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XC4000E and XC4000X Series Field Programmable Gate Arrays XX"JNX@
Table 1: XC4000E and XC4000X Series Field Programmable Gate Arrays
Max Logic |Max. RAM Typical Number
Logic Gates Bits Gate Range CLB Total of Max.
Device Cells (No RAM) |(No Logic) |(Logic and RAM)* Matrix CLBs |Flip-Flops | User I/O

XC4002XL 152 1,600 2,048 1,000 - 3,000 8x8 64 256 64
XC4003E 238 3,000 3,200 2,000 - 5,000 10x 10 100 360 80
XC4005E/XL 466 5,000 6,272 3,000 - 9,000 14x 14 196 616 112
XC4006E 608 6,000 8,192 4,000 - 12,000 16 x 16 256 768 128
XC4008E 770 8,000 10,368 6,000 - 15,000 18 x 18 324 936 144
XC4010E/XL 950 10,000 12,800 7,000 - 20,000 20 x 20 400 1,120 160
XC4013E/XL 1368 13,000 18,432 10,000 - 30,000 24 x 24 576 1,536 192
XC4020E/XL 1862 20,000 25,088 13,000 - 40,000 28 x 28 784 2,016 224
XC4025E 2432 25,000 32,768 15,000 - 45,000 32x32 1,024 2,560 256
XC4028EX/XL 2432 28,000 32,768 18,000 - 50,000 32x32 1,024 2,560 256
XC4036EX/XL 3078 36,000 41,472 22,000 - 65,000 36 x 36 1,296 3,168 288
XC4044XL 3800 44,000 51,200 27,000 - 80,000 40 x 40 1,600 3,840 320
XC4052XL 4598 52,000 61,952 | 33,000 - 100,000 | 44x44 1,936 4,576 352
XC4062XL 5472 62,000 73,728 | 40,000 - 130,000 | 48x48 2,304 5,376 384
XC4085XL 7448 85,000 100,352 | 55,000 - 180,000 | 56 x 56 3,136 7,168 448

* Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

Note: All functionality in low-voltage families is the same as
in the corresponding 5-Volt family, except where numerical
references are made to timing or power.

Description

XC4000 Series devices are implemented with a regular,
flexible, programmable architecture of Configurable Logic
Blocks (CLBs), interconnected by a powerful hierarchy of
versatile routing resources, and surrounded by a perimeter
of programmable Input/Output Blocks (IOBs). They have
generous routing resources to accommodate the most
complex interconnect patterns.

The devices are customized by loading configuration data
into internal memory cells. The FPGA can either actively
read its configuration data from an external serial or
byte-parallel PROM (master modes), or the configuration
data can be written into the FPGA from an external device
(slave and peripheral modes).

XC4000 Series FPGAs are supported by powerful and
sophisticated software, covering every aspect of design
from schematic or behavioral entry, floor planning, simula-
tion, automatic block placement and routing of intercon-
nects, to the creation, downloading, and readback of the
configuration bit stream.

Because Xilinx FPGAs can be reprogrammed an unlimited
number of times, they can be used in innovative designs

where hardware is changed dynamically, or where hard-
ware must be adapted to different user applications.
FPGAs are ideal for shortening design and development
cycles, and also offer a cost-effective solution for produc-
tion rates well beyond 5,000 systems per month.

Taking Advantage of Re-configuration

FPGA devices can be re-configured to change logic func-
tion while resident in the system. This capability gives the
system designer a new degree of freedom not available
with any other type of logic.

Hardware can be changed as easily as software. Design
updates or modifications are easy, and can be made to
products already in the field. An FPGA can even be re-con-
figured dynamically to perform different functions at differ-
ent times.

Re-configurable logic can be used to implement system
self-diagnostics, create systems capable of being re-con-
figured for different environments or operations, or imple-
ment multi-purpose hardware for a given application. As an
added benefit, using re-configurable FPGA devices simpli-
fies hardware design and debugging and shortens product
time-to-market.
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tions of the CLB, with the exception of the redefinition of the
control signals. In 16x2 and 16x1 modes, the H’' function
generator can be used to implement Boolean functions of
F’, G, and D1, and the D flip-flops can latch the F’, G’, H’, or
DO signals.

Single-Port Edge-Triggered Mode

Edge-triggered (synchronous) RAM simplifies timing
requirements. XC4000 Series edge-triggered RAM timing
operates like writing to a data register. Data and address
are presented. The register is enabled for writing by a logic
High on the write enable input, WE. Then a rising or falling
clock edge loads the data into the register, as shown in
Figure 3.

nals. An internal write pulse is generated that performs the
write. See Figure 4 and Figure 5 for block diagrams of a
CLB configured as 16x2 and 32x1 edge-triggered, sin-
gle-port RAM.

The relationships between CLB pins and RAM inputs and
outputs for single-port, edge-triggered mode are shown in
Table 5.

The Write Clock input (WCLK) can be configured as active
on either the rising edge (default) or the falling edge. It uses
the same CLB pin (K) used to clock the CLB flip-flops, but it
can be independently inverted. Consequently, the RAM
output can optionally be registered within the same CLB
either by the same clock edge as the RAM, or by the oppo-
site edge of this clock. The sense of WCLK applies to both

function generators in the CLB when both are configured
WCLK (K) as RAM.
The WE pin is active-High and is not invertible within the
CLB.
WE
J Note: The pulse following the active edge of WCLK (Ty\yps
Toss Tons in Figure 3) must be less than one millisecond wide. For
| most applications, this requirement is not overly restrictive;
DATAIN * however, it must not be forgotten. Stopping WCLK at this
point in the write cycle could result in excessive current and
Tass Tans even damage to the larger devices if many CLBs are con-
ADDRESS figured as edge-triggered RAM.
Table 5: Single-Port Edge-Triggered RAM Signals
-
To Toos 2 RAM Signal CLB Pin Function
D DO or D1 (16x2, Data In
DATA OUT oLD NEW 16x1), DO (32x1)
ois A[3:0] F1-F4 or G1-G4 Address
Figure 3: Edge-Triggered RAM Write Timing Al4] D1 (32x1) Address
WE WE Write Enable
Complex timing relationships between address, data, and WCLK K Clock
write enable signals are not required, and the external write SPO F or G Single Port Out
enable pulse becomes a simple clock enable. The active (Data Out) (Data Out)
edge of WCLK latches the address, input data, and WE sig-
May 14, 1999 (Version 1.6) 6-13
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Dual-Port Edge-Triggered Mode

In dual-port mode, both the F and G function generators
are used to create a single 16x1 RAM array with one write
port and two read ports. The resulting RAM array can be
read and written simultaneously at two independent
addresses. Simultaneous read and write operations at the
same address are also supported.

Dual-port mode always has edge-triggered write timing, as
shown in Figure 3.

Figure 6 shows a simple model of an XC4000 Series CLB
configured as dual-port RAM. One address port, labeled
A[3:0], supplies both the read and write address for the F
function generator. This function generator behaves the
same as a 16x1 single-port edge-triggered RAM array. The
RAM output, Single Port Out (SPO), appears at the F func-
tion generator output. SPO, therefore, reflects the data at
address A[3:0].

The other address port, labeled DPRA[3:0] for Dual Port
Read Address, supplies the read address for the G function
generator. The write address for the G function generator,
however, comes from the address A[3:0]. The output from
this 16x1 RAM array, Dual Port Out (DPO), appears at the
G function generator output. DPO, therefore, reflects the
data at address DPRA[3:0].

Therefore, by using A[3:0] for the write address and
DPRA][3:0] for the read address, and reading only the DPO
output, a FIFO that can read and write simultaneously is
easily generated. Simultaneous access doubles the effec-
tive throughput of the FIFO.

The relationships between CLB pins and RAM inputs and
outputs for dual-port, edge-triggered mode are shown in
Table 6. See Figure 7 on page 16 for a block diagram of a
CLB configured in this mode.

RAM16X1D Primitive

,,,,,,,,,,,,,,,,,,

DPO (Dual Port Out)

WE
D
DPRA[3:0]

Registered DPO

AR[3:0]
AW[3:0]

G Function Generator

SPO (Single Port Out)
%L D Q Registered SPO
AR[3:0]

I
I
AW[3:0] Y —
I
I
I

—T1|WE

—p
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-

WCLK

X6755

Figure 6: XC4000 Series Dual-Port RAM, Simple
Model

Table 6: Dual-Port Edge-Triggered RAM Signals

RAM Signal CLB Pin Function
D DO Data In
A[3:0] F1-F4 Read Address for F,
Write Address for F and G
DPRAJ[3:0] G1-G4 Read Address for G
WE WE Write Enable
WCLK K Clock
SPO F Single Port Out
(addressed by A[3:0])
DPO G’ Dual Port Out
(addressed by DPRA[3:0])

Note: The pulse following the active edge of WCLK (T\yps
in Figure 3) must be less than one millisecond wide. For
most applications, this requirement is not overly restrictive;
however, it must not be forgotten. Stopping WCLK at this
point in the write cycle could result in excessive current and
even damage to the larger devices if many CLBs are con-
figured as edge-triggered RAM.

Single-Port Level-Sensitive Timing Mode

Note: Edge-triggered mode is recommended for all new
designs. Level-sensitive mode, also called asynchronous
mode, is still supported for XC4000 Series backward-com-
patibility with the XC4000 family.

Level-sensitive RAM timing is simple in concept but can be
complicated in execution. Data and address signals are
presented, then a positive pulse on the write enable pin
(WE) performs a write into the RAM at the designated
address. As indicated by the “level-sensitive” label, this
RAM acts like a latch. During the WE High pulse, changing
the data lines results in new data written to the old address.
Changing the address lines while WE is High results in spu-
rious data written to the new address—and possibly at
other addresses as well, as the address lines inevitably do
not all change simultaneously.

The user must generate a carefully timed WE signal. The
delay on the WE signal and the address lines must be care-
fully verified to ensure that WE does not become active
until after the address lines have settled, and that WE goes
inactive before the address lines change again. The data
must be stable before and after the falling edge of WE.

In practical terms, WE is usually generated by a 2X clock. If
a 2X clock is not available, the falling edge of the system
clock can be used. However, there are inherent risks in this
approach, since the WE pulse must be guaranteed inactive
before the next rising edge of the system clock. Several
older application notes are available from Xilinx that dis-
cuss the design of level-sensitive RAMSs.

However, the edge-triggered RAM available in the XC4000
Series is superior to level-sensitive RAM for almost every
application.

May 14, 1999 (Version 1.6)
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Figure 10: 32x1 Level-Sensitive Single-Port RAM (F and G addresses are identical)
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Any XC4000 Series 5-Volt device with its outputs config-
ured in TTL mode can drive the inputs of any typical
3.3-Volt device. (For a detailed discussion of how to inter-
face between 5 V and 3.3 V devices, see the 3V Products
section of The Programmable Logic Data Book.)

Supported destinations for XC4000 Series device outputs
are shown in Table 12.

An output can be configured as open-drain (open-collector)
by placing an OBUFT symbol in a schematic or HDL code,
then tying the 3-state pin (T) to the output signal, and the
input pin (1) to Ground. (See Figure 18.)

Table 12: Supported Destinations for XC4000 Series
Outputs

XC4000 Series
Outputs
Destination 3.3V, 5V, 5y,

CMOS| TTL | CMOS
Any typical device, Vcc=3.3V, v v somel
CMOS-threshold inputs
Any device, Vcc =5V, v v v
TTL-threshold inputs
Any device, Vcc =5V, Unreliable v
CMOS-threshold inputs Data

1. Only if destination device has 5-V tolerant inputs

o

L > OPAD |

OBUFT

X6702

Figure 18: Open-Drain Output

Output Slew Rate

The slew rate of each output buffer is, by default, reduced,
to minimize power bus transients when switching non-criti-
cal signals. For critical signals, attach a FAST attribute or
property to the output buffer or flip-flop.

For XC4000E devices, maximum total capacitive load for
simultaneous fast mode switching in the same direction is
200 pF for all package pins between each Power/Ground
pin pair. For XC4000X devices, additional internal

Power/Ground pin pairs are connected to special Power
and Ground planes within the packages, to reduce ground
bounce. Therefore, the maximum total capacitive load is
300 pF between each external Power/Ground pin pair.
Maximum loading may vary for the low-voltage devices.

For slew-rate limited outputs this total is two times larger for
each device type: 400 pF for XC4000E devices and 600 pF
for XC4000X devices. This maximum capacitive load
should not be exceeded, as it can result in ground bounce
of greater than 1.5 V amplitude and more than 5 ns dura-
tion. This level of ground bounce may cause undesired
transient behavior on an output, or in the internal logic. This
restriction is common to all high-speed digital ICs, and is
not particular to Xilinx or the XC4000 Series.

XC4000 Series devices have a feature called “Soft
Start-up,” designed to reduce ground bounce when all out-
puts are turned on simultaneously at the end of configura-
tion. When the configuration process is finished and the
device starts up, the first activation of the outputs is auto-
matically slew-rate limited. Immediately following the initial
activation of the 1/O, the slew rate of the individual outputs
is determined by the individual configuration option for each
IOB.

Global Three-State

A separate Global 3-State line (not shown in Figure 15 or
Figure 16) forces all FPGA outputs to the high-impedance
state, unless boundary scan is enabled and is executing an
EXTEST instruction. This global net (GTS) does not com-
pete with other routing resources; it uses a dedicated distri-
bution network.

GTS can be driven from any user-programmable pin as a
global 3-state input. To use this global net, place an input
pad and input buffer in the schematic or HDL code, driving
the GTS pin of the STARTUP symbol. A specific pin loca-
tion can be assigned to this input using a LOC attribute or
property, just as with any other user-programmable pad. An
inverter can optionally be inserted after the input buffer to
invert the sense of the Global 3-State signal. Using GTS is
similar to GSR. See Figure 2 on page 11 for details.

Alternatively, GTS can be driven from any internal node.

6-24
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Output Multiplexer/2-Input Function Generator
(XC4000X only)

As shown in Figure 16 on page 21, the output path in the
XC4000X 10B contains an additional multiplexer not avail-
able in the XC4000E 10B. The multiplexer can also be con-
figured as a 2-input function generator, implementing a
pass-gate, AND-gate, OR-gate, or XOR-gate, with O, 1, or 2
inverted inputs. The logic used to implement these func-
tions is shown in the upper gray area of Figure 16.

When configured as a multiplexer, this feature allows two
output signals to time-share the same output pad; effec-
tively doubling the number of device outputs without requir-
ing a larger, more expensive package.

When the MUX is configured as a 2-input function genera-
tor, logic can be implemented within the IOB itself. Com-
bined with a Global Early buffer, this arrangement allows
very high-speed gating of a single signal. For example, a
wide decoder can be implemented in CLBs, and its output
gated with a Read or Write Strobe Driven by a BUFGE
buffer, as shown in Figure 19. The critical-path pin-to-pin
delay of this circuit is less than 6 nanoseconds.

As shown in Figure 16, the IOB input pins Out, Output
Clock, and Clock Enable have different delays and different
flexibilities regarding polarity. Additionally, Output Clock
sources are more limited than the other inputs. Therefore,
the Xilinx software does not move logic into the 10B func-
tion generators unless explicitly directed to do so.

The user can specify that the IOB function generator be
used, by placing special library symbols beginning with the
letter “O.” For example, a 2-input AND-gate in the 0B func-
tion generator is called OAND2. Use the symbol input pin
labelled “F” for the signal on the critical path. This signal is
placed on the OK pin — the IOB input with the shortest
delay to the function generator. Two examples are shown in
Figure 20.

[ 1IPAD I
BUFGE L

i

from
internal OAND2 FAST
logic

X9019

Figure 19: Fast Pin-to-Pin Path in XC4000X

OMUX2

—F DO
— 0]
OAND2 s |

Figure 20: AND & MUX Symbols in XC4000X |0OB

Other IOB Options

There are a number of other programmable options in the
XC4000 Series 10B.

Pull-up and Pull-down Resistors

Programmable pull-up and pull-down resistors are useful
for tying unused pins to Vcc or Ground to minimize power
consumption and reduce noise sensitivity. The configurable
pull-up resistor is a p-channel transistor that pulls to Vcc.
The configurable pull-down resistor is an n-channel transis-
tor that pulls to Ground.

The value of these resistors is 50 kQ - 100 kQ. This high
value makes them unsuitable as wired-AND pull-up resis-
tors.

The pull-up resistors for most user-programmable I0Bs are
active during the configuration process. See Table 22 on
page 58 for a list of pins with pull-ups active before and dur-
ing configuration.

After configuration, voltage levels of unused pads, bonded
or un-bonded, must be valid logic levels, to reduce noise
sensitivity and avoid excess current. Therefore, by default,
unused pads are configured with the internal pull-up resis-
tor active. Alternatively, they can be individually configured
with the pull-down resistor, or as a driven output, or to be
driven by an external source. To activate the internal
pull-up, attach the PULLUP library component to the net
attached to the pad. To activate the internal pull-down,
attach the PULLDOWN library component to the net
attached to the pad.

Independent Clocks

Separate clock signals are provided for the input and output
flip-flops. The clock can be independently inverted for each
flip-flop within the I0B, generating either falling-edge or ris-
ing-edge triggered flip-flops. The clock inputs for each 10B
are independent, except that in the XC4000X, the Fast
Capture latch shares an 10B input with the output clock pin.

Early Clock for IOBs (XC4000X only)

Special early clocks are available for IOBs. These clocks
are sourced by the same sources as the Global Low-Skew
buffers, but are separately buffered. They have fewer loads
and therefore less delay. The early clock can drive either
the 10B output clock or the 10B input clock, or both. The
early clock allows fast capture of input data, and fast
clock-to-output on output data. The Global Early buffers
that drive these clocks are described in “Global Nets and
Buffers (XC4000X only)” on page 37.

Global Set/Reset

As with the CLB registers, the Global Set/Reset signal
(GSR) can be used to set or clear the input and output reg-
isters, depending on the value of the INIT attribute or prop-
erty. The two flip-flops can be individually configured to set

May 14, 1999 (Version 1.6)
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circuit prevents undefined floating levels. However, it is
overridden by any driver, even a pull-up resistor.

Each XC4000E longline has a programmable splitter switch
at its center, as does each XC4000X longline driven by
TBUFs. This switch can separate the line into two indepen-
dent routing channels, each running half the width or height
of the array.

Each XC4000X longline not driven by TBUFs has a buff-
ered programmable splitter switch at the 1/4, 1/2, and 3/4
points of the array. Due to the buffering, XC4000X longline
performance does not deteriorate with the larger array
sizes. If the longline is split, the resulting partial longlines
are independent.

Routing connectivity of the longlines is shown in Figure 27
on page 30.

Direct Interconnect (XC4000X only)

The XC4000X offers two direct, efficient and fast connec-
tions between adjacent CLBs. These nets facilitate a data
flow from the left to the right side of the device, or from the
top to the bottom, as shown in Figure 30. Signals routed on
the direct interconnect exhibit minimum interconnect prop-
agation delay and use no general routing resources.

The direct interconnect is also present between CLBs and
adjacent IOBs. Each IOB on the left and top device edges
has a direct path to the nearest CLB. Each CLB on the right
and bottom edges of the array has a direct path to the near-
est two IOBs, since there are two I0Bs for each row or col-
umn of CLBs.

The place and route software uses direct interconnect
whenever possible, to maximize routing resources and min-
imize interconnect delays.

o| |o ol |o ol |O
@ @ © vy} @ vy}

10B > 10B
CLB CLB CLB

10B 1> I0B
L L L L L L

10B 1> 0B
CLB CLB CLB

10B 1> 0B

N
il Bk

Figure 30: XC4000X Direct Interconnect

dol
a0l

I/0 Routing

XC4000 Series devices have additional routing around the
IOB ring. This routing is called a VersaRing. The VersaRing
facilitates pin-swapping and redesign without affecting
board layout. Included are eight double-length lines span-
ning two CLBs (four 10Bs), and four longlines. Global lines
and Wide Edge Decoder lines are provided. XC4000X
devices also include eight octal lines.

A high-level diagram of the VersaRing is shown in
Figure 31. The shaded arrows represent routing present
only in XC4000X devices.

Figure 33 on page 34 is a detailed diagram of the XC4000E
and XC4000X VersaRing. The area shown includes two
IOBs. There are two 10Bs per CLB row or column, there-
fore this diagram corresponds to the CLB routing diagram
shown in Figure 27 on page 30. The shaded areas repre-
sent routing and routing connections present only in
XC4000X devices.

Octal I/0O Routing (XC4000X only)

Between the XC4000X CLB array and the pad ring, eight
interconnect tracks provide for versatility in pin assignment
and fixed pinout flexibility. (See Figure 32 on page 33.)

These routing tracks are called octals, because they can be
broken every eight CLBs (sixteen 10Bs) by a programma-
ble buffer that also functions as a splitter switch. The buffers
are staggered, so each line goes through a buffer at every
eighth CLB location around the device edge.

The octal lines bend around the corners of the device. The
lines cross at the corners in such a way that the segment
most recently buffered before the turn has the farthest dis-
tance to travel before the next buffer, as shown in
Figure 32.

6-32
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Figure 35: XC4000X Global Net Distribution
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Global Nets and Buffers (XC4000X only)

Eight vertical longlines in each CLB column are driven by
special global buffers. These longlines are in addition to the
vertical longlines used for standard interconnect. The glo-
bal lines are broken in the center of the array, to allow faster
distribution and to minimize skew across the whole array.
Each half-column global line has its own buffered multi-
plexer, as shown in Figure 35. The top and bottom global
lines cannot be connected across the center of the device,
as this connection might introduce unacceptable skew. The
top and bottom halves of the global lines must be sepa-
rately driven — although they can be driven by the same
global buffer.

The eight global lines in each CLB column can be driven by
either of two types of global buffers. They can also be
driven by internal logic, because they can be accessed by
single, double, and quad lines at the top, bottom, half, and
guarter points. Consequently, the number of different
clocks that can be used simultaneously in an XC4000X
device is very large.

There are four global lines feeding the 10Bs at the left edge
of the device. IOBs along the right edge have eight global
lines. There is a single global line along the top and bottom
edges with access to the IOBs. All IOB global lines are bro-
ken at the center. They cannot be connected across the
center of the device, as this connection might introduce
unacceptable skew.

IOB global lines can be driven from two types of global buff-
ers, or from local interconnect. Alternatively, top and bottom
IOBs can be clocked from the global lines in the adjacent
CLB column.

Two different types of clock buffers are available in the
XC4000X:

* Global Low-Skew Buffers (BUFGLS)
» Global Early Buffers (BUFGE)

Global Low-Skew Buffers are the standard clock buffers.
They should be used for most internal clocking, whenever a
large portion of the device must be driven.

Global Early Buffers are designed to provide a faster clock
access, but CLB access is limited to one-fourth of the
device. They also facilitate a faster 1/O interface.

Figure 35 is a conceptual diagram of the global net struc-
ture in the XC4000X.

Global Early buffers and Global Low-Skew buffers share a
single pad. Therefore, the same IPAD symbol can drive one
buffer of each type, in parallel. This configuration is particu-
larly useful when using the Fast Capture latches, as
described in “IOB Input Signals” on page 20. Paired Global

Early and Global Low-Skew buffers share a common input;
they cannot be driven by two different signals.

Choosing an XC4000X Clock Buffer

The clocking structure of the XC4000X provides a large
variety of features. However, it can be simple to use, with-
out understanding all the details. The software automati-
cally handles clocks, along with all other routing, when the
appropriate clock buffer is placed in the design. In fact, if a
buffer symbol called BUFG is placed, rather than a specific
type of buffer, the software even chooses the buffer most
appropriate for the design. The detailed information in this
section is provided for those users who want a finer level of
control over their designs.

If fine control is desired, use the following summary and
Table 15 on page 35 to choose an appropriate clock buffer.

* The simplest thing to do is to use a Global Low-Skew
buffer.

¢ If a faster clock path is needed, try a BUFG. The
software will first try to use a Global Low-Skew Buffer. If
timing requirements are not met, a faster buffer will
automatically be used.

« If a single quadrant of the chip is sufficient for the
clocked logic, and the timing requires a faster clock than
the Global Low-Skew buffer, use a Global Early buffer.

Global Low-Skew Buffers

Each corner of the XC4000X device has two Global
Low-Skew buffers. Any of the eight Global Low-Skew buff-
ers can drive any of the eight vertical Global lines in a col-
umn of CLBs. In addition, any of the buffers can drive any of
the four vertical lines accessing the IOBs on the left edge of
the device, and any of the eight vertical lines accessing the
IOBs on the right edge of the device. (See Figure 36 on
page 38.)

IOBs at the top and bottom edges of the device are
accessed through the vertical Global lines in the CLB array,
as in the XC4000E. Any Global Low-Skew buffer can,
therefore, access every IOB and CLB in the device.

The Global Low-Skew buffers can be driven by either
semi-dedicated pads or internal logic.

To use a Global Low-Skew buffer, instantiate a BUFGLS
element in a schematic or in HDL code. If desired, attach a
LOC attribute or property to direct placement to the desig-
nated location. For example, attach a LOC=T attribute or
property to direct that a BUFGLS be placed in one of the
two Global Low-Skew buffers on the top edge of the device,
or a LOC=TR to indicate the Global Low-Skew buffer on the
top edge of the device, on the right.
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used), and if RAM is present, the RAM content must be
unchanged.

Statistically, one error out of 2048 might go undetected.

Configuration Sequence

There are four major steps in the XC4000 Series power-up
configuration sequence.

» Configuration Memory Clear
 Initialization

» Configuration

e Start-Up

The full process is illustrated in Figure 46.

Configuration Memory Clear

When power is first applied or is reapplied to an FPGA, an
internal circuit forces initialization of the configuration logic.
When Vcc reaches an operational level, and the circuit
passes the write and read test of a sample pair of configu-
ration bits, a time delay is started. This time delay is nomi-
nally 16 ms, and up to 10% longer in the low-voltage
devices. The delay is four times as long when in Master
Modes (MO Low), to allow ample time for all slaves to reach
a stable Vcc. When all INIT pins are tied together, as rec-
ommended, the longest delay takes precedence. There-
fore, devices with different time delays can easily be mixed
and matched in a daisy chain.

This delay is applied only on power-up. It is not applied
when re-configuring an FPGA by pulsing the PROGRAM

pin

X2 X15
X16
D—{z [34]5]6]7]8] 9]10[11112]13114J:>

o 1]1[1]2]1 o 15[14[13[12[21]20[9 [ 8] 7] 6]5]

LAST DATA FRAME — @ |«—— CRC - CHECKSUM ——>

START BIT |©

X1789

Readback Data Stream

Figure 45: Circuit for Generating CRC-16
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=H

L, HDC Output
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Operational
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SAMPLE PRELOAD
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READBACK

Figure 46: Power-up Configuration Sequence
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The default option, and the most practical one, is for DONE
to go High first, disconnecting the configuration data source
and avoiding any contention when the I/Os become active
one clock later. Reset/Set is then released another clock
period later to make sure that user-operation starts from
stable internal conditions. This is the most common
sequence, shown with heavy lines in Figure 47, but the
designer can modify it to meet particular requirements.

Normally, the start-up sequence is controlled by the internal
device oscillator output (CCLK), which is asynchronous to
the system clock.

XC4000 Series offers another start-up clocking option,
UCLK_NOSYNC. The three events described above need
not be triggered by CCLK. They can, as a configuration
option, be triggered by a user clock. This means that the
device can wake up in synchronism with the user system.

When the UCLK_SYNC option is enabled, the user can
externally hold the open-drain DONE output Low, and thus
stall all further progress in the start-up sequence until
DONE is released and has gone High. This option can be
used to force synchronization of several FPGAs to a com-
mon user clock, or to guarantee that all devices are suc-
cessfully configured before any I/Os go active.

If either of these two options is selected, and no user clock
is specified in the design or attached to the device, the chip
could reach a point where the configuration of the device is
complete and the Done pin is asserted, but the outputs do
not become active. The solution is either to recreate the bit-
stream specifying the start-up clock as CCLK, or to supply
the appropriate user clock.

Start-up Sequence

The Start-up sequence begins when the configuration
memory is full, and the total number of configuration clocks

received since INIT went High equals the loaded value of
the length count.

The next rising clock edge sets a flip-flop QO, shown in
Figure 48. QO is the leading bit of a 5-bit shift register. The
outputs of this register can be programmed to control three
events.

¢ The release of the open-drain DONE output

e The change of configuration-related pins to the user
function, activating all IOBs.

« The termination of the global Set/Reset initialization of
all CLB and IOB storage elements.

The DONE pin can also be wire-ANDed with DONE pins of
other FPGAs or with other external signals, and can then
be used as input to bit Q3 of the start-up register. This is
called “Start-up Timing Synchronous to Done In” and is
selected by either CCLK_SYNC or UCLK_SYNC.

When DONE is not used as an input, the operation is called
“Start-up Timing Not Synchronous to DONE In,” and is
selected by either CCLK_NOSYNC or UCLK_NOSYNC.

As a configuration option, the start-up control register
beyond QO can be clocked either by subsequent CCLK
pulses or from an on-chip user net called STARTUR.CLK.
These signals can be accessed by placing the STARTUP
library symbol.

Start-up from CCLK

If CCLK is used to drive the start-up, QO through Q3 pro-
vide the timing. Heavy lines in Figure 47 show the default
timing, which is compatible with XC2000 and XC3000
devices using early DONE and late Reset. The thin lines
indicate all other possible timing options.
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Figure 47: Start-up Timing
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Figure 48: Start-up Logic

Readback

The user can read back the content of configuration mem-
ory and the level of certain internal nodes without interfer-
ing with the normal operation of the device.

Readback not only reports the downloaded configuration
bits, but can also include the present state of the device,
represented by the content of all flip-flops and latches in
CLBs and 10Bs, as well as the content of function genera-
tors used as RAMs.

Note that in XC4000 Series devices, configuration data is
not inverted with respect to configuration as it is in XC2000
and XC3000 families.

XC4000 Series Readback does not use any dedicated
pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA,
RDBK.RIP and RDBK.CLK) that can be routed to any IOB.
To access the internal Readback signals, place the READ-

% CONFIGURATION BIT OPTIONS SELECTED BY USER IN "MAKEBITS"

X1528

BACK library symbol and attach the appropriate pad sym-
bols, as shown in Figure 49.

After Readback has been initiated by a High level on
RDBK.TRIG after configuration, the RDBK.RIP (Read In
Progress) output goes High on the next rising edge of
RDBK.CLK. Subsequent rising edges of this clock shift out
Readback data on the RDBK.DATA net.

Readback data does not include the preamble, but starts
with five dummy bits (all High) followed by the Start bit
(Low) of the first frame. The first two data bits of the first
frame are always High.

Each frame ends with four error check bits. They are read
back as High. The last seven bits of the last frame are also
read back as High. An additional Start bit (Low) and an
11-bit Cyclic Redundancy Check (CRC) signature follow,
before RDBK.RIP returns Low.

May 14, 1999 (Version 1.6)
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Figure 49: Readback Schematic Example

Readback Options

Readback options are: Read Capture, Read Abort, and
Clock Select. They are set with the bitstream generation
software.

Read Capture

When the Read Capture option is selected, the readback
data stream includes sampled values of CLB and IOB sig-
nals. The rising edge of RDBK.TRIG latches the inverted
values of the four CLB outputs, the IOB output flip-flops and
the input signals |1 and 12. Note that while the bits describ-
ing configuration (interconnect, function generators, and
RAM content) are notinverted, the CLB and 10B output sig-
nals are inverted.

When the Read Capture option is not selected, the values
of the capture bits reflect the configuration data originally
written to those memory locations.

If the RAM capability of the CLBs is used, RAM data are
available in readback, since they directly overwrite the F
and G function-table configuration of the CLB.

RDBK.TRIG is located in the lower-left corner of the device,
as shown in Figure 50.

Read Abort

When the Read Abort option is selected, a High-to-Low
transition on RDBK.TRIG terminates the readback opera-
tion and prepares the logic to accept another trigger.

After an aborted readback, additional clocks (up to one
readback clock per configuration frame) may be required to
re-initialize the control logic. The status of readback is indi-
cated by the output control net RDBK.RIP. RDBK.RIP is
High whenever a readback is in progress.

Clock Select

CCLK is the default clock. However, the user can insert
another clock on RDBK.CLK. Readback control and data
are clocked on rising edges of RDBK.CLK. If readback
must be inhibited for security reasons, the readback control
nets are simply not connected.

RDBK.CLK is located in the lower right chip corner, as
shown in Figure 50.

X1786

110

PROGRAMMABLE
/ INTERCONNECT

—

[¢
7

(
)

X1787

Figure 50: READBACK Symbol in Graphical Editor

Violating the Maximum High and Low Time
Specification for the Readback Clock

The readback clock has a maximum High and Low time
specification. In some cases, this specification cannot be
met. For example, if a processor is controlling readback, an
interrupt may force it to stop in the middle of a readback.
This necessitates stopping the clock, and thus violating the
specification.

The specification is mandatory only on clocking data at the
end of a frame prior to the next start bit. The transfer mech-
anism will load the data to a shift register during the last six
clock cycles of the frame, prior to the start bit of the follow-
ing frame. This loading process is dynamic, and is the
source of the maximum High and Low time requirements.

Therefore, the specification only applies to the six clock
cycles prior to and including any start bit, including the
clocks before the first start bit in the readback data stream.
At other times, the frame data is already in the register and
the register is not dynamic. Thus, it can be shifted out just
like a regular shift register.

The user must precisely calculate the location of the read-
back data relative to the frame. The system must keep track
of the position within a data frame, and disable interrupts
before frame boundaries. Frame lengths and data formats
are listed in Table 19, Table 20 and Table 21.

Readback with the XChecker Cable

The XChecker Universal Download/Readback Cable and
Logic Probe uses the readback feature for bitstream verifi-
cation. It can also display selected internal signals on the
PC or workstation screen, functioning as a low-cost in-cir-
cuit emulator.

6-56

May 14, 1999 (Version 1.6)



S XILINX®

Product Obsolete or Under Obsolescence
XC4000E and XC4000X Series Field Programmable Gate Arrays

Table 23: Pin Functions During Configuration

CONFIGURATION MODE <M2:M1:M0>
SLAVE MASTER SYNCH. ASYNCH. MASTER MASTER USER
SERIAL SERIAL PERIPHERAL PERIPHERAL | PARALLEL DOWN PARALLEL UP OPERATION
<1:1:1> <0:0:0> <0:1:1> <1:0:1> <1:1:0> <1:0:0>
M2(HIGH) (1) M2(LOW) (1) M2(LOW) (1) M2(HIGH) (1) M2(HIGH) (1) M2(HIGH) (1) ()
M1(HIGH) (1) M1(LOW) (1) M1(HIGH) (1) M1(LOW) (1) M1(HIGH) (1) M1(LOW) (1) (0)
MO(HIGH) (1) MO(LOW) (1) MO(HIGH) (1) MO(HIGH) (1) MO(LOW) (1) MO(LOW) (1) ()
HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) 1/O
LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) 110
INIT INIT INIT INIT INIT INIT 110
DONE DONE DONE DONE DONE DONE DONE
PROGRAM (I) | PROGRAM (I) | PROGRAM (I) | PROGRAM (I) PROGRAM (1) PROGRAM (1) PROGRAM
CCLK (1) CCLK (O) CCLK (I) CCLK (O) CCLK (O) CCLK (O) CCLK (1)
RDY/BUSY (O) | RDY/BUSY (O) RCLK (O) RCLK (0O) 110
RS (I) 110
CS0 (1) 110
DATA 7 (1) DATA 7 (1) DATA 7 (1) DATA 7 (1) 1/O
DATA 6 (1) DATA 6 (I) DATA 6 (1) DATA 6 (1) 110
DATA 5 (I) DATA 5 (I) DATA 5 (I) DATA 5 (I) 110
DATA 4 (I) DATA 4 (I) DATA 4 (I) DATA 4 (I) 110
DATA 3 (1) DATA 3 (I) DATA 3 (1) DATA 3 (1) I/0
DATA 2 (1) DATA 2 (I) DATA 2 (1) DATA 2 (1) I/0
DATA 1 (1) DATA 1 (1) DATA 1 (1) DATA 1 (1) 1/O
DIN (1) DIN (1) DATA 0 (1) DATA 0 (1) DATA 0 (1) DATA 0 (1) I/
DOUT DOUT DOUT DOUT DOUT DOUT SGCK4-GCK6-1/0
TDI TDI TDI TDI TDI TDI TDI-I/O
TCK TCK TCK TCK TCK TCK TCK-I/O
TMS TMS TMS TMS TMS TMS TMS-I/O
TDO TDO TDO TDO TDO TDO TDO-(O)
WS (I) A0 AO I/0
Al Al PGCK4-GCK7-1/0
Cs1 A2 A2 I/0
A3 A3 I/0
A4 A4 110
A5 A5 /0
A6 A6 /0
A7 A7 110
A8 A8 I/0
A9 A9 I/0
Al10 Al10 1/0
All All 1/0
Al2 Al2 1/0
Al13 Al3 110
Al4d Al4d 110
Al15 Al5 SGCK1-GCK8-I/0
Al6 Al6 PGCK1-GCK1-1/0
Al7 Al7 110
A18* A18* 110
AL19* A19* I/0
A20* A20* I/0
A21* A21* 1/0
ALL OTHERS
* XC4000X only
Notes 1. A shaded table cell represents a 50 kQ - 100 kQ pull-up before and during configuration.

2. (1) represents an input; (O) represents an output.
3. INIT is an open-drain output during configuration.

May 14, 1999 (Version 1.6)

6-59




Product Obsolete or Under Obsolescence
XC4000E and XC4000X Series Field Programmable Gate Arrays

S XILINX®

Configuration Timing

The seven configuration modes are discussed in detail in
this section. Timing specifications are included.

Slave Serial Mode

In Slave Serial mode, an external signal drives the CCLK
input of the FPGA. The serial configuration bitstream must
be available at the DIN input of the lead FPGA a short
setup time before each rising CCLK edge.

The lead FPGA then presents the preamble data—and all
data that overflows the lead device—on its DOUT pin.

NOTE:
M2, M1, MO can be shorted
to Ground if not used as I/O

There is an internal delay of 0.5 CCLK periods, which
means that DOUT changes on the falling CCLK edge, and
the next FPGA in the daisy chain accepts data on the sub-
sequent rising CCLK edge.

Figure 51 shows a full master/slave system. An XC4000
Series device in Slave Serial mode should be connected as
shown in the third device from the left.

Slave Serial mode is selected by a <111> on the mode pins
(M2, M1, M0). Slave Serial is the default mode if the mode
pins are left unconnected, as they have weak pull-up resis-
tors during configuration.

NOTE:
M2, M1, MO can be shorted
to Vcc if not used as I/0

4.7KQ

N/C

MO M1
N/C —— M2
DOUT > DIN DOUT DIN DOUT [—
XC4000E/X vee | o cowk
MASTER XC1700D +5V XC4000E/X, XC3100A
SERIAL 4rKa XC5200 SLAVE
cCLK oLk VPP SLAVE
DIN DATA
| PROGRAM Lbc CE CEO —>{ PROGRAM »| RESET
DONE NIT > > RESET/OE —| poNE INIT > —| o INT >
(Low Reset Option Used)
PROGRAM %9025
Figure 51: Master/Slave Serial Mode Circuit Diagram
Bitn+1

DIN T Bitn T
@TDCC > @ Tcep

<—®TCC|_
CCLK ][ \\
@TCCH—>‘_®TCCO
(o?;%dg Bitn-1 Bitn
X5379

Description Symbol Min Max Units
DIN setup 1 Tbce 20 ns
DIN hold 2 Teep 0 ns
DIN to DOUT 3 Teco 30 ns

CCLK —

High time 4 Tcen 45 ns
Low time 5 Teel 45 ns
Frequency Fce 10 MHz

Note: Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High.

Figure 52: Slave Serial Mode Programming Switching Characteristics
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Master Serial Mode

In Master Serial mode, the CCLK output of the lead FPGA
drives a Xilinx Serial PROM that feeds the FPGA DIN input.
Each rising edge of the CCLK output increments the Serial
PROM internal address counter. The next data bit is put on
the SPROM data output, connected to the FPGA DIN pin.
The lead FPGA accepts this data on the subsequent rising
CCLK edge.

The lead FPGA then presents the preamble data—and all
data that overflows the lead device—on its DOUT pin.
There is an internal pipeline delay of 1.5 CCLK periods,
which means that DOUT changes on the falling CCLK
edge, and the next FPGA in the daisy chain accepts data
on the subsequent rising CCLK edge.

In the bitstream generation software, the user can specify
Fast ConfigRate, which, starting several bits into the first
frame, increases the CCLK frequency by a factor of eight.

CCLK
(Output)

@ Tckos

For actual timing values please refer to “Configuration
Switching Characteristics” on page 68. Be sure that the
serial PROM and slaves are fast enough to support this
data rate. XC2000, XC3000/A, and XC3100A devices do
not support the Fast ConfigRate option.

The SPROM CE input can be driven from either LDC or
DONE. Using LDC avoids potential contention on the DIN
pin, if this pin is configured as user-1/O, but LDC is then
restricted to be a permanently High user output after con-
figuration. Using DONE can also avoid contention on DIN,
provided the early DONE option is invoked.

Figure 51 on page 60 shows a full master/slave system.
The leftmost device is in Master Serial mode.

Master Serial mode is selected by a <000> on the mode
pins (M2, M1, MO0).

Serial Data In

X

Seri?gﬂ%ﬂg n-3 X n-2 X n- 1\>X n X
X3223
Description Symbol Min Max Units
CCLK DIN setup 1 Tbhsck 20 ns
DIN hold 2 Tckps 0 ns

Notes:
Low until Vcc is valid.

1. At power-up, Vcc must rise from 2.0 V to Vcc min in less than 25 ms, otherwise delay configuration by pulling PROGRAM

2. Master Serial mode timing is based on testing in slave mode.

Figure 53: Master Serial Mode Programming Switching Characteristics
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Asynchronous Peripheral Mode
Write to FPGA

Asynchronous Peripheral mode uses the trailing edge of
the logic AND condition of WS and CSO being Low and RS
and CS1 being High to accept byte-wide data from a micro-
processor bus. In the lead FPGA, this data is loaded into a
double-buffered UART-like parallel-to-serial converter and
is serially shifted into the internal logic.

The lead FPGA presents the preamble data (and all data
that overflows the lead device) on its DOUT pin. The
RDY/BUSY output from the lead FPGA acts as a hand-
shake signal to the microprocessor. RDY/BUSY goes Low
when a byte has been received, and goes High again when
the byte-wide input buffer has transferred its information
into the shift register, and the buffer is ready to receive new
data. A new write may be started immediately, as soon as
the RDY/BUSY output has gone Low, acknowledging
receipt of the previous data. Write may not be terminated
until RDY/BUSY is High again for one CCLK period. Note
that RDY/BUSY is pulled High with a high-impedance
pull-up prior to INIT going High.

The length of the BUSY signal depends on the activity in
the UART. If the shift register was empty when the new byte
was received, the BUSY signal lasts for only two CCLK
periods. If the shift register was still full when the new byte
was received, the BUSY signal can be as long as nine
CCLK periods.

Note that after the last byte has been entered, only seven of
its bits are shifted out. CCLK remains High with DOUT
equal to bit 6 (the next-to-last bit) of the last byte entered.

The READY/BUSY handshake can be ignored if the delay
from any one Write to the end of the next Write is guaran-
teed to be longer than 10 CCLK periods.

Status Read

The logic AND condition of the CS0, CSland RS inputs
puts the device status on the Data bus.

« D7 High indicates Ready
« D7 Low indicates Busy
» DO through D6 go unconditionally High

It is mandatory that the whole start-up sequence be started
and completed by one byte-wide input. Otherwise, the pins
used as Write Strobe or Chip Enable might become active
outputs and interfere with the final byte transfer. If this
transfer does not occur, the start-up sequence is not com-
pleted all the way to the finish (point F in Figure 47 on page
53).

In this case, at worst, the internal reset is not released. At
best, Readback and Boundary Scan are inhibited. The
length-count value, as generated by the XACTstep soft-
ware, ensures that these problems never occur.

Although RDY/BUSY is brought out as a separate signal,
microprocessors can more easily read this information on
one of the data lines. For this purpose, D7 represents the
RDY/BUSY status when RS is Low, WS is High, and the
two chip select lines are both active.

Asynchronous Peripheral mode is selected by a <101> on
the mode pins (M2, M1, M0).

L N/C
NC = N/C B
|+ \ I
MO ML M2 MO ML M2
DQJ@ 44444447Zji44444444> DO-7 CCLK CCLK
OPTIONAL
DAISY-CHAINED
FPGAS
— DOUT DIN DOUT |—
vce _
ADDRESS cso
ADDRESS . DLEOCgI'éE XC4000E/X
BUS H ASYNCHRO- XC4000E/X
NOUS SLAVE
PERIPHERAL
47kQ 47kQ csi
RS
ws
CONTROL RDY/BUSY
SIGNALS
INIT INIT
DONE DONE
REPROGRAM _
PROGRAM PROGRAM

4.7kQ

X9028

Figure 58: Asynchronous Peripheral Mode Circuit Diagram
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Product Obsolete or Under Obsolescence

XC4000E and XC4000X Series Field Programmable Gate Arrays

S XILINX®

Table 25: Component Availability Chart for XC4000E FPGAs

PINS 84 100 100 120 144 156 160 191 208 208 223 225 240 240 299 304
= O = = £ « s £« o £« Ea s £ < = %& o £« %
78S [Z QTS 0 W a 0w < 0 0w a a 0 0w a 7] o @ 0w < Qo

PRl 22 | 29 | 22 | 58 | &2 | 89 | £9 | 32 | 56 |29 | 38 | £8 | £6 | &9 | 82 | &©
I I I
< o o o <t © o \—| %) ) ™ L0 o o o} <
0 (=] o ~N < 0 © o o o N N < < o2} o
CODE O — — — ‘—| — — — IN N N N N N N ™
o o o O] o O] (@4 O o (@4 O Q o (04 ) o
o > [a = o [a o T [a N o m T o o T
-4 cl Cl Cl cl
-3
XC4003E cl cl cl cl
2 cl cl Cl cl
-1 [ c c c
-4 cl cl cl cl cl cl
3 cl cl cl cl cl [
XC4005E 2 cl cl cl cl cl [
-1 c c c c c c
-4 cl cl cl cl [
3 cl cl cl cl [
XC4006E 2 cl cl cl cl cl
-1 [ [¢ c [ 9
-4 cl cl cl [
3 cl cl cl cl
XC4008E 2 cl cl cl [
-1 [ c [¢ c
-4 cl cl cl cl cl cl
3 cl cl cl cl cl cl
XC4010E 2 cl cl Cl cl cl cl
-1 c [ [& c c c
-4 cl cl cl cl cl [ cl
3 cl cl [ Cl cl cl cl
XC4013E 2 cl cl cl cl cl cl cl
-1 c c [§ [¢ c c [¢
2 cl Cl cl
3 cl cl [
XC4020E - o = o
-1 c [¢ c
-4 cl cl cl cl
XC4025E -3 cl [ Cl Cl
2 [¢ c [ ¢
1/29/99

C = Commercial T;=0°to +85°C

I= Industrial T;=-40°C to +100°C

Table 26: Component Availability Chart for XC4000EX FPGAs

PINS 208 240 299 304 352 411 432
TYPE High-Perf. High-Perf. Ceram. High-Perf. Plast. Ceram. Plast.
QFP QFP PGA QFP BGA PGA BGA
CODE HQ208 HQ240 PG299 HQ304 BG352 PG411 BG432
-4 Cl Cl Cl cl Cl
XC4028EX | =3 Cl cl Cl cl Cl
2 [J [ c [¢ [¢
-4 cl cl cl cl cl
XC4036EX | -3 cl cl cl cl cl
2 c [¢ c [ c

1/29/99

C = Commercial T;=0°to +85°C
I= Industrial T; =-40°C to +100°C

6-70

May 14, 1999 (Version 1.6)




