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Product Obsolete or Under Obsolescence

XC4000E and XC4000X Series Field Programmable Gate Arrays XX"JNX@
Table 1: XC4000E and XC4000X Series Field Programmable Gate Arrays
Max Logic |Max. RAM Typical Number
Logic Gates Bits Gate Range CLB Total of Max.
Device Cells (No RAM) |(No Logic) |(Logic and RAM)* Matrix CLBs |Flip-Flops | User I/O

XC4002XL 152 1,600 2,048 1,000 - 3,000 8x8 64 256 64
XC4003E 238 3,000 3,200 2,000 - 5,000 10x 10 100 360 80
XC4005E/XL 466 5,000 6,272 3,000 - 9,000 14x 14 196 616 112
XC4006E 608 6,000 8,192 4,000 - 12,000 16 x 16 256 768 128
XC4008E 770 8,000 10,368 6,000 - 15,000 18 x 18 324 936 144
XC4010E/XL 950 10,000 12,800 7,000 - 20,000 20 x 20 400 1,120 160
XC4013E/XL 1368 13,000 18,432 10,000 - 30,000 24 x 24 576 1,536 192
XC4020E/XL 1862 20,000 25,088 13,000 - 40,000 28 x 28 784 2,016 224
XC4025E 2432 25,000 32,768 15,000 - 45,000 32x32 1,024 2,560 256
XC4028EX/XL 2432 28,000 32,768 18,000 - 50,000 32x32 1,024 2,560 256
XC4036EX/XL 3078 36,000 41,472 22,000 - 65,000 36 x 36 1,296 3,168 288
XC4044XL 3800 44,000 51,200 27,000 - 80,000 40 x 40 1,600 3,840 320
XC4052XL 4598 52,000 61,952 | 33,000 - 100,000 | 44x44 1,936 4,576 352
XC4062XL 5472 62,000 73,728 | 40,000 - 130,000 | 48x48 2,304 5,376 384
XC4085XL 7448 85,000 100,352 | 55,000 - 180,000 | 56 x 56 3,136 7,168 448

* Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

Note: All functionality in low-voltage families is the same as
in the corresponding 5-Volt family, except where numerical
references are made to timing or power.

Description

XC4000 Series devices are implemented with a regular,
flexible, programmable architecture of Configurable Logic
Blocks (CLBs), interconnected by a powerful hierarchy of
versatile routing resources, and surrounded by a perimeter
of programmable Input/Output Blocks (IOBs). They have
generous routing resources to accommodate the most
complex interconnect patterns.

The devices are customized by loading configuration data
into internal memory cells. The FPGA can either actively
read its configuration data from an external serial or
byte-parallel PROM (master modes), or the configuration
data can be written into the FPGA from an external device
(slave and peripheral modes).

XC4000 Series FPGAs are supported by powerful and
sophisticated software, covering every aspect of design
from schematic or behavioral entry, floor planning, simula-
tion, automatic block placement and routing of intercon-
nects, to the creation, downloading, and readback of the
configuration bit stream.

Because Xilinx FPGAs can be reprogrammed an unlimited
number of times, they can be used in innovative designs

where hardware is changed dynamically, or where hard-
ware must be adapted to different user applications.
FPGAs are ideal for shortening design and development
cycles, and also offer a cost-effective solution for produc-
tion rates well beyond 5,000 systems per month.

Taking Advantage of Re-configuration

FPGA devices can be re-configured to change logic func-
tion while resident in the system. This capability gives the
system designer a new degree of freedom not available
with any other type of logic.

Hardware can be changed as easily as software. Design
updates or modifications are easy, and can be made to
products already in the field. An FPGA can even be re-con-
figured dynamically to perform different functions at differ-
ent times.

Re-configurable logic can be used to implement system
self-diagnostics, create systems capable of being re-con-
figured for different environments or operations, or imple-
ment multi-purpose hardware for a given application. As an
added benefit, using re-configurable FPGA devices simpli-
fies hardware design and debugging and shortens product
time-to-market.
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Set/Reset

An asynchronous storage element input (SR) can be con-
figured as either set or reset. This configuration option
determines the state in which each flip-flop becomes oper-
ational after configuration. It also determines the effect of a
Global Set/Reset pulse during normal operation, and the
effect of a pulse on the SR pin of the CLB. All three
set/reset functions for any single flip-flop are controlled by
the same configuration data bit.

The set/reset state can be independently specified for each
flip-flop. This input can also be independently disabled for
either flip-flop.

The set/reset state is specified by using the INIT attribute,
or by placing the appropriate set or reset flip-flop library
symbol.

SR is active High. It is not invertible within the CLB.
Global Set/Reset

A separate Global Set/Reset line (not shown in Figure 1)
sets or clears each storage element during power-up,
re-configuration, or when a dedicated Reset net is driven
active. This global net (GSR) does not compete with other
routing resources; it uses a dedicated distribution network.

Each flip-flop is configured as either globally set or reset in
the same way that the local set/reset (SR) is specified.
Therefore, if a flip-flop is set by SR, it is also set by GSR.
Similarly, a reset flip-flop is reset by both SR and GSR.

STARTUP
PAD } GSR Q2 —
IBUF —{ GTS Q3 —
QlQ4 | —
—> CLK DONEIN —
X5260

Figure 2: Schematic Symbols for Global Set/Reset

GSR can be driven from any user-programmable pin as a
global reset input. To use this global net, place an input pad
and input buffer in the schematic or HDL code, driving the
GSR pin of the STARTUP symbol. (See Figure 2.) A spe-
cific pin location can be assigned to this input using a LOC
attribute or property, just as with any other user-program-
mable pad. An inverter can optionally be inserted after the
input buffer to invert the sense of the Global Set/Reset sig-
nal.

Alternatively, GSR can be driven from any internal node.

Data Inputs and Outputs

The source of a storage element data input is programma-
ble. It is driven by any of the functions F’, G’, and H’, or by
the Direct In (DIN) block input. The flip-flops or latches drive
the XQ and YQ CLB outputs.

Two fast feed-through paths are available, as shown in
Figure 1. A two-to-one multiplexer on each of the XQ and
YQ outputs selects between a storage element output and
any of the control inputs. This bypass is sometimes used by
the automated router to repower internal signals.

Control Signals

Multiplexers in the CLB map the four control inputs (C1 - C4
in Figure 1) into the four internal control signals (H1,
DIN/H2, SR/HO, and EC). Any of these inputs can drive any
of the four internal control signals.

When the logic function is enabled, the four inputs are:

 EC — Enable Clock

¢ SR/HO — Asynchronous Set/Reset or H function
generator Input O

¢ DIN/H2 — Direct In or H function generator Input 2

e H1 — H function generator Input 1.

When the memory function is enabled, the four inputs are:

e EC — Enable Clock

« WE — Write Enable

« DO — Data Input to F and/or G function generator

¢ D1 — Data input to G function generator (16x1 and
16x2 modes) or 5th Address bit (32x1 mode).

Using FPGA Flip-Flops and Latches

The abundance of flip-flops in the XC4000 Series invites
pipelined designs. This is a powerful way of increasing per-
formance by breaking the function into smaller subfunc-
tions and executing them in parallel, passing on the results
through pipeline flip-flops. This method should be seriously
considered wherever throughput is more important than
latency.

To include a CLB flip-flop, place the appropriate library
symbol. For example, FDCE is a D-type flip-flop with clock
enable and asynchronous clear. The corresponding latch
symbol (for the XC4000X only) is called LDCE.

In XC4000 Series devices, the flip flops can be used as reg-
isters or shift registers without blocking the function gener-
ators from performing a different, perhaps unrelated task.
This ability increases the functional capacity of the devices.

The CLB setup time is specified between the function gen-
erator inputs and the clock input K. Therefore, the specified
CLB flip-flop setup time includes the delay through the
function generator.

Using Function Generators as RAM

Optional modes for each CLB make the memory look-up
tables in the F and G’ function generators usable as an
array of Read/Write memory cells. Available modes are
level-sensitive (similar to the XC4000/A/H families),
edge-triggered, and dual-port edge-triggered. Depending
on the selected mode, a single CLB can be configured as
either a 16x2, 32x1, or 16x1 bit array.

May 14, 1999 (Version 1.6)
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Dual-Port Edge-Triggered Mode

In dual-port mode, both the F and G function generators
are used to create a single 16x1 RAM array with one write
port and two read ports. The resulting RAM array can be
read and written simultaneously at two independent
addresses. Simultaneous read and write operations at the
same address are also supported.

Dual-port mode always has edge-triggered write timing, as
shown in Figure 3.

Figure 6 shows a simple model of an XC4000 Series CLB
configured as dual-port RAM. One address port, labeled
A[3:0], supplies both the read and write address for the F
function generator. This function generator behaves the
same as a 16x1 single-port edge-triggered RAM array. The
RAM output, Single Port Out (SPO), appears at the F func-
tion generator output. SPO, therefore, reflects the data at
address A[3:0].

The other address port, labeled DPRA[3:0] for Dual Port
Read Address, supplies the read address for the G function
generator. The write address for the G function generator,
however, comes from the address A[3:0]. The output from
this 16x1 RAM array, Dual Port Out (DPO), appears at the
G function generator output. DPO, therefore, reflects the
data at address DPRA[3:0].

Therefore, by using A[3:0] for the write address and
DPRA][3:0] for the read address, and reading only the DPO
output, a FIFO that can read and write simultaneously is
easily generated. Simultaneous access doubles the effec-
tive throughput of the FIFO.

The relationships between CLB pins and RAM inputs and
outputs for dual-port, edge-triggered mode are shown in
Table 6. See Figure 7 on page 16 for a block diagram of a
CLB configured in this mode.
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Figure 6: XC4000 Series Dual-Port RAM, Simple
Model

Table 6: Dual-Port Edge-Triggered RAM Signals

RAM Signal CLB Pin Function
D DO Data In
A[3:0] F1-F4 Read Address for F,
Write Address for F and G
DPRAJ[3:0] G1-G4 Read Address for G
WE WE Write Enable
WCLK K Clock
SPO F Single Port Out
(addressed by A[3:0])
DPO G’ Dual Port Out
(addressed by DPRA[3:0])

Note: The pulse following the active edge of WCLK (T\yps
in Figure 3) must be less than one millisecond wide. For
most applications, this requirement is not overly restrictive;
however, it must not be forgotten. Stopping WCLK at this
point in the write cycle could result in excessive current and
even damage to the larger devices if many CLBs are con-
figured as edge-triggered RAM.

Single-Port Level-Sensitive Timing Mode

Note: Edge-triggered mode is recommended for all new
designs. Level-sensitive mode, also called asynchronous
mode, is still supported for XC4000 Series backward-com-
patibility with the XC4000 family.

Level-sensitive RAM timing is simple in concept but can be
complicated in execution. Data and address signals are
presented, then a positive pulse on the write enable pin
(WE) performs a write into the RAM at the designated
address. As indicated by the “level-sensitive” label, this
RAM acts like a latch. During the WE High pulse, changing
the data lines results in new data written to the old address.
Changing the address lines while WE is High results in spu-
rious data written to the new address—and possibly at
other addresses as well, as the address lines inevitably do
not all change simultaneously.

The user must generate a carefully timed WE signal. The
delay on the WE signal and the address lines must be care-
fully verified to ensure that WE does not become active
until after the address lines have settled, and that WE goes
inactive before the address lines change again. The data
must be stable before and after the falling edge of WE.

In practical terms, WE is usually generated by a 2X clock. If
a 2X clock is not available, the falling edge of the system
clock can be used. However, there are inherent risks in this
approach, since the WE pulse must be guaranteed inactive
before the next rising edge of the system clock. Several
older application notes are available from Xilinx that dis-
cuss the design of level-sensitive RAMSs.

However, the edge-triggered RAM available in the XC4000
Series is superior to level-sensitive RAM for almost every
application.

May 14, 1999 (Version 1.6)
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Figure 13: Fast Carry Logic in XC4000E CLB (shaded area not present in XC4000X)
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Figure 14: Detail of XC4000E Dedicated Carry Logic

Input/Output Blocks (IOBs)

User-configurable input/output blocks (IOBs) provide the
interface between external package pins and the internal
logic. Each I0B controls one package pin and can be con-
figured for input, output, or bidirectional signals.

Figure 15 shows a simplified block diagram of the
XC4000E IOB. A more complete diagram which includes
the boundary scan logic of the XC4000E IOB can be found
in Figure 40 on page 43, in the “Boundary Scan” section.

The XC4000X IOB contains some special features not
included in the XC4000E I0B. These features are high-
lighted in a simplified block diagram found in Figure 16, and
discussed throughout this section. When XC4000X special
features are discussed, they are clearly identified in the
text. Any feature not so identified is present in both
XC4000E and XC4000X devices.

10B Input Signals

Two paths, labeled I1 and 12 in Figure 15 and Figure 16,
bring input signals into the array. Inputs also connect to an
input register that can be programmed as either an
edge-triggered flip-flop or a level-sensitive latch.

C N DowN

The choice is made by placing the appropriate library sym-
bol. For example, IFD is the basic input flip-flop (rising edge
triggered), and ILD is the basic input latch (transpar-
ent-High). Variations with inverted clocks are available, and
some combinations of latches and flip-flops can be imple-
mented in a single 10B, as described in the XACT Libraries
Guide.

The XC4000E inputs can be globally configured for either
TTL (1.2V) or 5.0 volt CMOS thresholds, using an option in
the bitstream generation software. There is a slight input
hysteresis of about 300mV. The XC4000E output levels are
also configurable; the two global adjustments of input
threshold and output level are independent.

Inputs on the XC4000XL are TTL compatible and 3.3V
CMOS compatible. Outputs on the XC4000XL are pulled to
the 3.3V positive supply.

The inputs of XC4000 Series 5-Volt devices can be driven
by the outputs of any 3.3-Volt device, if the 5-Volt inputs are
in TTL mode.

Supported sources for XC4000 Series device inputs are
shown in Table 8.

6-20
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Figure 28: Single- and Double-Length Lines, with
Programmable Switch Matrices (PSMs)

Double-Length Lines

The double-length lines consist of a grid of metal segments,
each twice as long as the single-length lines: they run past
two CLBs before entering a switch matrix. Double-length
lines are grouped in pairs with the switch matrices stag-
gered, so that each line goes through a switch matrix at
every other row or column of CLBs (see Figure 28).

There are four vertical and four horizontal double-length
lines associated with each CLB. These lines provide faster
signal routing over intermediate distances, while retaining
routing flexibility. Double-length lines are connected by way
of the programmable switch matrices. Routing connectivity
is shown in Figure 27.

Quad Lines (XC4000X only)

XC4000X devices also include twelve vertical and twelve
horizontal quad lines per CLB row and column. Quad lines
are four times as long as the single-length lines. They are
interconnected via buffered switch matrices (shown as dia-
monds in Figure 27 on page 30). Quad lines run past four
CLBs before entering a buffered switch matrix. They are
grouped in fours, with the buffered switch matrices stag-
gered, so that each line goes through a buffered switch
matrix at every fourth CLB location in that row or column.
(See Figure 29.)

The buffered switch matrixes have four pins, one on each
edge. All of the pins are bidirectional. Any pin can drive any
or all of the other pins.

Each buffered switch matrix contains one buffer and six
pass transistors. It resembles the programmable switch
matrix shown in Figure 26, with the addition of a program-
mable buffer. There can be up to two independent inputs

CLB CLB CLB
Lt .
N
R ——
X
CLB cL| Ik CLB
R
CLB CLB| |,/ CLB
y

X9014
Figure 29: Quad Lines (XC4000X only)

and up to two independent outputs. Only one of the inde-
pendent inputs can be buffered.

The place and route software automatically uses the timing
requirements of the design to determine whether or not a
quad line signal should be buffered. A heavily loaded signal
is typically buffered, while a lightly loaded one is not. One
scenario is to alternate buffers and pass transistors. This
allows both vertical and horizontal quad lines to be buffered
at alternating buffered switch matrices.

Due to the buffered switch matrices, quad lines are very
fast. They provide the fastest available method of routing
heavily loaded signals for long distances across the device.

Longlines

Longlines form a grid of metal interconnect segments that
run the entire length or width of the array. Longlines are
intended for high fan-out, time-critical signal nets, or nets
that are distributed over long distances. In XC4000X
devices, quad lines are preferred for critical nets, because
the buffered switch matrices make them faster for high
fan-out nets.

Two horizontal longlines per CLB can be driven by 3-state
or open-drain drivers (TBUFs). They can therefore imple-
ment unidirectional or bidirectional buses, wide multiplex-
ers, or wired-AND functions. (See “Three-State Buffers” on
page 26 for more details.)

Each horizontal longline driven by TBUFs has either two
(XC4000E) or eight (XC4000X) pull-up resistors. To acti-
vate these resistors, attach a PULLUP symbol to the
long-line net. The software automatically activates the
appropriate number of pull-ups. There is also a weak
keeper at each end of these two horizontal longlines. This

May 14, 1999 (Version 1.6)
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Global Nets and Buffers (XC4000X only)

Eight vertical longlines in each CLB column are driven by
special global buffers. These longlines are in addition to the
vertical longlines used for standard interconnect. The glo-
bal lines are broken in the center of the array, to allow faster
distribution and to minimize skew across the whole array.
Each half-column global line has its own buffered multi-
plexer, as shown in Figure 35. The top and bottom global
lines cannot be connected across the center of the device,
as this connection might introduce unacceptable skew. The
top and bottom halves of the global lines must be sepa-
rately driven — although they can be driven by the same
global buffer.

The eight global lines in each CLB column can be driven by
either of two types of global buffers. They can also be
driven by internal logic, because they can be accessed by
single, double, and quad lines at the top, bottom, half, and
guarter points. Consequently, the number of different
clocks that can be used simultaneously in an XC4000X
device is very large.

There are four global lines feeding the 10Bs at the left edge
of the device. IOBs along the right edge have eight global
lines. There is a single global line along the top and bottom
edges with access to the IOBs. All IOB global lines are bro-
ken at the center. They cannot be connected across the
center of the device, as this connection might introduce
unacceptable skew.

IOB global lines can be driven from two types of global buff-
ers, or from local interconnect. Alternatively, top and bottom
IOBs can be clocked from the global lines in the adjacent
CLB column.

Two different types of clock buffers are available in the
XC4000X:

* Global Low-Skew Buffers (BUFGLS)
» Global Early Buffers (BUFGE)

Global Low-Skew Buffers are the standard clock buffers.
They should be used for most internal clocking, whenever a
large portion of the device must be driven.

Global Early Buffers are designed to provide a faster clock
access, but CLB access is limited to one-fourth of the
device. They also facilitate a faster 1/O interface.

Figure 35 is a conceptual diagram of the global net struc-
ture in the XC4000X.

Global Early buffers and Global Low-Skew buffers share a
single pad. Therefore, the same IPAD symbol can drive one
buffer of each type, in parallel. This configuration is particu-
larly useful when using the Fast Capture latches, as
described in “IOB Input Signals” on page 20. Paired Global

Early and Global Low-Skew buffers share a common input;
they cannot be driven by two different signals.

Choosing an XC4000X Clock Buffer

The clocking structure of the XC4000X provides a large
variety of features. However, it can be simple to use, with-
out understanding all the details. The software automati-
cally handles clocks, along with all other routing, when the
appropriate clock buffer is placed in the design. In fact, if a
buffer symbol called BUFG is placed, rather than a specific
type of buffer, the software even chooses the buffer most
appropriate for the design. The detailed information in this
section is provided for those users who want a finer level of
control over their designs.

If fine control is desired, use the following summary and
Table 15 on page 35 to choose an appropriate clock buffer.

* The simplest thing to do is to use a Global Low-Skew
buffer.

¢ If a faster clock path is needed, try a BUFG. The
software will first try to use a Global Low-Skew Buffer. If
timing requirements are not met, a faster buffer will
automatically be used.

« If a single quadrant of the chip is sufficient for the
clocked logic, and the timing requires a faster clock than
the Global Low-Skew buffer, use a Global Early buffer.

Global Low-Skew Buffers

Each corner of the XC4000X device has two Global
Low-Skew buffers. Any of the eight Global Low-Skew buff-
ers can drive any of the eight vertical Global lines in a col-
umn of CLBs. In addition, any of the buffers can drive any of
the four vertical lines accessing the IOBs on the left edge of
the device, and any of the eight vertical lines accessing the
IOBs on the right edge of the device. (See Figure 36 on
page 38.)

IOBs at the top and bottom edges of the device are
accessed through the vertical Global lines in the CLB array,
as in the XC4000E. Any Global Low-Skew buffer can,
therefore, access every IOB and CLB in the device.

The Global Low-Skew buffers can be driven by either
semi-dedicated pads or internal logic.

To use a Global Low-Skew buffer, instantiate a BUFGLS
element in a schematic or in HDL code. If desired, attach a
LOC attribute or property to direct placement to the desig-
nated location. For example, attach a LOC=T attribute or
property to direct that a BUFGLS be placed in one of the
two Global Low-Skew buffers on the top edge of the device,
or a LOC=TR to indicate the Global Low-Skew buffer on the
top edge of the device, on the right.

May 14, 1999 (Version 1.6)
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Figure 36: Any BUFGLS (GCKL1 - GCK8) Can
Drive Any or All Clock Inputs on the Device

Global Early Buffers

Each corner of the XC4000X device has two Global Early
buffers. The primary purpose of the Global Early buffers is
to provide an earlier clock access than the potentially
heavily-loaded Global Low-Skew buffers. A clock source
applied to both buffers will result in the Global Early clock
edge occurring several nanoseconds earlier than the Glo-
bal Low-Skew buffer clock edge, due to the lighter loading.

Global Early buffers also facilitate the fast capture of device
inputs, using the Fast Capture latches described in “IOB
Input Signals” on page 20. For Fast Capture, take a single
clock signal, and route it through both a Global Early buffer
and a Global Low-Skew buffer. (The two buffers share an
input pad.) Use the Global Early buffer to clock the Fast
Capture latch, and the Global Low-Skew buffer to clock the
normal input flip-flop or latch, as shown in Figure 17 on
page 23.

The Global Early buffers can also be used to provide a fast
Clock-to-Out on device output pins. However, an early clock
in the output flip-flop IOB must be taken into consideration
when calculating the internal clock speed for the design.

The Global Early buffers at the left and right edges of the
chip have slightly different capabilities than the ones at the
top and bottom. Refer to Figure 37, Figure 38, and
Figure 35 on page 36 while reading the following explana-
tion.

Each Global Early buffer can access the eight vertical Glo-
bal lines for all CLBs in the quadrant. Therefore, only
one-fourth of the CLB clock pins can be accessed. This
restriction is in large part responsible for the faster speed of
the buffers, relative to the Global Low-Skew buffers.
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Figure 37: Left and Right BUFGEs Can Drive Any or
All Clock Inputs in Same Quadrant or Edge (GCK1 is
shown. GCK2, GCK5 and GCKG6 are similar.)

The left-side Global Early buffers can each drive two of the
four vertical lines accessing the I0Bs on the entire left edge
of the device. The right-side Global Early buffers can each
drive two of the eight vertical lines accessing the IOBs on
the entire right edge of the device. (See Figure 37.)

Each left and right Global Early buffer can also drive half of
the I0Bs along either the top or bottom edge of the device,
using a dedicated line that can only be accessed through
the Global Early buffers.

The top and bottom Global Early buffers can drive half of
the 10Bs along either the left or right edge of the device, as
shown in Figure 38. They can only access the top and bot-
tom 10Bs via the CLB global lines.

8 7
| 0B | | I0B |
1v v 6
I I
0] CLB CLB o
B B
I I
] CLB CLB o
B
A A
2 > 10B | 10B | < 5
3 4

X6747

Figure 38: Top and Bottom BUFGEs Can Drive Any
or All Clock Inputs in Same Quadrant (GCK8 is
shown. GCK3, GCK4 and GCK?7 are similar.)
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The top and bottom Global Early buffers are about 1 ns
slower clock to out than the left and right Global Early buff-
ers.

The Global Early buffers can be driven by either semi-ded-
icated pads or internal logic. They share pads with the Glo-
bal Low-Skew buffers, so a single net can drive both global
buffers, as described above.

To use a Global Early buffer, place a BUFGE element in a
schematic or in HDL code. If desired, attach a LOC
attribute or property to direct placement to the designated
location. For example, attach a LOC=T attribute or property
to direct that a BUFGE be placed in one of the two Global
Early buffers on the top edge of the device, ora LOC=TR to
indicate the Global Early buffer on the top edge of the
device, on the right.

Power Distribution

Power for the FPGA is distributed through a grid to achieve
high noise immunity and isolation between logic and I/O.
Inside the FPGA, a dedicated Vcc and Ground ring sur-
rounding the logic array provides power to the I/O drivers,
as shown in Figure 39. An independent matrix of Vcc and
Ground lines supplies the interior logic of the device.

This power distribution grid provides a stable supply and
ground for all internal logic, providing the external package
power pins are all connected and appropriately de-coupled.
Typically, a 0.1 pF capacitor connected between each Vcc
pin and the board’s Ground plane will provide adequate
de-coupling.

Output buffers capable of driving/sinking the specified 12
mA loads under specified worst-case conditions may be
capable of driving/sinking up to 10 times as much current
under best case conditions.

Noise can be reduced by minimizing external load capaci-
tance and reducing simultaneous output transitions in the
same direction. It may also be beneficial to locate heavily
loaded output buffers near the Ground pads. The 1/0O Block
output buffers have a slew-rate limited mode (default) which
should be used where output rise and fall times are not
speed-critical.

GND
1
< l.— Ground and
o Vcce Ring for
T T T T T T T T‘ 1/0 Drivers
i e S S i eintls sty S
| | | | | | | |
B U N S W
| | | | | | | |
B T T W T
vee 30 L1 e

I i
b e
Logic

|
|
e Rt EEE e Power Grid
| | | | | | | |
RN A
| | | | i | | | |
h
U]
GND X5422

Figure 39: XC4000 Series Power Distribution

Pin Descriptions

There are three types of pins in the XC4000 Series
devices:

e Permanently dedicated pins
e User I/O pins that can have special functions
e Unrestricted user-programmable I/O pins.

Before and during configuration, all outputs not used for the
configuration process are 3-stated with a 50 kQ - 100 kQ
pull-up resistor.

After configuration, if an IOB is unused it is configured as
an input with a 50 kQ - 100 kQ pull-up resistor.

XC4000 Series devices have no dedicated Reset input.
Any user 1/0O can be configured to drive the Global
Set/Reset net, GSR. See “Global Set/Reset” on page 11
for more information on GSR.

XC4000 Series devices have no Powerdown control input,
as the XC3000 and XC2000 families do. The
XC3000/XC2000 Powerdown control also 3-stated all of the
device

I/0 pins. For XC4000 Series devices, use the global 3-state
net, GTS, instead. This net 3-states all outputs, but does
not place the device in low-power mode. See “IOB Output
Signals” on page 23 for more information on GTS.

Device pins for XC4000 Series devices are described in
Table 16. Pin functions during configuration for each of the
seven configuration modes are summarized in Table 22 on
page 58, in the “Configuration Timing” section.

May 14, 1999 (Version 1.6)
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Table 16: Pin Descriptions (Continued)

I/0 I/0
During | After
Pin Name | Config. | Config. Pin Description
If boundary scan is used, these pins are Test Data In, Test Clock, and Test Mode Select
inputs respectively. They come directly from the pads, bypassing the IOBs. These pins
yo |ean also be used as inputs to the CLB logic after configuration is completed.
TDI, TCK, If the BSCAN symbol is not placed in the design, all boundary scan functions are inhib-
I orl | ) S .

TMS (JTAG) ited once configuration is completed, and these pins become user-programmable 1/O.
The pins can be used automatically or user-constrained. To use them, use "LOC=" or
place the library components TDI, TCK, and TMS instead of the usual pad symbols. In-
put or output buffers must still be used.

High During Configuration (HDC) is driven High until the 1/0 go active. It is available as

HDC 0] I/0  |a control output indicating that configuration is not yet completed. After configuration,
HDC is a user-programmable 1/O pin.

Low During Configuration (LDC) is driven Low until the I/O go active. Itis available as a

LDC o I/O |control output indicating that configuration is not yet completed. After configuration,
LDC is a user-programmable I/O pin.

Before and during configuration, INIT is a bidirectional signal. A 1 kQ - 10 kQ external
pull-up resistor is recommended.
As an active-Low open-drain output, INIT is held Low during the power stabilization and

NIT e e internal clearing of the configuration memory. As an active-Low input, it can be used
to hold the FPGA in the internal WAIT state before the start of configuration. Master
mode devices stay in a WAIT state an additional 30 to 300 ps after INIT has gone High.
During configuration, a Low on this output indicates that a configuration data error has
occurred. After the I/O go active, INIT is a user-programmable I/O pin.

Four Primary Global inputs each drive a dedicated internal global net with short delay
PGCK1 - and minimal skew. If not used to drive a global buffer, any of these pins is a user-pro-
PGCK4 Weak Lor /O grammable I/O.
(XC4000E | Pull-up The PGCK1-PGCK4 pins drive the four Primary Global Buffers. Any input pad symbol
only) connected directly to the input of a BUFGP symbol is automatically placed on one of
these pins.
Four Secondary Global inputs each drive a dedicated internal global net with short delay
SGCK1 - and minimal skew. These internal global nets can also be driven from internal logic. If
SGCK4 Weak Lor /O not used to drive a global net, any of these pins is a user-programmable I/O pin.
(XC4000E | Pull-up The SGCK1-SGCKA4 pins provide the shortest path to the four Secondary Global Buff-
only) ers. Any input pad symbol connected directly to the input of a BUFGS symbol is auto-
matically placed on one of these pins.
Eight inputs can each drive a Global Low-Skew buffer. In addition, each can drive a Glo-
GCK1 - bal Early buffer. Each pair of global buffers can also be driven from internal logic, but
GCK8 Weak Lor /O must share an input signal. If not used to drive a global buffer, any of these pins is a
(XC4000X | Pull-up user-programmable 1/O.

only) Any input pad symbol connected directly to the input of a BUFGLS or BUFGE symbol
is automatically placed on one of these pins.

FCLK1 - Four inputs can each drive a Fast Clock (FCLK) buffer which can deliver a clock signal
FCLK4 to any 0B clock input in the octant of the die served by the Fast Clock buffer. Two Fast
(XC4000XLA | Weak Lor /O Clock buffers serve the two IOB octants on the left side of the die and the other two Fast
and Pull-up Clock buffers serve the two IOB octants on the right side of the die. On each side of the
XC4000XV die, one Fast Clock buffer serves the upper octant and the other serves the lower octant.

only) If not used to drive a Fast Clock buffer, any of these pins is a user-programmable 1/O.

May 14, 1999 (Version 1.6)
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Table 17: Boundary Scan Instructions

Instruction 12 Test I/0 Data
11 10 Selected TDO Source Source
0 0 EXTEST DR DR
0 0 1 |SAMPLE/PR DR Pin/Logic
ELOAD
0 1 0 USER 1 BSCAN. | User Logic
TDO1
0 1 1 USER 2 BSCAN. | User Logic
TDO2
1 0 0 |READBACK | Readback | Pin/Logic
Data
1 0 1 |CONFIGURE| DOUT Disabled
1 1 0 Reserved — —
1 1 1 BYPASS Bypass —
Register
Bit 0 ( TDO end) TDO.T
Bit 1 TDO.O
Bit 2
{ Top-edge I0Bs (Right to Left)

{ Left-edge I0Bs (Top to Bottom)

MDL1.T
MD1.0
MD1.I
MDO.!
MD2.1

{ Bottom-edge 10Bs (Left to Right)

{ Right-edge 10Bs (Bottom to Top)

B SCANT.UPD

(TDI end)

X6075

Figure 42: Boundary Scan Bit Sequence

Avoiding Inadvertent Boundary Scan

If TMS or TCK is used as user I/O, care must be taken to
ensure that at least one of these pins is held constant dur-
ing configuration. In some applications, a situation may
occur where TMS or TCK is driven during configuration.
This may cause the device to go into boundary scan mode
and disrupt the configuration process.

To prevent activation of boundary scan during configura-
tion, do either of the following:

« TMS: Tie High to put the Test Access Port controller
in a benign RESET state
» TCK: Tie High or Low—don't toggle this clock input.

For more information regarding boundary scan, refer to the
Xilinx Application Note XAPP 017.001, “Boundary Scan in
XC4000E Devices."

Optional l\ To User
l/ Logic
IBUF
BSCAN
[ ToI DI DO TDO
T™MS ™S DRCK [—
TCK TCK IDLE [—
To User
From — TDO1 SEL1 |— Logic
User Logic — TDO2 SEL2 [—
X2675

Figure 43: Boundary Scan Schematic Example

Configuration

Configuration is the process of loading design-specific pro-
gramming data into one or more FPGAs to define the func-
tional operation of the internal blocks and their
interconnections. This is somewhat like loading the com-
mand registers of a programmable peripheral chip. XC4000
Series devices use several hundred bits of configuration
data per CLB and its associated interconnects. Each con-
figuration bit defines the state of a static memory cell that
controls either a function look-up table bit, a multiplexer
input, or an interconnect pass transistor. The XACTstep
development system translates the design into a netlist file.
It automatically partitions, places and routes the logic and
generates the configuration data in PROM format.

Special Purpose Pins

Three configuration mode pins (M2, M1, M0) are sampled
prior to configuration to determine the configuration mode.
After configuration, these pins can be used as auxiliary
connections. M2 and MO can be used as inputs, and M1
can be used as an output. The XACT step development sys-
tem does not use these resources unless they are explicitly
specified in the design entry. This is done by placing a spe-
cial pad symbol called MD2, MD1, or MDO instead of the
input or output pad symbol.

In XC4000 Series devices, the mode pins have weak
pull-up resistors during configuration. With all three mode
pins High, Slave Serial mode is selected, which is the most
popular configuration mode. Therefore, for the most com-
mon configuration mode, the mode pins can be left uncon-
nected. (Note, however, that the internal pull-up resistor
value can be as high as 100 kQ.) After configuration, these
pins can individually have weak pull-up or pull-down resis-
tors, as specified in the design. A pull-down resistor value
of 4.7 kQ is recommended.

These pins are located in the lower left chip corner and are
near the readback nets. This location allows convenient
routing if compatibility with the XC2000 and XC3000 family
conventions of MO/RT, M1/RD is desired.

May 14, 1999 (Version 1.6)
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is passed through and is captured by each FPGA when it
recognizes the 0010 preamble. Following the length-count
data, each FPGA outputs a High on DOUT until it has
received its required number of data frames.

After an FPGA has received its configuration data, it
passes on any additional frame start bits and configuration
data on DOUT. When the total number of configuration
clocks applied after memory initialization equals the value
of the 24-bit length count, the FPGAs begin the start-up
sequence and become operational together. FPGA I/O are
normally released two CCLK cycles after the last configura-
tion bit is received. Figure 47 on page 53 shows the
start-up timing for an XC4000 Series device.

The daisy-chained bitstream is not simply a concatenation
of the individual bitstreams. The PROM file formatter must
be used to combine the bitstreams for a daisy-chained con-
figuration.

Multi-Family Daisy Chain

All Xilinx FPGAs of the XC2000, XC3000, and XC4000
Series use a compatible bitstream format and can, there-
fore, be connected in a daisy chain in an arbitrary
sequence. There is, however, one limitation. The lead
device must belong to the highest family in the chain. If the
chain contains XC4000 Series devices, the master nor-
mally cannot be an XC2000 or XC3000 device.

The reason for this rule is shown in Figure 47 on page 53.
Since all devices in the chain store the same length count
value and generate or receive one common sequence of
CCLK pulses, they all recognize length-count match on the
same CCLK edge, as indicated on the left edge of
Figure 47. The master device then generates additional
CCLK pulses until it reaches its finish point F. The different
families generate or require different numbers of additional
CCLK pulses until they reach F. Not reaching F means that
the device does not really finish its configuration, although
DONE may have gone High, the outputs became active,
and the internal reset was released. For the XC4000 Series
device, not reaching F means that readback cannot be ini-

tiated and most boundary scan instructions cannot be
used.

The user has some control over the relative timing of these
events and can, therefore, make sure that they occur at the
proper time and the finish point F is reached. Timing is con-
trolled using options in the bitstream generation software.

XC3000 Master with an XC4000 Series Slave

Some designers want to use an inexpensive lead device in
peripheral mode and have the more precious I/O pins of the
XC4000 Series devices all available for user 1/0O. Figure 44
provides a solution for that case.

This solution requires one CLB, one IOB and pin, and an
internal oscillator with a frequency of up to 5 MHz as a
clock source. The XC3000 master device must be config-
ured with late Internal Reset, which is the default option.

One CLB and one IOB in the lead XC3000-family device
are used to generate the additional CCLK pulse required by
the XC4000 Series devices. When the lead device removes
the internal RESET signal, the 2-bit shift register responds
to its clock input and generates an active Low output signal
for the duration of the subsequent clock period. An external
connection between this output and CCLK thus creates the
extra CCLK pulse.

OEIT
Output
Connected
Reset to CCLK

Active Low Output
Active High Output

>

corro
PrRrPROO

L etc
X5223

Figure 44: CCLK Generation for XC3000 Master
Driving an XC4000 Series Slave
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The default option, and the most practical one, is for DONE
to go High first, disconnecting the configuration data source
and avoiding any contention when the I/Os become active
one clock later. Reset/Set is then released another clock
period later to make sure that user-operation starts from
stable internal conditions. This is the most common
sequence, shown with heavy lines in Figure 47, but the
designer can modify it to meet particular requirements.

Normally, the start-up sequence is controlled by the internal
device oscillator output (CCLK), which is asynchronous to
the system clock.

XC4000 Series offers another start-up clocking option,
UCLK_NOSYNC. The three events described above need
not be triggered by CCLK. They can, as a configuration
option, be triggered by a user clock. This means that the
device can wake up in synchronism with the user system.

When the UCLK_SYNC option is enabled, the user can
externally hold the open-drain DONE output Low, and thus
stall all further progress in the start-up sequence until
DONE is released and has gone High. This option can be
used to force synchronization of several FPGAs to a com-
mon user clock, or to guarantee that all devices are suc-
cessfully configured before any I/Os go active.

If either of these two options is selected, and no user clock
is specified in the design or attached to the device, the chip
could reach a point where the configuration of the device is
complete and the Done pin is asserted, but the outputs do
not become active. The solution is either to recreate the bit-
stream specifying the start-up clock as CCLK, or to supply
the appropriate user clock.

Start-up Sequence

The Start-up sequence begins when the configuration
memory is full, and the total number of configuration clocks

received since INIT went High equals the loaded value of
the length count.

The next rising clock edge sets a flip-flop QO, shown in
Figure 48. QO is the leading bit of a 5-bit shift register. The
outputs of this register can be programmed to control three
events.

¢ The release of the open-drain DONE output

e The change of configuration-related pins to the user
function, activating all IOBs.

« The termination of the global Set/Reset initialization of
all CLB and IOB storage elements.

The DONE pin can also be wire-ANDed with DONE pins of
other FPGAs or with other external signals, and can then
be used as input to bit Q3 of the start-up register. This is
called “Start-up Timing Synchronous to Done In” and is
selected by either CCLK_SYNC or UCLK_SYNC.

When DONE is not used as an input, the operation is called
“Start-up Timing Not Synchronous to DONE In,” and is
selected by either CCLK_NOSYNC or UCLK_NOSYNC.

As a configuration option, the start-up control register
beyond QO can be clocked either by subsequent CCLK
pulses or from an on-chip user net called STARTUR.CLK.
These signals can be accessed by placing the STARTUP
library symbol.

Start-up from CCLK

If CCLK is used to drive the start-up, QO through Q3 pro-
vide the timing. Heavy lines in Figure 47 show the default
timing, which is compatible with XC2000 and XC3000
devices using early DONE and late Reset. The thin lines
indicate all other possible timing options.
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Master Serial Mode

In Master Serial mode, the CCLK output of the lead FPGA
drives a Xilinx Serial PROM that feeds the FPGA DIN input.
Each rising edge of the CCLK output increments the Serial
PROM internal address counter. The next data bit is put on
the SPROM data output, connected to the FPGA DIN pin.
The lead FPGA accepts this data on the subsequent rising
CCLK edge.

The lead FPGA then presents the preamble data—and all
data that overflows the lead device—on its DOUT pin.
There is an internal pipeline delay of 1.5 CCLK periods,
which means that DOUT changes on the falling CCLK
edge, and the next FPGA in the daisy chain accepts data
on the subsequent rising CCLK edge.

In the bitstream generation software, the user can specify
Fast ConfigRate, which, starting several bits into the first
frame, increases the CCLK frequency by a factor of eight.

CCLK
(Output)

@ Tckos

For actual timing values please refer to “Configuration
Switching Characteristics” on page 68. Be sure that the
serial PROM and slaves are fast enough to support this
data rate. XC2000, XC3000/A, and XC3100A devices do
not support the Fast ConfigRate option.

The SPROM CE input can be driven from either LDC or
DONE. Using LDC avoids potential contention on the DIN
pin, if this pin is configured as user-1/O, but LDC is then
restricted to be a permanently High user output after con-
figuration. Using DONE can also avoid contention on DIN,
provided the early DONE option is invoked.

Figure 51 on page 60 shows a full master/slave system.
The leftmost device is in Master Serial mode.

Master Serial mode is selected by a <000> on the mode
pins (M2, M1, MO0).

Serial Data In

X

Seri?gﬂ%ﬂg n-3 X n-2 X n- 1\>X n X
X3223
Description Symbol Min Max Units
CCLK DIN setup 1 Tbhsck 20 ns
DIN hold 2 Tckps 0 ns

Notes:
Low until Vcc is valid.

1. At power-up, Vcc must rise from 2.0 V to Vcc min in less than 25 ms, otherwise delay configuration by pulling PROGRAM

2. Master Serial mode timing is based on testing in slave mode.

Figure 53: Master Serial Mode Programming Switching Characteristics
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éﬂtﬁ&é ><K Address for Byte n Address for Byte n + 1
\v et @ TrAC
DO0-D7
XRXKXXKXKRIN o X
(@D Tpre— «— (@ Trep
RCLK /
(output) / ‘e ]

|

CCLK

CCLK
(output)
DOUT
(output) X be \X o7
Byten-1 X6078
Description Symbol Min Max Units

Delay to Address valid 1 TrAC 0 200 ns

RCLK Data setup time 2 Tpre 60 ns

Data hold time 3 TreD 0 ns

Notes: 1. At power-up, Vcc must rise from 2.0 V to Vcec min in less than 25 ms, otherwise delay configuration by pulling PROGRAM
Low until Vcc is valid.

2. The first Data byte is loaded and CCLK starts at the end of the first RCLK active cycle (rising edge).
This timing diagram shows that the EPROM requirements are extremely relaxed. EPROM access time can be longer than
500 ns. EPROM data output has no hold-time requirements.

Figure 55: Master Parallel Mode Programming Switching Characteristics
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Synchronous Peripheral Mode

Synchronous Peripheral mode can also be considered
Slave Parallel mode. An external signal drives the CCLK
input(s) of the FPGA(s). The first byte of parallel configura-
tion data must be available at the Data inputs of the lead
FPGA a short setup time before the rising CCLK edge.
Subsequent data bytes are clocked in on every eighth con-
secutive rising CCLK edge.

The same CCLK edge that accepts data, also causes the
RDY/BUSY output to go High for one CCLK period. The pin
name is a misnomer. In Synchronous Peripheral mode it is
really an ACKNOWLEDGE signal. Synchronous operation
does not require this response, but it is a meaningful signal
for test purposes. Note that RDY/BUSY is pulled High with
a high-impedance pullup prior to INIT going High.

NOTE:

The lead FPGA serializes the data and presents the pre-
amble data (and all data that overflows the lead device) on
its DOUT pin. There is an internal delay of 1.5 CCLK peri-
ods, which means that DOUT changes on the falling CCLK
edge, and the next FPGA in the daisy chain accepts data
on the subsequent rising CCLK edge.

In order to complete the serial shift operation, 10 additional
CCLK rising edges are required after the last data byte has
been loaded, plus one more CCLK cycle for each
daisy-chained device.

Synchronous Peripheral mode is selected by a <011> on
the mode pins (M2, M1, MO).

M2 can be shorted to Ground
if not used as 1/0

N/C 4.7 kQ N/C
— ’_/\/\/\,j ——
MO M1 M2 MO M1 M2
CLOCK CCLK CCLK
OPTIONAL
DAISY-CHAINED
DATA BUS D0-7 FPGAs
DOUT DIN DOUT |—
vee XC4000E/X XC4000E/X
SYNCHRO- SLAVE
47K0 NOUS
PERIPHERAL
CONTROL { I @/BUSY e
SIGNALS INIT DONE INIT DONE
4.7 kQ%
PROGRAM . PROGRAM PROGRAM

Figure 56: Synchronous Peripheral Mode Circuit Diagram

X9027
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Write to LCA Read Status
WS/CS0 \ / RS, CSO
RS, CS1 WS, CS1
-~ @ Tea

N , ,
<—@ — ®TCD @ @
Toc
1/ READY
bo-b7 _< BUSY b7
; A 5 5 ; A ;
CCLK R \ B \ ’ y ’
S LU W \_/ \_
—>|

RDY/BUSY N

DOUT X Previous Byte D6 X D7 X DO X D1 X D2

X6097

Description Symbol Min Max Units
Effective Write time 1 Tca 100 ns
. (CS0, WS=Low; RS, CS1=High)

write DIN setup time 2 Toc 60 ns
DIN hold time 3 Tep 0 ns
RDY/BUSY delay after end of 4 TwWTRB 60 ns
Write or Read

RDY RDY/BUSY active after beginning 7 60 ns
of Read
RDY/BUSY Low output (Note 4) 6 Tgusy 2 9 CCLK

periods

Notes: 1. Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High.
2. The time from the end of WS to CCLK cycle for the new byte of data depends on the completion of previous byte
processing and the phase of the internal timing generator for CCLK.
3. CCLK and DOUT timing is tested in slave mode.
4. Tgysy indicates that the double-buffered parallel-to-serial converter is not yet ready to receive new data. The shortest
Tgusy occurs when a byte is loaded into an empty parallel-to-serial converter. The longest Tgygy occurs when a new word
is loaded into the input register before the second-level buffer has started shifting out data

This timing diagram shows very relaxed requirements. Data need not be held beyond the rising edge of WS. RDY/BUSY wiill
go active within 60 ns after the end of WS. A new write may be asserted immediately after RDY/BUSY goes Low, but write
may not be terminated until RDY/BUSY has been High for one CCLK period.

Figure 59: Asynchronous Peripheral Mode Programming Switching Characteristics
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Configuration Switching Characteristics

Vce V

>

- Tror
_/

RE-PROGRAM

PROGRAM

INIT

CCLK OUTPUT or INPUT

—b <+— >300ns
v - [
— >

4— <300 ns

?’éoéq“ﬂﬁég")z VALID X DONE RESPONSE N
X1582 —» |&— <300ns
110
Master Modes (XC4000E/EX)
Description Symbol Min Max Units
MO = High Tpor 10 40 ms
Power-On Reset MO = Low TrPoR 40 130 ms
Program Latency Tp 30 200 Us per
CLB column
CCLK (output) Delay Ticck 40 250 Hs
CCLK (output) Period, slow Teelk 640 2000 ns
CCLK (output) Period, fast Teelk 80 250 ns
Master Modes (XC4000XL)
Description Symbol Min Max Units
MO = High Tror 10 40 ms
Power-On Reset MO = Low Tror 40 130 ms
Program Latency Tp 30 200 us per
CLB column
CCLK (output) Delay Ticck 40 250 Hs
CCLK (output) Period, slow Teolk 540 1600 ns
CCLK (output) Period, fast Teelk 67 200 ns
Slave and Peripheral Modes (All)
Description Symbol Min Max Units
Power-On Reset TroRr 10 33 ms
Program Latency Tp 30 200 us per
CLB column
CCLK (input) Delay (required) Ticck 4 V&S
CCLK (input) Period (required) Tcelk 100 ns
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Product Availability

Table 24, Table 25, and Table 26 show the planned packages and speed grades for XC4000-Series devices. Call your local
sales office for the latest availability information, or see the Xilinx website at http://www.xilinx.com for the latest revision of
the specifications.

Table 24: Component Availability Chart for XC4000XL FPGAs
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http://www.xilinx.com/partinfo/databook.htm#XC4000
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Table 25: Component Availability Chart for XC4000E FPGAs
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I= Industrial T;=-40°C to +100°C

Table 26: Component Availability Chart for XC4000EX FPGAs

PINS 208 240 299 304 352 411 432
TYPE High-Perf. High-Perf. Ceram. High-Perf. Plast. Ceram. Plast.
QFP QFP PGA QFP BGA PGA BGA
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