \mu\text{F}$ capacitor to Ground. | | GND | I | I | Eight or more (depending on package type) connections to Ground. All must be connected. | | CCLK | I or O | I | During configuration, Configuration Clock (CCLK) is an output in Master modes or Asynchronous Peripheral mode, but is an input in Slave mode and Synchronous Peripheral mode. After configuration, CCLK has a weak pull-up resistor and can be selected as the Readback Clock. There is no CCLK High or Low time restriction on XC4000 Series devices, except during Readback. See "Violating the Maximum High and Low Time Specification for the Readback Clock" on page 56 for an explanation of this exception. | | DONE | I/O | 0 | DONE is a bidirectional signal with an optional internal pull-up resistor. As an output, it indicates the completion of the configuration process. As an input, a Low level on DONE can be configured to delay the global logic initialization and the enabling of outputs. The optional pull-up resistor is selected as an option in the XACT step program that creates the configuration bitstream. The resistor is included by default. | | PROGRAM | ı | I | PROGRAM is an active Low input that forces the FPGA to clear its configuration memory. It is used to initiate a configuration cycle. When PROGRAM goes High, the FPGA finishes the current clear cycle and executes another complete clear cycle, before it goes into a WAIT state and releases INIT. The PROGRAM pin has a permanent weak pull-up, so it need not be externally pulled up to Vcc. | | User I/O Pins | That Can | Have Spe | ecial Functions | | RDY/BUSY | 0 | I/O | During Peripheral mode configuration, this pin indicates when it is appropriate to write another byte of data into the FPGA. The same status is also available on D7 in Asynchronous Peripheral mode, if a read operation is performed when the device is selected. After configuration, RDY/BUSY is a user-programmable I/O pin. RDY/BUSY is pulled High with a high-impedance pull-up prior to INIT going High. | | RCLK | 0 | I/O | During Master Parallel configuration, each change on the A0-A17 outputs (A0 - A21 for XC4000X) is preceded by a rising edge on \overline{RCLK} , a redundant output signal. \overline{RCLK} is useful for clocked PROMs. It is rarely used during configuration. After configuration, \overline{RCLK} is a user-programmable I/O pin. | | M0, M1, M2 | I | I (M0),
O (M1),
I (M2) | As Mode inputs, these pins are sampled after $\overline{\text{INIT}}$ goes High to determine the configuration mode to be used. After configuration, M0 and M2 can be used as inputs, and M1 can be used as a 3-state output. These three pins have no associated input or output registers. During configuration, these pins have weak pull-up resistors. For the most popular configuration mode, Slave Serial, the mode pins can thus be left unconnected. The three mode inputs can be individually configured with or without weak pull-up or pull-down resistors. A pull-down resistor value of 4.7 k Ω is recommended. These pins can only be used as inputs or outputs when called out by special schematic definitions. To use these pins, place the library components MD0, MD1, and MD2 instead of the usual pad symbols. Input or output buffers must still be used. | | TDO | 0 | 0 | If boundary scan is used, this pin is the Test Data Output. If boundary scan is not used, this pin is a 3-state output without a register, after configuration is completed. This pin can be user output only when called out by special schematic definitions. To use this pin, place the library component TDO instead of the usual pad symbol. An output buffer must still be used. | ## **Configuration Modes** XC4000E devices have six configuration modes. XC4000X devices have the same six modes, plus an additional configuration mode. These modes are selected by a 3-bit input code applied to the M2, M1, and M0 inputs. There are three self-loading Master modes, two Peripheral modes, and a Serial Slave mode, which is used primarily for daisy-chained devices. The coding for mode selection is shown in Table 18. **Table 18: Configuration Modes** | Mode | M2 | M1 | MO | CCLK | Data | |---------------|----|----|----|--------|------------| | Master Serial | 0 | 0 | 0 | output | Bit-Serial | | Slave Serial | 1 | 1 | 1 | input | Bit-Serial | | Master | 1 | 0 | 0 | output | Byte-Wide, | | Parallel Up | | | | | increment | | | | | | | from 00000 | | Master | 1 | 1 | 0 | output | Byte-Wide, | | Parallel Down | | | | | decrement | | | | | | | from 3FFFF | | Peripheral | 0 | 1 | 1 | input | Byte-Wide | | Synchronous* | | | | | | | Peripheral | 1 | 0 | 1 | output | Byte-Wide | | Asynchronous | | | | | | | Reserved | 0 | 1 | 0 | _ | _ | | Reserved | 0 | 0 | 1 | _ | _ | ^{*} Can be considered byte-wide Slave Parallel A detailed description of each configuration mode, with timing information, is included later in this data sheet. During configuration, some of the I/O pins are used temporarily for the configuration process. All pins used during configuration are shown in Table 22 on page 58. #### Master Modes The three Master modes use an internal oscillator to generate a Configuration Clock (CCLK) for driving potential slave devices. They also generate address and timing for external PROM(s) containing the configuration data. Master Parallel (Up or Down) modes generate the CCLK signal and PROM addresses and receive byte parallel data. The data is internally serialized into the FPGA data-frame format. The up and down selection generates starting addresses at either zero or 3FFFF (3FFFFF when 22 address lines are used), for compatibility with different microprocessor addressing conventions. The Master Serial mode generates CCLK and receives the configuration data in serial form from a Xilinx serial-configuration PROM. CCLK speed is selectable as either 1 MHz (default) or 8 MHz. Configuration always starts at the default slow frequency, then can switch to the higher frequency during the first frame. Frequency tolerance is -50% to +25%. #### Additional Address lines in XC4000 devices The XC4000X devices have additional address lines (A18-A21) allowing the additional address space required to daisy-chain several large devices. The extra address lines are programmable in XC4000EX devices. By default these address lines are not activated. In the default mode, the devices are compatible with existing XC4000 and XC4000E products. If desired, the extra address lines can be used by specifying the address lines option in bitgen as 22 (bitgen -g AddressLines:22). The lines (A18-A21) are driven when a master device detects, via the bitstream, that it should be using all 22 address lines. Because these pins will initially be pulled high by internal pull-ups, designers using Master Parallel Up mode should use external pull down resistors on pins A18-A21. If Master Parallel Down mode is used external resistors are not necessary. All 22 address lines are always active in Master Parallel modes with XC4000XL devices. The additional address lines behave identically to the lower order address lines. If the Address Lines option in bitgen is set to 18, it will be ignored by the XC4000XL device. The additional address lines (A18-A21) are not available in the PC84 package. ## Peripheral Modes The two Peripheral modes accept byte-wide data from a bus. A RDY/BUSY status is available as a handshake signal. In Asynchronous Peripheral mode, the internal oscillator generates a CCLK burst signal that serializes the byte-wide data. CCLK can also drive slave devices. In the synchronous mode, an externally supplied clock input to CCLK serializes the data. ## Slave Serial Mode In Slave Serial mode, the FPGA receives serial configuration data on the rising edge of CCLK and, after loading its configuration, passes additional data out, resynchronized on the next falling edge of CCLK. Multiple slave devices with identical configurations can be wired with parallel DIN inputs. In this way, multiple devices can be configured simultaneously. #### **Serial Daisy Chain** Multiple devices with different configurations can be connected together in a "daisy chain," and a single combined bitstream used to configure the chain of slave devices. To configure a daisy chain of devices, wire the CCLK pins of all devices in parallel, as shown in Figure 51 on page 60. Connect the DOUT of each device to the DIN of the next. The lead or master FPGA and following slaves each passes resynchronized configuration data coming from a single source. The header data, including the length count, # Product Obsolete or
Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays is passed through and is captured by each FPGA when it recognizes the 0010 preamble. Following the length-count data, each FPGA outputs a High on DOUT until it has received its required number of data frames. After an FPGA has received its configuration data, it passes on any additional frame start bits and configuration data on DOUT. When the total number of configuration clocks applied after memory initialization equals the value of the 24-bit length count, the FPGAs begin the start-up sequence and become operational together. FPGA I/O are normally released two CCLK cycles after the last configuration bit is received. Figure 47 on page 53 shows the start-up timing for an XC4000 Series device. The daisy-chained bitstream is not simply a concatenation of the individual bitstreams. The PROM file formatter must be used to combine the bitstreams for a daisy-chained configuration. ### **Multi-Family Daisy Chain** All Xilinx FPGAs of the XC2000, XC3000, and XC4000 Series use a compatible bitstream format and can, therefore, be connected in a daisy chain in an arbitrary sequence. There is, however, one limitation. The lead device must belong to the highest family in the chain. If the chain contains XC4000 Series devices, the master normally cannot be an XC2000 or XC3000 device. The reason for this rule is shown in Figure 47 on page 53. Since all devices in the chain store the same length count value and generate or receive one common sequence of CCLK pulses, they all recognize length-count match on the same CCLK edge, as indicated on the left edge of Figure 47. The master device then generates additional CCLK pulses until it reaches its finish point F. The different families generate or require different numbers of additional CCLK pulses until they reach F. Not reaching F means that the device does not really finish its configuration, although DONE may have gone High, the outputs became active, and the internal reset was released. For the XC4000 Series device, not reaching F means that readback cannot be ini- tiated and most boundary scan instructions cannot be used. The user has some control over the relative timing of these events and can, therefore, make sure that they occur at the proper time and the finish point F is reached. Timing is controlled using options in the bitstream generation software. #### XC3000 Master with an XC4000 Series Slave Some designers want to use an inexpensive lead device in peripheral mode and have the more precious I/O pins of the XC4000 Series devices all available for user I/O. Figure 44 provides a solution for that case. This solution requires one CLB, one IOB and pin, and an internal oscillator with a frequency of up to 5 MHz as a clock source. The XC3000 master device must be configured with late Internal Reset, which is the default option. One CLB and one IOB in the lead XC3000-family device are used to generate the additional CCLK pulse required by the XC4000 Series devices. When the lead device removes the internal RESET signal, the 2-bit shift register responds to its clock input and generates an active Low output signal for the duration of the subsequent clock period. An external connection between this output and CCLK thus creates the extra CCLK pulse. Figure 44: CCLK Generation for XC3000 Master Driving an XC4000 Series Slave ## **Setting CCLK Frequency** For Master modes, CCLK can be generated in either of two frequencies. In the default slow mode, the frequency ranges from 0.5 MHz to 1.25 MHz for XC4000E and XC4000EX devices and from 0.6 MHz to 1.8 MHz for XC4000XL devices. In fast CCLK mode, the frequency ranges from 4 MHz to 10 MHz for XC4000E/EX devices and from 5 MHz to 15 MHz for XC4000XL devices. The frequency is selected by an option when running the bitstream generation software. If an XC4000 Series Master is driving an XC3000- or XC2000-family slave, slow CCLK mode must be used. In addition, an XC4000XL device driving a XC4000E or XC4000EX should use slow mode. Slow mode is the default Table 19: XC4000 Series Data Stream Formats | Data Type | All Other
Modes (D0) | |--------------------|-------------------------| | Fill Byte | 11111111b | | Preamble Code | 0010b | | Length Count | COUNT(23:0) | | Fill Bits | 1111b | | Start Field | Ob | | Data Frame | DATA(n-1:0) | | CRC or Constant | xxxx (CRC) | | Field Check | or 0110b | | Extend Write Cycle | _ | | Postamble | 01111111b | | Start-Up Bytes | xxh | | Legend: | | | Not shaded | Once per bitstream | | Light | Once per data frame | | Dark | Once per device | #### **Data Stream Format** The data stream ("bitstream") format is identical for all configuration modes. The data stream formats are shown in Table 19. Bit-serial data is read from left to right, and byte-parallel data is effectively assembled from this serial bitstream, with the first bit in each byte assigned to D0. The configuration data stream begins with a string of eight ones, a preamble code, followed by a 24-bit length count and a separator field of ones. This header is followed by the actual configuration data in frames. The length and number of frames depends on the device type (see Table 20 and Table 21). Each frame begins with a start field and ends with an error check. A postamble code is required to signal the end of data for a single device. In all cases, additional start-up bytes of data are required to provide four clocks for the startup sequence at the end of configuration. Long daisy chains require additional startup bytes to shift the last data through the chain. All startup bytes are don't-cares; these bytes are not included in bitstreams created by the Xilinx software. A selection of CRC or non-CRC error checking is allowed by the bitstream generation software. The non-CRC error checking tests for a designated end-of-frame field for each frame. For CRC error checking, the software calculates a running CRC and inserts a unique four-bit partial check at the end of each frame. The 11-bit CRC check of the last frame of an FPGA includes the last seven data bits. Detection of an error results in the suspension of data loading and the pulling down of the $\overline{\text{INIT}}$ pin. In Master modes, CCLK and address signals continue to operate externally. The user must detect $\overline{\text{INIT}}$ and initialize a new configuration by pulsing the $\overline{\text{PROGRAM}}$ pin Low or cycling Vcc. used), and if RAM is present, the RAM content must be unchanged. Statistically, one error out of 2048 might go undetected. ## **Configuration Sequence** There are four major steps in the XC4000 Series power-up configuration sequence. - Configuration Memory Clear - Initialization - Configuration - Start-Up The full process is illustrated in Figure 46. ## Configuration Memory Clear When power is first applied or is reapplied to an FPGA, an internal circuit forces initialization of the configuration logic. When Vcc reaches an operational level, and the circuit passes the write and read test of a sample pair of configuration bits, a time delay is started. This time delay is nominally 16 ms, and up to 10% longer in the low-voltage devices. The delay is four times as long when in Master Modes (M0 Low), to allow ample time for all slaves to reach a stable Vcc. When all $\overline{\text{INIT}}$ pins are tied together, as recommended, the longest delay takes precedence. Therefore, devices with different time delays can easily be mixed and matched in a daisy chain. This delay is applied only on power-up. It is not applied when re-configuring an FPGA by pulsing the $\overline{\text{PROGRAM}}$ pin Figure 45: Circuit for Generating CRC-16 Figure 46: Power-up Configuration Sequence Figure 47: Start-up Timing # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays #### Start-up from a User Clock (STARTUP.CLK) When, instead of CCLK, a user-supplied start-up clock is selected, Q1 is used to bridge the unknown phase relationship between CCLK and the user clock. This arbitration causes an unavoidable one-cycle uncertainty in the timing of the rest of the start-up sequence. ## DONE Goes High to Signal End of Configuration XC4000 Series devices read the expected length count from the bitstream and store it in an internal register. The length count varies according to the number of devices and the composition of the daisy chain. Each device also counts the number of CCLKs during configuration. Two conditions have to be met in order for the DONE pin to go high: - the chip's internal memory must be full, and - the configuration length count must be met, exactly. This is important because the counter that determines when the length count is met begins with the very first CCLK, not the first one after the preamble. Therefore, if a stray bit is inserted before the preamble, or the data source is not ready at the time of the first CCLK, the internal counter that holds the number of CCLKs will be one ahead of the actual number of data bits read. At the end of configuration, the configuration memory will be full, but the number of bits in the internal counter will not match the expected length count. As a consequence, a Master mode device will continue to send out CCLKs until the internal counter turns over to zero, and then reaches the correct length count a second time. This will take several seconds [2²⁴ * CCLK period] — which is sometimes interpreted as the device not configuring at all. If it is not possible to have the data ready at the time of the first CCLK, the problem can be avoided by increasing the number in the length count by the appropriate value. The *XACT User Guide* includes detailed information about manually altering the length count. Note that DONE is an open-drain output and does not go High unless an internal pull-up is activated or an external pull-up is attached. The internal pull-up is activated as the default by the bitstream
generation software. ## Release of User I/O After DONE Goes High By default, the user I/O are released one CCLK cycle after the DONE pin goes High. If CCLK is not clocked after DONE goes High, the outputs remain in their initial state — 3-stated, with a 50 k Ω - 100 k Ω pull-up. The delay from DONE High to active user I/O is controlled by an option to the bitstream generation software. ## Release of Global Set/Reset After DONE Goes High By default, Global Set/Reset (GSR) is released two CCLK cycles after the DONE pin goes High. If CCLK is not clocked twice after DONE goes High, all flip-flops are held in their initial set or reset state. The delay from DONE High to GSR inactive is controlled by an option to the bitstream generation software. ## Configuration Complete After DONE Goes High Three full CCLK cycles are required after the DONE pin goes High, as shown in Figure 47 on page 53. If CCLK is not clocked three times after DONE goes High, readback cannot be initiated and most boundary scan instructions cannot be used. # **Configuration Through the Boundary Scan Pins** XC4000 Series devices can be configured through the boundary scan pins. The basic procedure is as follows: - Power up the FPGA with INIT held Low (or drive the PROGRAM pin Low for more than 300 ns followed by a High while holding INIT Low). Holding INIT Low allows enough time to issue the CONFIG command to the FPGA. The pin can be used as I/O after configuration if a resistor is used to hold INIT Low. - Issue the CONFIG command to the TMS input - Wait for INIT to go High - Sequence the boundary scan Test Access Port to the SHIFT-DR state - Toggle TCK to clock data into TDI pin. The user must account for all TCK clock cycles after INIT goes High, as all of these cycles affect the Length Count compare. For more detailed information, refer to the Xilinx application note XAPP017, "Boundary Scan in XC4000 Devices." This application note also applies to XC4000E and XC4000X devices. Figure 48: Start-up Logic ## Readback The user can read back the content of configuration memory and the level of certain internal nodes without interfering with the normal operation of the device. Readback not only reports the downloaded configuration bits, but can also include the present state of the device, represented by the content of all flip-flops and latches in CLBs and IOBs, as well as the content of function generators used as RAMs. Note that in XC4000 Series devices, configuration data is *not* inverted with respect to configuration as it is in XC2000 and XC3000 families. XC4000 Series Readback does not use any dedicated pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA, RDBK.RIP and RDBK.CLK) that can be routed to any IOB. To access the internal Readback signals, place the READ- BACK library symbol and attach the appropriate pad symbols, as shown in Figure 49. After Readback has been initiated by a High level on RDBK.TRIG after configuration, the RDBK.RIP (Read In Progress) output goes High on the next rising edge of RDBK.CLK. Subsequent rising edges of this clock shift out Readback data on the RDBK.DATA net. Readback data does not include the preamble, but starts with five dummy bits (all High) followed by the Start bit (Low) of the first frame. The first two data bits of the first frame are always High. Each frame ends with four error check bits. They are read back as High. The last seven bits of the last frame are also read back as High. An additional Start bit (Low) and an 11-bit Cyclic Redundancy Check (CRC) signature follow, before RDBK.RIP returns Low. Figure 49: Readback Schematic Example ## **Readback Options** Readback options are: Read Capture, Read Abort, and Clock Select. They are set with the bitstream generation software. ## Read Capture When the Read Capture option is selected, the readback data stream includes sampled values of CLB and IOB signals. The rising edge of RDBK.TRIG latches the inverted values of the four CLB outputs, the IOB output flip-flops and the input signals I1 and I2. Note that while the bits describing configuration (interconnect, function generators, and RAM content) are *not* inverted, the CLB and IOB output signals *are* inverted. When the Read Capture option is not selected, the values of the capture bits reflect the configuration data originally written to those memory locations. If the RAM capability of the CLBs is used, RAM data are available in readback, since they directly overwrite the F and G function-table configuration of the CLB. RDBK.TRIG is located in the lower-left corner of the device, as shown in Figure 50. #### Read Abort When the Read Abort option is selected, a High-to-Low transition on RDBK.TRIG terminates the readback operation and prepares the logic to accept another trigger. After an aborted readback, additional clocks (up to one readback clock per configuration frame) may be required to re-initialize the control logic. The status of readback is indicated by the output control net RDBK.RIP. RDBK.RIP is High whenever a readback is in progress. ### Clock Select CCLK is the default clock. However, the user can insert another clock on RDBK.CLK. Readback control and data are clocked on rising edges of RDBK.CLK. If readback must be inhibited for security reasons, the readback control nets are simply not connected. RDBK.CLK is located in the lower right chip corner, as shown in Figure 50. Figure 50: READBACK Symbol in Graphical Editor ## Violating the Maximum High and Low Time Specification for the Readback Clock The readback clock has a maximum High and Low time specification. In some cases, this specification cannot be met. For example, if a processor is controlling readback, an interrupt may force it to stop in the middle of a readback. This necessitates stopping the clock, and thus violating the specification. The specification is mandatory only on clocking data at the end of a frame prior to the next start bit. The transfer mechanism will load the data to a shift register during the last six clock cycles of the frame, prior to the start bit of the following frame. This loading process is dynamic, and is the source of the maximum High and Low time requirements. Therefore, the specification only applies to the six clock cycles prior to and including any start bit, including the clocks before the first start bit in the readback data stream. At other times, the frame data is already in the register and the register is not dynamic. Thus, it can be shifted out just like a regular shift register. The user must precisely calculate the location of the readback data relative to the frame. The system must keep track of the position within a data frame, and disable interrupts before frame boundaries. Frame lengths and data formats are listed in Table 19, Table 20 and Table 21. #### Readback with the XChecker Cable The XChecker Universal Download/Readback Cable and Logic Probe uses the readback feature for bitstream verification. It can also display selected internal signals on the PC or workstation screen, functioning as a low-cost in-circuit emulator. # **Configuration Switching Characteristics** ## Master Modes (XC4000E/EX) | Description | Symbol | Min | Max | Units | | | | |----------------------------|-----------|----------------------------|-----|-------------------|------------|-----|----| | | M0 = High | T _{POR} | 10 | 40 | ms | | | | Power-On Reset | M0 = Low | T _{POR} | 40 | 130 | ms | | | | Program Latency | | T _{PI} | 30 | 200 | μs per | | | | | | | | | CLB column | | | | CCLK (output) Delay | | T _{ICCK} | 40 | 250 | μs | | | | CCLK (output) Period, slow | | T _{CCLK} | 640 | 2000 | ns | | | | CCLK (output) Period, fast | | CCLK (output) Period, fast | | T _{CCLK} | 80 | 250 | ns | ## Master Modes (XC4000XL) | Description | | Symbol | Min | Max | Units | |----------------------------|-----------|-------------------|-----|------|------------| | | M0 = High | T _{POR} | 10 | 40 | ms | | Power-On Reset | M0 = Low | T _{POR} | 40 | 130 | ms | | Program Latency | | T _{Pl} | 30 | 200 | μs per | | | | | | | CLB column | | CCLK (output) Delay | | T _{ICCK} | 40 | 250 | μs | | CCLK (output) Period, slow | | T _{CCLK} | 540 | 1600 | ns | | CCLK (output) Period, fast | | T _{CCLK} | 67 | 200 | ns | ## Slave and Peripheral Modes (All) | Description | Symbol | Min | Max | Units | |--------------------------------|-------------------|-----|-----|----------------------| | Power-On Reset | T _{POR} | 10 | 33 | ms | | Program Latency | T _{Pl} | 30 | 200 | μs per
CLB column | | CCLK (input) Delay (required) | T _{ICCK} | 4 | | μs | | CCLK (input) Period (required) | T _{CCLK} | 100 | | ns | # XC4000 Series Electrical Characteristics and Device-Specific Pinout Table For the latest Electrical Characteristics and package/pinout information for each XC4000 Family, see the Xilinx web site at http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp # **Ordering Information** X9020 ## **Revision Control** | Version | Description | | | |---------------|---|--|--| | 3/30/98 (1.5) | Updated XC4000XL timing and added XC4002XL | | | | 1/29/99 (1.5) | Updated pin diagrams | | | | 5/14/99 (1.6) | Replaced Electrical Specification and pinout pages for E, EX, and XL families with separate updates and | | | | | added URL link for electrical specifications/pinouts for Web users | | |