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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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XC4000E and XC4000X Series
Compared to the XC4000
For readers already familiar with the XC4000 family of Xil-
inx Field Programmable Gate Arrays, the major new fea-
tures in the XC4000 Series devices are listed in this
section. The biggest advantages of XC4000E and
XC4000X devices are significantly increased system
speed, greater capacity, and new architectural features,
particularly Select-RAM memory. The XC4000X devices
also offer many new routing features, including special
high-speed clock buffers that can be used to capture input
data with minimal delay.

Any XC4000E device is pinout- and bitstream-compatible
with the corresponding XC4000 device. An existing
XC4000 bitstream can be used to program an XC4000E
device. However, since the XC4000E includes many new
features, an XC4000E bitstream cannot be loaded into an
XC4000 device.

XC4000X Series devices are not bitstream-compatible with
equivalent array size devices in the XC4000 or XC4000E
families. However, equivalent array size devices, such as
the XC4025, XC4025E, XC4028EX, and XC4028XL, are
pinout-compatible.

Improvements in XC4000E and XC4000X

Increased System Speed

XC4000E and XC4000X devices can run at synchronous
system clock rates of up to 80 MHz, and internal perfor-
mance can exceed 150 MHz. This increase in performance
over the previous families stems from improvements in both
device processing and system architecture. XC4000
Series devices use a sub-micron multi-layer metal process.
In addition, many architectural improvements have been
made, as described below.

The XC4000XL family is a high performance 3.3V family
based on 0.35µ SRAM technology and supports system
speeds to 80 MHz.

PCI Compliance

XC4000 Series -2 and faster speed grades are fully PCI
compliant. XC4000E and XC4000X devices can be used to
implement a one-chip PCI solution.

Carry Logic

The speed of the carry logic chain has increased dramati-
cally. Some parameters, such as the delay on the carry
chain through a single CLB (TBYP), have improved by as

much as 50% from XC4000 values. See “Fast Carry Logic”
on page 18 for more information.

Select-RAM Memory: Edge-Triggered, Synchro-
nous RAM Modes

The RAM in any CLB can be configured for synchronous,
edge-triggered, write operation. The read operation is not
affected by this change to an edge-triggered write.

Dual-Port RAM

A separate option converts the 16x2 RAM in any CLB into a
16x1 dual-port RAM with simultaneous Read/Write.

The function generators in each CLB can be configured as
either level-sensitive (asynchronous) single-port RAM,
edge-triggered (synchronous) single-port RAM, edge-trig-
gered (synchronous) dual-port RAM, or as combinatorial
logic.

Configurable RAM Content

The RAM content can now be loaded at configuration time,
so that the RAM starts up with user-defined data.

H Function Generator

In current XC4000 Series devices, the H function generator
is more versatile than in the original XC4000. Its inputs can
come not only from the F and G function generators but
also from up to three of the four control input lines. The H
function generator can thus be totally or partially indepen-
dent of the other two function generators, increasing the
maximum capacity of the device.

IOB Clock Enable

The two flip-flops in each IOB have a common clock enable
input, which through configuration can be activated individ-
ually for the input or output flip-flop or both. This clock
enable operates exactly like the EC pin on the XC4000
CLB. This new feature makes the IOBs more versatile, and
avoids the need for clock gating.

Output Drivers

The output pull-up structure defaults to a TTL-like
totem-pole. This driver is an n-channel pull-up transistor,
pulling to a voltage one transistor threshold below Vcc, just
like the XC4000 family outputs. Alternatively, XC4000
Series devices can be globally configured with CMOS out-
puts, with p-channel pull-up transistors pulling to Vcc. Also,
the configurable pull-up resistor in the XC4000 Series is a
p-channel transistor that pulls to Vcc, whereas in the origi-
nal XC4000 family it is an n-channel transistor that pulls to
a voltage one transistor threshold below Vcc.
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* Max values of Typical Gate Range include 20-30% of CLBs used as RAM.

Note: All functionality in low-voltage families is the same as
in the corresponding 5-Volt family, except where numerical
references are made to timing or power.

Description
XC4000 Series devices are implemented with a regular,
flexible, programmable architecture of Configurable Logic
Blocks (CLBs), interconnected by a powerful hierarchy of
versatile routing resources, and surrounded by a perimeter
of programmable Input/Output Blocks (IOBs). They have
generous routing resources to accommodate the most
complex interconnect patterns.

The devices are customized by loading configuration data
into internal memory cells. The FPGA can either actively
read its configuration data from an external serial or
byte-parallel PROM (master modes), or the configuration
data can be written into the FPGA from an external device
(slave and peripheral modes).

XC4000 Series FPGAs are supported by powerful and
sophisticated software, covering every aspect of design
from schematic or behavioral entry, floor planning, simula-
tion, automatic block placement and routing of intercon-
nects, to the creation, downloading, and readback of the
configuration bit stream.

Because Xilinx FPGAs can be reprogrammed an unlimited
number of times, they can be used in innovative designs

where hardware is changed dynamically, or where hard-
ware must be adapted to different user applications.
FPGAs are ideal for shortening design and development
cycles, and also offer a cost-effective solution for produc-
tion rates well beyond 5,000 systems per month.
n
’
.

Taking Advantage of Re-configuration
FPGA devices can be re-configured to change logic func-
tion while resident in the system. This capability gives the
system designer a new degree of freedom not available
with any other type of logic.

Hardware can be changed as easily as software. Design
updates or modifications are easy, and can be made to
products already in the field. An FPGA can even be re-con-
figured dynamically to perform different functions at differ-
ent times.

Re-configurable logic can be used to implement system
self-diagnostics, create systems capable of being re-con-
figured for different environments or operations, or imple-
ment multi-purpose hardware for a given application. As an
added benefit, using re-configurable FPGA devices simpli-
fies hardware design and debugging and shortens product
time-to-market.

Table 1: XC4000E and XC4000X Series Field Programmable Gate Arrays

Device
Logic
Cells

Max Logic
Gates

(No RAM)

Max. RAM
Bits

(No Logic)

Typical
Gate Range

(Logic and RAM)*
CLB

Matrix
Total
CLBs

Number
of

Flip-Flops
Max.

User I/O
XC4002XL 152 1,600 2,048 1,000 - 3,000 8 x 8 64 256 64
XC4003E 238 3,000 3,200 2,000 - 5,000 10 x 10 100 360 80
XC4005E/XL 466 5,000 6,272 3,000 - 9,000 14 x 14 196 616 112
XC4006E 608 6,000 8,192 4,000 - 12,000 16 x 16 256 768 128
XC4008E 770 8,000 10,368 6,000 - 15,000 18 x 18 324 936 144
XC4010E/XL 950 10,000 12,800 7,000 - 20,000 20 x 20 400 1,120 160
XC4013E/XL 1368 13,000 18,432 10,000 - 30,000 24 x 24 576 1,536 192
XC4020E/XL 1862 20,000 25,088 13,000 - 40,000 28 x 28 784 2,016 224
XC4025E 2432 25,000 32,768 15,000 - 45,000 32 x 32 1,024 2,560 256
XC4028EX/XL 2432 28,000 32,768 18,000 - 50,000 32 x 32 1,024 2,560 256
XC4036EX/XL 3078 36,000 41,472 22,000 - 65,000 36 x 36 1,296 3,168 288
XC4044XL 3800 44,000 51,200 27,000 - 80,000 40 x 40 1,600 3,840 320
XC4052XL 4598 52,000 61,952 33,000 - 100,000 44 x 44 1,936 4,576 352
XC4062XL 5472 62,000 73,728 40,000 - 130,000 48 x 48 2,304 5,376 384
XC4085XL 7448 85,000 100,352 55,000 - 180,000 56 x 56 3,136 7,168 448
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Figure 4:    16x2 (or 16x1) Edge-Triggered Single-Port RAM
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Figure 5:   32x1 Edge-Triggered Single-Port RAM (F and G addresses are identical)
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Dual-Port Edge-Triggered Mode

In dual-port mode, both the F and G function generators
are used to create a single 16x1 RAM array with one write
port and two read ports. The resulting RAM array can be
read and written simultaneously at two independent
addresses. Simultaneous read and write operations at the
same address are also supported.

Dual-port mode always has edge-triggered write timing, as
shown in Figure 3.

Figure 6 shows a simple model of an XC4000 Series CLB
configured as dual-port RAM. One address port, labeled
A[3:0], supplies both the read and write address for the F
function generator. This function generator behaves the
same as a 16x1 single-port edge-triggered RAM array. The
RAM output, Single Port Out (SPO), appears at the F func-
tion generator output. SPO, therefore, reflects the data at
address A[3:0].

The other address port, labeled DPRA[3:0] for Dual Port
Read Address, supplies the read address for the G function
generator. The write address for the G function generator,
however, comes from the address A[3:0]. The output from
this 16x1 RAM array, Dual Port Out (DPO), appears at the
G function generator output. DPO, therefore, reflects the
data at address DPRA[3:0].

Therefore, by using A[3:0] for the write address and
DPRA[3:0] for the read address, and reading only the DPO
output, a FIFO that can read and write simultaneously is
easily generated. Simultaneous access doubles the effec-
tive throughput of the FIFO.

The relationships between CLB pins and RAM inputs and
outputs for dual-port, edge-triggered mode are shown in
Table 6. See Figure 7 on page 16 for a block diagram of a
CLB configured in this mode.

Table 6: Dual-Port Edge-Triggered RAM Signals

Note: The pulse following the active edge of WCLK (TWPS
in Figure 3) must be less than one millisecond wide. For
most applications, this requirement is not overly restrictive;
however, it must not be forgotten. Stopping WCLK at this
point in the write cycle could result in excessive current and
even damage to the larger devices if many CLBs are con-
figured as edge-triggered RAM.

Single-Port Level-Sensitive Timing Mode

Note: Edge-triggered mode is recommended for all new
designs. Level-sensitive mode, also called asynchronous
mode, is still supported for XC4000 Series backward-com-
patibility with the XC4000 family.

Level-sensitive RAM timing is simple in concept but can be
complicated in execution. Data and address signals are
presented, then a positive pulse on the write enable pin
(WE) performs a write into the RAM at the designated
address. As indicated by the “level-sensitive” label, this
RAM acts like a latch. During the WE High pulse, changing
the data lines results in new data written to the old address.
Changing the address lines while WE is High results in spu-
rious data written to the new address—and possibly at
other addresses as well, as the address lines inevitably do
not all change simultaneously.

The user must generate a carefully timed WE signal. The
delay on the WE signal and the address lines must be care-
fully verified to ensure that WE does not become active
until after the address lines have settled, and that WE goes
inactive before the address lines change again. The data
must be stable before and after the falling edge of WE.

In practical terms, WE is usually generated by a 2X clock. If
a 2X clock is not available, the falling edge of the system
clock can be used. However, there are inherent risks in this
approach, since the WE pulse must be guaranteed inactive
before the next rising edge of the system clock. Several
older application notes are available from Xilinx that dis-
cuss the design of level-sensitive RAMs.

However, the edge-triggered RAM available in the XC4000
Series is superior to level-sensitive RAM for almost every
application.
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Figure 6:   XC4000 Series Dual-Port RAM, Simple
Model

RAM Signal CLB Pin Function
D D0 Data In
A[3:0] F1-F4 Read Address for F,

Write Address for F and G
DPRA[3:0] G1-G4 Read Address for G
WE WE Write Enable
WCLK K Clock
SPO F’ Single Port Out

(addressed by A[3:0])
DPO G’ Dual Port Out

(addressed by DPRA[3:0])
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Figure 8 shows the write timing for level-sensitive, sin-
gle-port RAM.

The relationships between CLB pins and RAM inputs and
outputs for single-port level-sensitive mode are shown in
Table 7.

Figure 9 and Figure 10 show block diagrams of a CLB con-
figured as 16x2 and 32x1 level-sensitive, single-port RAM.

Initializing RAM at Configuration

Both RAM and ROM implementations of the XC4000
Series devices are initialized during configuration. The ini-
tial contents are defined via an INIT attribute or property

attached to the RAM or ROM symbol, as described in the
schematic library guide. If not defined, all RAM contents
are initialized to all zeros, by default.

RAM initialization occurs only during configuration. The
RAM content is not affected by Global Set/Reset.

Table 7: Single-Port Level-Sensitive RAM Signals
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Figure 7:   16x1 Edge-Triggered Dual-Port RAM
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Figure 8:   Level-Sensitive RAM Write Timing
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Input/Output Blocks (IOBs)
User-configurable input/output blocks (IOBs) provide the
interface between external package pins and the internal
logic. Each IOB controls one package pin and can be con-
figured for input, output, or bidirectional signals.

Figure 15 shows a simplified block diagram of the
XC4000E IOB. A more complete diagram which includes
the boundary scan logic of the XC4000E IOB can be found
in Figure 40 on page 43, in the “Boundary Scan” section.

The XC4000X IOB contains some special features not
included in the XC4000E IOB. These features are high-
lighted in a simplified block diagram found in Figure 16, and
discussed throughout this section. When XC4000X special
features are discussed, they are clearly identified in the
text. Any feature not so identified is present in both
XC4000E and XC4000X devices.

IOB Input Signals

Two paths, labeled I1 and I2 in Figure 15 and Figure 16,
bring input signals into the array. Inputs also connect to an
input register that can be programmed as either an
edge-triggered flip-flop or a level-sensitive latch.

The choice is made by placing the appropriate library sym-
bol. For example, IFD is the basic input flip-flop (rising edge
triggered), and ILD is the basic input latch (transpar-
ent-High). Variations with inverted clocks are available, and
some combinations of latches and flip-flops can be imple-
mented in a single IOB, as described in the XACT Libraries
Guide.

The XC4000E inputs can be globally configured for either
TTL (1.2V) or 5.0 volt CMOS thresholds, using an option in
the bitstream generation software. There is a slight input
hysteresis of about 300mV. The XC4000E output levels are
also configurable; the two global adjustments of input
threshold and output level are independent.

Inputs on the XC4000XL are TTL compatible and 3.3V
CMOS compatible. Outputs on the XC4000XL are pulled to
the 3.3V positive supply.

The inputs of XC4000 Series 5-Volt devices can be driven
by the outputs of any 3.3-Volt device, if the 5-Volt inputs are
in TTL mode.

Supported sources for XC4000 Series device inputs are
shown in Table 8.
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Figure 14:   Detail of XC4000E Dedicated Carry Logic
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Any XC4000 Series 5-Volt device with its outputs config-
ured in TTL mode can drive the inputs of any typical
3.3-Volt device. (For a detailed discussion of how to inter-
face between 5 V and 3.3 V devices, see the 3V Products
section of The Programmable Logic Data Book.)

Supported destinations for XC4000 Series device outputs
are shown in Table 12.

An output can be configured as open-drain (open-collector)
by placing an OBUFT symbol in a schematic or HDL code,
then tying the 3-state pin (T) to the output signal, and the
input pin (I) to Ground. (See Figure 18.)

Table 12: Supported Destinations for XC4000 Series
Outputs

Output Slew Rate

The slew rate of each output buffer is, by default, reduced,
to minimize power bus transients when switching non-criti-
cal signals. For critical signals, attach a FAST attribute or
property to the output buffer or flip-flop.

For XC4000E devices, maximum total capacitive load for
simultaneous fast mode switching in the same direction is
200 pF for all package pins between each Power/Ground
pin pair. For XC4000X devices, additional internal

Power/Ground pin pairs are connected to special Power
and Ground planes within the packages, to reduce ground
bounce. Therefore, the maximum total capacitive load is
300 pF between each external Power/Ground pin pair.
Maximum loading may vary for the low-voltage devices.

For slew-rate limited outputs this total is two times larger for
each device type: 400 pF for XC4000E devices and 600 pF
for XC4000X devices. This maximum capacitive load
should not be exceeded, as it can result in ground bounce
of greater than 1.5 V amplitude and more than 5 ns dura-
tion. This level of ground bounce may cause undesired
transient behavior on an output, or in the internal logic. This
restriction is common to all high-speed digital ICs, and is
not particular to Xilinx or the XC4000 Series.

XC4000 Series devices have a feature called “Soft
Start-up,” designed to reduce ground bounce when all out-
puts are turned on simultaneously at the end of configura-
tion. When the configuration process is finished and the
device starts up, the first activation of the outputs is auto-
matically slew-rate limited. Immediately following the initial
activation of the I/O, the slew rate of the individual outputs
is determined by the individual configuration option for each
IOB.

Global Three-State

A separate Global 3-State line (not shown in Figure 15 or
Figure 16) forces all FPGA outputs to the high-impedance
state, unless boundary scan is enabled and is executing an
EXTEST instruction. This global net (GTS) does not com-
pete with other routing resources; it uses a dedicated distri-
bution network.

GTS can be driven from any user-programmable pin as a
global 3-state input. To use this global net, place an input
pad and input buffer in the schematic or HDL code, driving
the GTS pin of the STARTUP symbol. A specific pin loca-
tion can be assigned to this input using a LOC attribute or
property, just as with any other user-programmable pad. An
inverter can optionally be inserted after the input buffer to
invert the sense of the Global 3-State signal. Using GTS is
similar to GSR. See Figure 2 on page 11 for details.

Alternatively, GTS can be driven from any internal node.

Destination

XC4000 Series
Outputs

3.3 V,
CMOS

5 V,
TTL

5 V,
CMOS

Any typical device, Vcc = 3.3 V,
CMOS-threshold inputs

√ √ some1

1. Only if destination device has 5-V tolerant inputs

Any device, Vcc = 5 V,
TTL-threshold inputs

√ √ √

Any device, Vcc = 5 V,
CMOS-threshold inputs

Unreliable
Data

√

X6702

OPAD
OBUFT

Figure 18:   Open-Drain Output
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or clear on reset and after configuration. Other than the glo-
bal GSR net, no user-controlled set/reset signal is available
to the I/O flip-flops. The choice of set or clear applies to
both the initial state of the flip-flop and the response to the
Global Set/Reset pulse. See “Global Set/Reset” on
page 11 for a description of how to use GSR.

JTAG Support

Embedded logic attached to the IOBs contains test struc-
tures compatible with IEEE Standard 1149.1 for boundary
scan testing, permitting easy chip and board-level testing.
More information is provided in “Boundary Scan” on
page 42.

Three-State Buffers
A pair of 3-state buffers is associated with each CLB in the
array. (See Figure 27 on page 30.) These 3-state buffers
can be used to drive signals onto the nearest horizontal
longlines above and below the CLB. They can therefore be
used to implement multiplexed or bidirectional buses on the
horizontal longlines, saving logic resources. Programmable
pull-up resistors attached to these longlines help to imple-
ment a wide wired-AND function.

The buffer enable is an active-High 3-state (i.e. an
active-Low enable), as shown in Table 13.

Another 3-state buffer with similar access is located near
each I/O block along the right and left edges of the array.
(See Figure 33 on page 34.)

The horizontal longlines driven by the 3-state buffers have
a weak keeper at each end. This circuit prevents undefined
floating levels. However, it is overridden by any driver, even
a pull-up resistor.

Special longlines running along the perimeter of the array
can be used to wire-AND signals coming from nearby IOBs
or from internal longlines. These longlines form the wide
edge decoders discussed in “Wide Edge Decoders” on
page 27.

Three-State Buffer Modes

The 3-state buffers can be configured in three modes:

• Standard 3-state buffer
• Wired-AND with input on the I pin
• Wired OR-AND

Standard 3-State Buffer

All three pins are used. Place the library element BUFT.
Connect the input to the I pin and the output to the O pin.
The T pin is an active-High 3-state (i.e. an active-Low
enable). Tie the T pin to Ground to implement a standard
buffer.

Wired-AND with Input on the I Pin

The buffer can be used as a Wired-AND. Use the WAND1
library symbol, which is essentially an open-drain buffer.
WAND4, WAND8, and WAND16 are also available. See the
XACT Libraries Guide for further information.

The T pin is internally tied to the I pin. Connect the input to
the I pin and the output to the O pin. Connect the outputs of
all the WAND1s together and attach a PULLUP symbol.

Wired OR-AND

The buffer can be configured as a Wired OR-AND. A High
level on either input turns off the output. Use the
WOR2AND library symbol, which is essentially an
open-drain 2-input OR gate. The two input pins are func-
tionally equivalent. Attach the two inputs to the I0 and I1
pins and tie the output to the O pin. Tie the outputs of all the
WOR2ANDs together and attach a PULLUP symbol.

Three-State Buffer Examples

Figure 21 shows how to use the 3-state buffers to imple-
ment a wired-AND function. When all the buffer inputs are
High, the pull-up resistor(s) provide the High output.

Figure 22 shows how to use the 3-state buffers to imple-
ment a multiplexer. The selection is accomplished by the
buffer 3-state signal.

Pay particular attention to the polarity of the T pin when
using these buffers in a design. Active-High 3-state (T) is
identical to an active-Low output enable, as shown in
Table 13.

Table 13: Three-State Buffer Functionality

IN T OUT
X 1 Z
IN 0 IN
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Figure 21:   Open-Drain Buffers Implement a Wired-AND Function
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Wide Edge Decoders
Dedicated decoder circuitry boosts the performance of
wide decoding functions. When the address or data field is
wider than the function generator inputs, FPGAs need
multi-level decoding and are thus slower than PALs.
XC4000 Series CLBs have nine inputs. Any decoder of up
to nine inputs is, therefore, compact and fast. However,
there is also a need for much wider decoders, especially for
address decoding in large microprocessor systems.

An XC4000 Series FPGA has four programmable decoders
located on each edge of the device. The inputs to each
decoder are any of the IOB I1 signals on that edge plus one
local interconnect per CLB row or column. Each row or col-
umn of CLBs provides up to three variables or their compli-
ments., as shown in Figure 23. Each decoder generates a
High output (resistor pull-up) when the AND condition of
the selected inputs, or their complements, is true. This is
analogous to a product term in typical PAL devices.

Each of these wired-AND gates is capable of accepting up
to 42 inputs on the XC4005E and 72 on the XC4013E.
There are up to 96 inputs for each decoder on the
XC4028X and 132 on the XC4052X. The decoders may
also be split in two when a larger number of narrower
decoders are required, for a maximum of 32 decoders per
device.

The decoder outputs can drive CLB inputs, so they can be
combined with other logic to form a PAL-like AND/OR struc-
ture. The decoder outputs can also be routed directly to the
chip outputs. For fastest speed, the output should be on the
same chip edge as the decoder. Very large PALs can be
emulated by ORing the decoder outputs in a CLB. This
decoding feature covers what has long been considered a
weakness of older FPGAs. Users often resorted to external
PALs for simple but fast decoding functions. Now, the dedi-
cated decoders in the XC4000 Series device can imple-
ment these functions fast and efficiently.

To use the wide edge decoders, place one or more of the
WAND library symbols (WAND1, WAND4, WAND8,
WAND16). Attach a DECODE attribute or property to each
WAND symbol. Tie the outputs together and attach a PUL-

LUP symbol. Location attributes or properties such as L
(left edge) or TR (right half of top edge) should also be used
to ensure the correct placement of the decoder inputs.

On-Chip Oscillator
XC4000 Series devices include an internal oscillator. This
oscillator is used to clock the power-on time-out, for config-
uration memory clearing, and as the source of CCLK in
Master configuration modes. The oscillator runs at a nomi-
nal 8 MHz frequency that varies with process, Vcc, and
temperature. The output frequency falls between 4 and 10
MHz.

DNDCDBDA

A B C N

Z = DA • A + DB • B + DC • C + DN • N
~100 kΩ

"Weak Keeper"

X6466

BUFT BUFT BUFT BUFT

Figure 22:   3-State Buffers Implement a Multiplexer
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INTERCONNECT

(           C) .....

(A • B • C) .....

(A • B • C) .....

(A • B • C) .....

.I1.I1

X2627

C

Figure 23:   XC4000 Series Edge Decoding Example

F16K

F500K

F8M

F490

F15

X6703

OSC4

Figure 24:   XC4000 Series Oscillator Symbol
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Table 14: Routing per CLB in XC4000 Series Devices

Programmable Switch Matrices

The horizontal and vertical single- and double-length lines
intersect at a box called a programmable switch matrix
(PSM). Each switch matrix consists of programmable pass
transistors used to establish connections between the lines
(see Figure 26).

For example, a single-length signal entering on the right
side of the switch matrix can be routed to a single-length
line on the top, left, or bottom sides, or any combination
thereof, if multiple branches are required. Similarly, a dou-
ble-length signal can be routed to a double-length line on
any or all of the other three edges of the programmable
switch matrix.

Single-Length Lines

Single-length lines provide the greatest interconnect flexi-
bility and offer fast routing between adjacent blocks. There
are eight vertical and eight horizontal single-length lines
associated with each CLB. These lines connect the switch-
ing matrices that are located in every row and a column of
CLBs.

Single-length lines are connected by way of the program-
mable switch matrices, as shown in Figure 28. Routing
connectivity is shown in Figure 27.

Single-length lines incur a delay whenever they go through
a switching matrix. Therefore, they are not suitable for rout-
ing signals for long distances. They are normally used to
conduct signals within a localized area and to provide the
branching for nets with fanout greater than one.

x5994
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Connect
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Long Global
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Carry
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Direct

Connect

Figure 25:   High-Level Routing Diagram of XC4000 Series CLB (shaded arrows indicate XC4000X only)

XC4000E XC4000X
Vertical Horizontal Vertical Horizontal

Singles 8 8 8 8
Doubles 4 4 4 4
Quads 0 0 12 12
Longlines 6 6 10 6
Direct
Connects

0 0 2 2

Globals 4 0 8 0
Carry Logic 2 0 1 0
Total 24 18 45 32
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Double
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gle
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Figure 26:   Programmable Switch Matrix (PSM)
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Double-Length Lines

The double-length lines consist of a grid of metal segments,
each twice as long as the single-length lines: they run past
two CLBs before entering a switch matrix. Double-length
lines are grouped in pairs with the switch matrices stag-
gered, so that each line goes through a switch matrix at
every other row or column of CLBs (see Figure 28).

There are four vertical and four horizontal double-length
lines associated with each CLB. These lines provide faster
signal routing over intermediate distances, while retaining
routing flexibility. Double-length lines are connected by way
of the programmable switch matrices. Routing connectivity
is shown in Figure 27.

Quad Lines (XC4000X only)

XC4000X devices also include twelve vertical and twelve
horizontal quad lines per CLB row and column. Quad lines
are four times as long as the single-length lines. They are
interconnected via buffered switch matrices (shown as dia-
monds in Figure 27 on page 30). Quad lines run past four
CLBs before entering a buffered switch matrix. They are
grouped in fours, with the buffered switch matrices stag-
gered, so that each line goes through a buffered switch
matrix at every fourth CLB location in that row or column.
(See Figure 29.)

The buffered switch matrixes have four pins, one on each
edge. All of the pins are bidirectional. Any pin can drive any
or all of the other pins.

Each buffered switch matrix contains one buffer and six
pass transistors. It resembles the programmable switch
matrix shown in Figure 26, with the addition of a program-
mable buffer. There can be up to two independent inputs

and up to two independent outputs. Only one of the inde-
pendent inputs can be buffered.

The place and route software automatically uses the timing
requirements of the design to determine whether or not a
quad line signal should be buffered. A heavily loaded signal
is typically buffered, while a lightly loaded one is not. One
scenario is to alternate buffers and pass transistors. This
allows both vertical and horizontal quad lines to be buffered
at alternating buffered switch matrices.

Due to the buffered switch matrices, quad lines are very
fast. They provide the fastest available method of routing
heavily loaded signals for long distances across the device.

Longlines

Longlines form a grid of metal interconnect segments that
run the entire length or width of the array. Longlines are
intended for high fan-out, time-critical signal nets, or nets
that are distributed over long distances. In XC4000X
devices, quad lines are preferred for critical nets, because
the buffered switch matrices make them faster for high
fan-out nets.

Two horizontal longlines per CLB can be driven by 3-state
or open-drain drivers (TBUFs). They can therefore imple-
ment unidirectional or bidirectional buses, wide multiplex-
ers, or wired-AND functions. (See “Three-State Buffers” on
page 26 for more details.)

Each horizontal longline driven by TBUFs has either two
(XC4000E) or eight (XC4000X) pull-up resistors. To acti-
vate these resistors, attach a PULLUP symbol to the
long-line net. The software automatically activates the
appropriate number of pull-ups. There is also a weak
keeper at each end of these two horizontal longlines. This

CLB

PSM PSM

PSMPSM

CLB CLB

CLB CLB CLB

CLB CLB CLB

Doubles

Singles

Doubles

X6601

Figure 28: Single- and Double-Length Lines, with
Programmable Switch Matrices (PSMs)

CLB

CLB

CLB

CLB

CLB

CLB

CLB
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X9014

Figure 29:   Quad Lines (XC4000X only)
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Global Nets and Buffers (XC4000X only)

Eight vertical longlines in each CLB column are driven by
special global buffers. These longlines are in addition to the
vertical longlines used for standard interconnect. The glo-
bal lines are broken in the center of the array, to allow faster
distribution and to minimize skew across the whole array.
Each half-column global line has its own buffered multi-
plexer, as shown in Figure 35. The top and bottom global
lines cannot be connected across the center of the device,
as this connection might introduce unacceptable skew. The
top and bottom halves of the global lines must be sepa-
rately driven — although they can be driven by the same
global buffer.

The eight global lines in each CLB column can be driven by
either of two types of global buffers. They can also be
driven by internal logic, because they can be accessed by
single, double, and quad lines at the top, bottom, half, and
quarter points. Consequently, the number of different
clocks that can be used simultaneously in an XC4000X
device is very large.

There are four global lines feeding the IOBs at the left edge
of the device. IOBs along the right edge have eight global
lines. There is a single global line along the top and bottom
edges with access to the IOBs. All IOB global lines are bro-
ken at the center. They cannot be connected across the
center of the device, as this connection might introduce
unacceptable skew.

IOB global lines can be driven from two types of global buff-
ers, or from local interconnect. Alternatively, top and bottom
IOBs can be clocked from the global lines in the adjacent
CLB column.

Two different types of clock buffers are available in the
XC4000X:

• Global Low-Skew Buffers (BUFGLS)
• Global Early Buffers (BUFGE)

Global Low-Skew Buffers are the standard clock buffers.
They should be used for most internal clocking, whenever a
large portion of the device must be driven.

Global Early Buffers are designed to provide a faster clock
access, but CLB access is limited to one-fourth of the
device. They also facilitate a faster I/O interface.

Figure 35 is a conceptual diagram of the global net struc-
ture in the XC4000X.

Global Early buffers and Global Low-Skew buffers share a
single pad. Therefore, the same IPAD symbol can drive one
buffer of each type, in parallel. This configuration is particu-
larly useful when using the Fast Capture latches, as
described in “IOB Input Signals” on page 20. Paired Global

Early and Global Low-Skew buffers share a common input;
they cannot be driven by two different signals.

Choosing an XC4000X Clock Buffer

The clocking structure of the XC4000X provides a large
variety of features. However, it can be simple to use, with-
out understanding all the details. The software automati-
cally handles clocks, along with all other routing, when the
appropriate clock buffer is placed in the design. In fact, if a
buffer symbol called BUFG is placed, rather than a specific
type of buffer, the software even chooses the buffer most
appropriate for the design. The detailed information in this
section is provided for those users who want a finer level of
control over their designs.

If fine control is desired, use the following summary and
Table 15 on page 35 to choose an appropriate clock buffer.

• The simplest thing to do is to use a Global Low-Skew
buffer.

• If a faster clock path is needed, try a BUFG. The
software will first try to use a Global Low-Skew Buffer. If
timing requirements are not met, a faster buffer will
automatically be used.

• If a single quadrant of the chip is sufficient for the
clocked logic, and the timing requires a faster clock than
the Global Low-Skew buffer, use a Global Early buffer.

Global Low-Skew Buffers

Each corner of the XC4000X device has two Global
Low-Skew buffers. Any of the eight Global Low-Skew buff-
ers can drive any of the eight vertical Global lines in a col-
umn of CLBs. In addition, any of the buffers can drive any of
the four vertical lines accessing the IOBs on the left edge of
the device, and any of the eight vertical lines accessing the
IOBs on the right edge of the device. (See Figure 36 on
page 38.)

IOBs at the top and bottom edges of the device are
accessed through the vertical Global lines in the CLB array,
as in the XC4000E. Any Global Low-Skew buffer can,
therefore, access every IOB and CLB in the device.

The Global Low-Skew buffers can be driven by either
semi-dedicated pads or internal logic.

To use a Global Low-Skew buffer, instantiate a BUFGLS
element in a schematic or in HDL code. If desired, attach a
LOC attribute or property to direct placement to the desig-
nated location. For example, attach a LOC=T attribute or
property to direct that a BUFGLS be placed in one of the
two Global Low-Skew buffers on the top edge of the device,
or a LOC=TR to indicate the Global Low-Skew buffer on the
top edge of the device, on the right.
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TDI, TCK,
TMS

I
I/O
or I

(JTAG)

If boundary scan is used, these pins are Test Data In, Test Clock, and Test Mode Select
inputs respectively. They come directly from the pads, bypassing the IOBs. These pins
can also be used as inputs to the CLB logic after configuration is completed.
If the BSCAN symbol is not placed in the design, all boundary scan functions are inhib-
ited once configuration is completed, and these pins become user-programmable I/O.
The pins can be used automatically or user-constrained. To use them, use "LOC=" or
place the library components TDI, TCK, and TMS instead of the usual pad symbols. In-
put or output buffers must still be used.

HDC O I/O
High During Configuration (HDC) is driven High until the I/O go active. It is available as
a control output indicating that configuration is not yet completed. After configuration,
HDC is a user-programmable I/O pin.

LDC O I/O
Low During Configuration (LDC) is driven Low until the I/O go active. It is available as a
control output indicating that configuration is not yet completed. After configuration,
LDC is a user-programmable I/O pin.

INIT I/O I/O

Before and during configuration, INIT is a bidirectional signal. A 1 kΩ - 10 kΩ external
pull-up resistor is recommended.
As an active-Low open-drain output, INIT is held Low during the power stabilization and
internal clearing of the configuration memory.   As an active-Low input, it can be used
to hold the FPGA in the internal WAIT state before the start of configuration.   Master
mode devices stay in a WAIT state an additional 30 to 300 µs after INIT has gone High.
During configuration, a Low on this output indicates that a configuration data error has
occurred. After the I/O go active, INIT is a user-programmable I/O pin.

PGCK1 -
PGCK4

(XC4000E
only)

Weak
Pull-up

I or I/O

Four Primary Global inputs each drive a dedicated internal global net with short delay
and minimal skew. If not used to drive a global buffer, any of these pins is a user-pro-
grammable I/O.
The PGCK1-PGCK4 pins drive the four Primary Global Buffers. Any input pad symbol
connected directly to the input of a BUFGP symbol is automatically placed on one of
these pins.

SGCK1 -
SGCK4

(XC4000E
only)

Weak
Pull-up

I or I/O

Four Secondary Global inputs each drive a dedicated internal global net with short delay
and minimal skew. These internal global nets can also be driven from internal logic. If
not used to drive a global net, any of these pins is a user-programmable I/O pin.
The SGCK1-SGCK4 pins provide the shortest path to the four Secondary Global Buff-
ers. Any input pad symbol connected directly to the input of a BUFGS symbol is auto-
matically placed on one of these pins.

GCK1 -
GCK8

(XC4000X
only)

Weak
Pull-up

I or I/O

Eight inputs can each drive a Global Low-Skew buffer. In addition, each can drive a Glo-
bal Early buffer. Each pair of global buffers can also be driven from internal logic, but
must share an input signal. If not used to drive a global buffer, any of these pins is a
user-programmable I/O.
Any input pad symbol connected directly to the input of a BUFGLS or BUFGE symbol
is automatically placed on one of these pins.

FCLK1 -
FCLK4

(XC4000XLA
and

XC4000XV
only)

Weak
Pull-up

I or I/O

Four inputs can each drive a Fast Clock (FCLK) buffer which can deliver a clock signal
to any IOB clock input in the octant of the die served by the Fast Clock buffer. Two Fast
Clock buffers serve the two IOB octants on the left side of the die and the other two Fast
Clock buffers serve the two IOB octants on the right side of the die. On each side of the
die, one Fast Clock buffer serves the upper octant and the other serves the lower octant.
If not used to drive a Fast Clock buffer, any of these pins is a user-programmable I/O.

Table 16: Pin Descriptions (Continued)

Pin Name

I/O
During
Config.

I/O
After

Config. Pin Description
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Boundary Scan
The ‘bed of nails’ has been the traditional method of testing
electronic assemblies. This approach has become less
appropriate, due to closer pin spacing and more sophisti-
cated assembly methods like surface-mount technology
and multi-layer boards. The IEEE Boundary Scan Standard
1149.1 was developed to facilitate board-level testing of
electronic assemblies. Design and test engineers can
imbed a standard test logic structure in their device to
achieve high fault coverage for I/O and internal logic. This
structure is easily implemented with a four-pin interface on
any boundary scan-compatible IC. IEEE 1149.1-compati-
ble devices may be serial daisy-chained together, con-
nected in parallel, or a combination of the two.

The XC4000 Series implements IEEE 1149.1-compatible
BYPASS, PRELOAD/SAMPLE and EXTEST boundary
scan instructions. When the boundary scan configuration
option is selected, three normal user I/O pins become ded-
icated inputs for these functions. Another user output pin
becomes the dedicated boundary scan output. The details

of how to enable this circuitry are covered later in this sec-
tion.

By exercising these input signals, the user can serially load
commands and data into these devices to control the driv-
ing of their outputs and to examine their inputs. This
method is an improvement over bed-of-nails testing. It
avoids the need to over-drive device outputs, and it reduces
the user interface to four pins. An optional fifth pin, a reset
for the control logic, is described in the standard but is not
implemented in Xilinx devices.

The dedicated on-chip logic implementing the IEEE 1149.1
functions includes a 16-state machine, an instruction regis-
ter and a number of data registers. The functional details
can be found in the IEEE 1149.1 specification and are also
discussed in the Xilinx application note XAPP 017: “Bound-
ary Scan in XC4000 Devices.”

Figure 40 on page 43 shows a simplified block diagram of
the XC4000E Input/Output Block with boundary scan
implemented. XC4000X boundary scan logic is identical.

CS0, CS1,
WS, RS

I I/O

These four inputs are used in Asynchronous Peripheral mode. The chip is selected
when CS0 is Low and CS1 is High. While the chip is selected, a Low on Write Strobe
(WS) loads the data present on the D0 - D7 inputs into the internal data buffer. A Low
on Read Strobe (RS) changes D7 into a status output — High if Ready, Low if Busy —
and drives D0 - D6 High.
In Express mode, CS1 is used as a serial-enable signal for daisy-chaining.
WS and RS should be mutually exclusive, but if both are Low simultaneously, the Write
Strobe overrides. After configuration, these are user-programmable I/O pins.

A0 - A17 O I/O
During Master Parallel configuration, these 18 output pins address the configuration
EPROM. After configuration, they are user-programmable I/O pins.

A18 - A21
(XC4003XL to

XC4085XL)
O I/O

During Master Parallel configuration with an XC4000X master, these 4 output pins add
4 more bits to address the configuration EPROM. After configuration, they are user-pro-
grammable I/O pins. (See Master Parallel Configuration section for additional details.)

D0 - D7 I I/O
During Master Parallel and Peripheral configuration, these eight input pins receive con-
figuration data. After configuration, they are user-programmable I/O pins.

DIN I I/O
During Slave Serial or Master Serial configuration, DIN is the serial configuration data
input receiving data on the rising edge of CCLK. During Parallel configuration, DIN is
the D0 input. After configuration, DIN is a user-programmable I/O pin.

DOUT O I/O

During configuration in any mode but Express mode, DOUT is the serial configuration
data output that can drive the DIN of daisy-chained slave FPGAs. DOUT data changes
on the falling edge of CCLK, one-and-a-half CCLK periods after it was received at the
DIN input.
In Express modefor XC4000E and XC4000X only, DOUT is the status output that can
drive the CS1 of daisy-chained FPGAs, to enable and disable downstream devices.
After configuration, DOUT is a user-programmable I/O pin.

Unrestricted User-Programmable I/O Pins

I/O
Weak
Pull-up

I/O
These pins can be configured to be input and/or output after configuration is completed.
Before configuration is completed, these pins have an internal high-value pull-up resis-
tor (25 kΩ - 100 kΩ) that defines the logic level as High.

Table 16: Pin Descriptions (Continued)

Pin Name

I/O
During
Config.

I/O
After

Config. Pin Description
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Table 17: Boundary Scan Instructions

Avoiding Inadvertent Boundary Scan
If TMS or TCK is used as user I/O, care must be taken to
ensure that at least one of these pins is held constant dur-
ing configuration. In some applications, a situation may
occur where TMS or TCK is driven during configuration.
This may cause the device to go into boundary scan mode
and disrupt the configuration process.

To prevent activation of boundary scan during configura-
tion, do either of the following:

• TMS: Tie High to put the Test Access Port controller
in a benign RESET state

• TCK: Tie High or Low—don't toggle this clock input.

For more information regarding boundary scan, refer to the
Xilinx Application Note XAPP 017.001, “Boundary Scan in
XC4000E Devices.“

Configuration
Configuration is the process of loading design-specific pro-
gramming data into one or more FPGAs to define the func-
tional operation of the internal blocks and their
interconnections. This is somewhat like loading the com-
mand registers of a programmable peripheral chip. XC4000
Series devices use several hundred bits of configuration
data per CLB and its associated interconnects. Each con-
figuration bit defines the state of a static memory cell that
controls either a function look-up table bit, a multiplexer
input, or an interconnect pass transistor. The XACTstep
development system translates the design into a netlist file.
It automatically partitions, places and routes the logic and
generates the configuration data in PROM format.

Special Purpose Pins
Three configuration mode pins (M2, M1, M0) are sampled
prior to configuration to determine the configuration mode.
After configuration, these pins can be used as auxiliary
connections. M2 and M0 can be used as inputs, and M1
can be used as an output. The XACTstep development sys-
tem does not use these resources unless they are explicitly
specified in the design entry. This is done by placing a spe-
cial pad symbol called MD2, MD1, or MD0 instead of the
input or output pad symbol.

In XC4000 Series devices, the mode pins have weak
pull-up resistors during configuration. With all three mode
pins High, Slave Serial mode is selected, which is the most
popular configuration mode. Therefore, for the most com-
mon configuration mode, the mode pins can be left uncon-
nected. (Note, however, that the internal pull-up resistor
value can be as high as 100 kΩ.) After configuration, these
pins can individually have weak pull-up or pull-down resis-
tors, as specified in the design. A pull-down resistor value
of 4.7 kΩ is recommended.

These pins are located in the lower left chip corner and are
near the readback nets. This location allows convenient
routing if compatibility with the XC2000 and XC3000 family
conventions of M0/RT, M1/RD is desired.

Instruction I2
I1      I0

Test
Selected

TDO Source
I/O Data
Source

0 0 0 EXTEST DR DR
0 0 1 SAMPLE/PR

ELOAD
DR Pin/Logic

0 1 0 USER 1 BSCAN.
TDO1

User Logic

0 1 1 USER 2 BSCAN.
TDO2

User Logic

1 0 0 READBACK Readback
Data

Pin/Logic

1 0 1 CONFIGURE DOUT Disabled
1 1 0 Reserved — —
1 1 1 BYPASS Bypass

Register
—

Bit 0 ( TDO end)

Bit 1

Bit 2

TDO.T

TDO.O



Top-edge IOBs (Right to Left)





Left-edge IOBs (Top to Bottom)



MD1.T

MD1.O

MD1.I

MD0.I

MD2.I



Bottom-edge IOBs (Left to Right)





Right-edge IOBs (Bottom to Top)



B SCANT.UPD(TDI end)




X6075

Figure 42:    Boundary Scan Bit Sequence
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TDO




DRCK




IDLE




SEL1




SEL2

TDI

TMS

TCK

TDO

BSCAN

To User

Logic

IBUF

Optional

From

User Logic

To User

Logic

X2675




Figure 43:   Boundary Scan Schematic Example
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Configuration Modes
XC4000E devices have six configuration modes. XC4000X
devices have the same six modes, plus an additional con-
figuration mode. These modes are selected by a 3-bit input
code applied to the M2, M1, and M0 inputs. There are three
self-loading Master modes, two Peripheral modes, and a
Serial Slave mode, which is used primarily for
daisy-chained devices. The coding for mode selection is
shown in Table 18.

A detailed description of each configuration mode, with tim-
ing information, is included later in this data sheet. During
configuration, some of the I/O pins are used temporarily for
the configuration process. All pins used during configura-
tion are shown in Table 22 on page 58.

Master Modes

The three Master modes use an internal oscillator to gener-
ate a Configuration Clock (CCLK) for driving potential slave
devices. They also generate address and timing for exter-
nal PROM(s) containing the configuration data.

Master Parallel (Up or Down) modes generate the CCLK
signal and PROM addresses and receive byte parallel data.
The data is internally serialized into the FPGA data-frame
format. The up and down selection generates starting
addresses at either zero or 3FFFF (3FFFFF when 22
address lines are used), for compatibility with different
microprocessor addressing conventions. The Master Serial
mode generates CCLK and receives the configuration data
in serial form from a Xilinx serial-configuration PROM.

CCLK speed is selectable as either 1 MHz (default) or 8
MHz. Configuration always starts at the default slow fre-
quency, then can switch to the higher frequency during the
first frame. Frequency tolerance is -50% to +25%.

Additional Address lines in XC4000 devices

The XC4000X devices have additional address lines
(A18-A21) allowing the additional address space required
to daisy-chain several large devices.

The extra address lines are programmable in XC4000EX
devices. By default these address lines are not activated. In
the default mode, the devices are compatible with existing
XC4000 and XC4000E products. If desired, the extra
address lines can be used by specifying the address lines
option in bitgen as 22 (bitgen -g AddressLines:22). The
lines (A18-A21) are driven when a master device detects,
via the bitstream, that it should be using all 22 address
lines. Because these pins will initially be pulled high by
internal pull-ups, designers using Master Parallel Up mode
should use external pull down resistors on pins A18-A21. If
Master Parallel Down mode is used external resistors are
not necessary.

All 22 address lines are always active in Master Parallel
modes with XC4000XL devices. The additional address
lines behave identically to the lower order address lines. If
the Address Lines option in bitgen is set to 18, it will be
ignored by the XC4000XL device.

The additional address lines (A18-A21) are not available in
the PC84 package.

Peripheral Modes

The two Peripheral modes accept byte-wide data from a
bus. A RDY/BUSY status is available as a handshake sig-
nal. In Asynchronous Peripheral mode, the internal oscilla-
tor generates a CCLK burst signal that serializes the
byte-wide data. CCLK can also drive slave devices. In the
synchronous mode, an externally supplied clock input to
CCLK serializes the data.

Slave Serial Mode

In Slave Serial mode, the FPGA receives serial configura-
tion data on the rising edge of CCLK and, after loading its
configuration, passes additional data out, resynchronized
on the next falling edge of CCLK.

Multiple slave devices with identical configurations can be
wired with parallel DIN inputs. In this way, multiple devices
can be configured simultaneously.

Serial Daisy Chain

Multiple devices with different configurations can be con-
nected together in a “daisy chain,” and a single combined
bitstream used to configure the chain of slave devices.

To configure a daisy chain of devices, wire the CCLK pins
of all devices in parallel, as shown in Figure 51 on page
60. Connect the DOUT of each device to the DIN of the
next. The lead or master FPGA and following slaves each
passes resynchronized configuration data coming from a
single source. The header data, including the length count,

Table 18: Configuration Modes

Mode M2 M1 M0 CCLK Data
Master Serial 0 0 0 output Bit-Serial
Slave Serial 1 1 1 input Bit-Serial
Master
Parallel Up

1 0 0 output Byte-Wide,
increment

from 00000
Master
Parallel Down

1 1 0 output Byte-Wide,
decrement

from 3FFFF
Peripheral
Synchronous*

0 1 1 input Byte-Wide

Peripheral
Asynchronous

1 0 1 output Byte-Wide

Reserved 0 1 0 — —
Reserved 0 0 1 — —
* Can be considered byte-wide Slave Parallel
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is passed through and is captured by each FPGA when it
recognizes the 0010 preamble. Following the length-count
data, each FPGA outputs a High on DOUT until it has
received its required number of data frames.

After an FPGA has received its configuration data, it
passes on any additional frame start bits and configuration
data on DOUT. When the total number of configuration
clocks applied after memory initialization equals the value
of the 24-bit length count, the FPGAs begin the start-up
sequence and become operational together. FPGA I/O are
normally released two CCLK cycles after the last configura-
tion bit is received. Figure 47 on page 53 shows the
start-up timing for an XC4000 Series device.

The daisy-chained bitstream is not simply a concatenation
of the individual bitstreams. The PROM file formatter must
be used to combine the bitstreams for a daisy-chained con-
figuration.

Multi-Family Daisy Chain

All Xilinx FPGAs of the XC2000, XC3000, and XC4000
Series use a compatible bitstream format and can, there-
fore, be connected in a daisy chain in an arbitrary
sequence. There is, however, one limitation. The lead
device must belong to the highest family in the chain. If the
chain contains XC4000 Series devices, the master nor-
mally cannot be an XC2000 or XC3000 device.

The reason for this rule is shown in Figure 47 on page 53.
Since all devices in the chain store the same length count
value and generate or receive one common sequence of
CCLK pulses, they all recognize length-count match on the
same CCLK edge, as indicated on the left edge of
Figure 47. The master device then generates additional
CCLK pulses until it reaches its finish point F. The different
families generate or require different numbers of additional
CCLK pulses until they reach F. Not reaching F means that
the device does not really finish its configuration, although
DONE may have gone High, the outputs became active,
and the internal reset was released. For the XC4000 Series
device, not reaching F means that readback cannot be ini-

tiated and most boundary scan instructions cannot be
used.

The user has some control over the relative timing of these
events and can, therefore, make sure that they occur at the
proper time and the finish point F is reached. Timing is con-
trolled using options in the bitstream generation software.

XC3000 Master with an XC4000 Series Slave

Some designers want to use an inexpensive lead device in
peripheral mode and have the more precious I/O pins of the
XC4000 Series devices all available for user I/O. Figure 44
provides a solution for that case.

This solution requires one CLB, one IOB and pin, and an
internal oscillator with a frequency of up to 5 MHz as a
clock source. The XC3000 master device must be config-
ured with late Internal Reset, which is the default option.

One CLB and one IOB in the lead XC3000-family device
are used to generate the additional CCLK pulse required by
the XC4000 Series devices. When the lead device removes
the internal RESET signal, the 2-bit shift register responds
to its clock input and generates an active Low output signal
for the duration of the subsequent clock period. An external
connection between this output and CCLK thus creates the
extra CCLK pulse.

Output

Connected

to CCLK

OE/T

0

1

1

0

0


.
.

0

0

1

1

1


.
.

Reset

X5223
etc

Active Low Output

Active High Output

Figure 44:   CCLK Generation for XC3000 Master
Driving an XC4000 Series Slave
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Figure 55:   Master Parallel Mode Programming Switching Characteristics

Address for Byte n

Byte 

2 TDRC

Address for Byte n + 1

D7D6

A0-A17

(output)

D0-D7

RCLK

(output)

CCLK

(output)

DOUT

(output)

1 TRAC

7 CCLKs CCLK

3 TRCD

Byte n - 1 X6078

Description Symbol Min Max Units

RCLK
Delay to Address valid 1 TRAC 0 200 ns
Data setup time 2 TDRC 60 ns
Data hold time 3 TRCD 0 ns

Notes: 1. At power-up, Vcc must rise from 2.0 V to Vcc min in less than 25 ms, otherwise delay configuration by pulling PROGRAM
Low until Vcc is valid.

2. The first Data byte is loaded and CCLK starts at the end of the first RCLK active cycle (rising edge).

This timing diagram shows that the EPROM requirements are extremely relaxed. EPROM access time can be longer than
500 ns. EPROM data output has no hold-time requirements.
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Asynchronous Peripheral Mode

Write to FPGA

Asynchronous Peripheral mode uses the trailing edge of
the logic AND condition of WS and CS0 being Low and RS
and CS1 being High to accept byte-wide data from a micro-
processor bus. In the lead FPGA, this data is loaded into a
double-buffered UART-like parallel-to-serial converter and
is serially shifted into the internal logic.

The lead FPGA presents the preamble data (and all data
that overflows the lead device) on its DOUT pin. The
RDY/BUSY output from the lead FPGA acts as a hand-
shake signal to the microprocessor. RDY/BUSY goes Low
when a byte has been received, and goes High again when
the byte-wide input buffer has transferred its information
into the shift register, and the buffer is ready to receive new
data. A new write may be started immediately, as soon as
the RDY/BUSY output has gone Low, acknowledging
receipt of the previous data. Write may not be terminated
until RDY/BUSY is High again for one CCLK period. Note
that RDY/BUSY is pulled High with a high-impedance
pull-up prior to INIT going High.

The length of the BUSY signal depends on the activity in
the UART. If the shift register was empty when the new byte
was received, the BUSY signal lasts for only two CCLK
periods. If the shift register was still full when the new byte
was received, the BUSY signal can be as long as nine
CCLK periods.

Note that after the last byte has been entered, only seven of
its bits are shifted out. CCLK remains High with DOUT
equal to bit 6 (the next-to-last bit) of the last byte entered.

The READY/BUSY handshake can be ignored if the delay
from any one Write to the end of the next Write is guaran-
teed to be longer than 10 CCLK periods.

Status Read

The logic AND condition of the CS0, CS1and RS inputs
puts the device status on the Data bus.

• D7 High indicates Ready
• D7 Low indicates Busy
• D0 through D6 go unconditionally High

It is mandatory that the whole start-up sequence be started
and completed by one byte-wide input. Otherwise, the pins
used as Write Strobe or Chip Enable might become active
outputs and interfere with the final byte transfer. If this
transfer does not occur, the start-up sequence is not com-
pleted all the way to the finish (point F in Figure 47 on page
53).

In this case, at worst, the internal reset is not released. At
best, Readback and Boundary Scan are inhibited. The
length-count value, as generated by the XACTstep soft-
ware, ensures that these problems never occur.

Although RDY/BUSY is brought out as a separate signal,
microprocessors can more easily read this information on
one of the data lines. For this purpose, D7 represents the
RDY/BUSY status when RS is Low, WS is High, and the
two chip select lines are both active.

Asynchronous Peripheral mode is selected by a <101> on
the mode pins (M2, M1, M0).

ADDRESS

BUS

DATA

BUS

ADDRESS

DECODE


LOGIC

CS0...

RDY/BUSY

WS

PROGRAM

D0–7 CCLK

DOUT DIN

M2M0 M1

N/C N/C
N/C

RS

CS1

CONTROL

SIGNALS

INIT

REPROGRAM

OPTIONAL

DAISY-CHAINED

FPGAs

VCC

DONE

8

X9028

4.7 kΩ

4.7 kΩ 4.7 kΩ

4.7 kΩ

XC4000E/X

 ASYNCHRO-


NOUS

PERIPHERAL

PROGRAM

CCLK

DOUT

M2M0 M1

INIT

DONE

XC4000E/X

 SLAVE

Figure 58:    Asynchronous Peripheral Mode Circuit Diagram
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Configuration Switching Characteristics

Master Modes (XC4000E/EX)

Master Modes (XC4000XL)

Slave and Peripheral Modes (All)

Description Symbol Min Max Units

Power-On Reset
M0 = High TPOR 10 40 ms
M0 = Low TPOR 40 130 ms

Program Latency TPI 30 200 µs per
CLB column

CCLK (output) Delay TICCK 40 250 µs
CCLK (output) Period, slow TCCLK 640 2000 ns
CCLK (output) Period, fast TCCLK 80 250 ns

Description Symbol Min Max Units

Power-On Reset
M0 = High TPOR 10 40 ms
M0 = Low TPOR 40 130 ms

Program Latency TPI 30 200 µs per
CLB column

CCLK (output) Delay TICCK 40 250 µs
CCLK (output) Period, slow TCCLK 540 1600 ns
CCLK (output) Period, fast TCCLK 67 200 ns

Description Symbol Min Max Units
Power-On Reset TPOR 10 33 ms
Program Latency TPI 30 200 µs per

CLB column
CCLK (input) Delay (required) TICCK 4 µs
CCLK (input) Period (required) TCCLK 100 ns

VALID

PROGRAM

INIT

Vcc

PIT

PORT

ICCKT CCLKT

CCLK OUTPUT or INPUT

M0, M1, M2 DONE RESPONSE

<300 ns

<300 ns

>300 ns

RE-PROGRAM

X1532

(Required)

I /O
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