Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 1296 | | Number of Logic Elements/Cells | 3078 | | Total RAM Bits | 41472 | | Number of I/O | 256 | | Number of Gates | 36000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 304-BFQFP Exposed Pad | | Supplier Device Package | 304-PQFP (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/xillinx/xc4036xl-3hq304c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## **Detailed Functional Description** XC4000 Series devices achieve high speed through advanced semiconductor technology and improved architecture. The XC4000E and XC4000X support system clock rates of up to 80 MHz and internal performance in excess of 150 MHz. Compared to older Xilinx FPGA families, XC4000 Series devices are more powerful. They offer on-chip edge-triggered and dual-port RAM, clock enables on I/O flip-flops, and wide-input decoders. They are more versatile in many applications, especially those involving RAM. Design cycles are faster due to a combination of increased routing resources and more sophisticated software. ## **Basic Building Blocks** Xilinx user-programmable gate arrays include two major configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs). - CLBs provide the functional elements for constructing the user's logic. - IOBs provide the interface between the package pins and internal signal lines. Three other types of circuits are also available: - 3-State buffers (TBUFs) driving horizontal longlines are associated with each CLB. - Wide edge decoders are available around the periphery of each device. - An on-chip oscillator is provided. Programmable interconnect resources provide routing paths to connect the inputs and outputs of these configurable elements to the appropriate networks. The functionality of each circuit block is customized during configuration by programming internal static memory cells. The values stored in these memory cells determine the logic functions and interconnections implemented in the FPGA. Each of these available circuits is described in this section. ## **Configurable Logic Blocks (CLBs)** Configurable Logic Blocks implement most of the logic in an FPGA. The principal CLB elements are shown in Figure 1. Two 4-input function generators (F and G) offer unrestricted versatility. Most combinatorial logic functions need four or fewer inputs. However, a third function generator (H) is provided. The H function generator has three inputs. Either zero, one, or two of these inputs can be the outputs of F and G; the other input(s) are from outside the CLB. The CLB can, therefore, implement certain functions of up to nine variables, like parity check or expandable-identity comparison of two sets of four inputs. Each CLB contains two storage elements that can be used to store the function generator outputs. However, the storage elements and function generators can also be used independently. These storage elements can be configured as flip-flops in both XC4000E and XC4000X devices; in the XC4000X they can optionally be configured as latches. DIN can be used as a direct input to either of the two storage elements. H1 can drive the other through the H function generator. Function generator outputs can also drive two outputs independent of the storage element outputs. This versatility increases logic capacity and simplifies routing. Thirteen CLB inputs and four CLB outputs provide access to the function generators and storage elements. These inputs and outputs connect to the programmable interconnect resources outside the block. #### **Function Generators** Four independent inputs are provided to each of two function generators (F1 - F4 and G1 - G4). These function generators, with outputs labeled F' and G', are each capable of implementing any arbitrarily defined Boolean function of four inputs. The function generators are implemented as memory look-up tables. The propagation delay is therefore independent of the function implemented. A third function generator, labeled H', can implement any Boolean function of its three inputs. Two of these inputs can optionally be the F' and G' functional generator outputs. Alternatively, one or both of these inputs can come from outside the CLB (H2, H0). The third input must come from outside the block (H1). Signals from the function generators can exit the CLB on two outputs. F' or H' can be connected to the X output. G' or H' can be connected to the Y output. A CLB can be used to implement any of the following functions: - any function of up to four variables, plus any second function of up to four unrelated variables, plus any third function of up to three unrelated variables¹ - any single function of five variables - any function of four variables together with some functions of six variables - · some functions of up to nine variables. Implementing wide functions in a single block reduces both the number of blocks required and the delay in the signal path, achieving both increased capacity and speed. The versatility of the CLB function generators significantly improves system speed. In addition, the design-software tools can deal with each function generator independently. This flexibility improves cell usage. ^{1.} When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two unregistered function generator outputs are available from the CLB. #### **Dual-Port Edge-Triggered Mode** In dual-port mode, both the F and G function generators are used to create a single 16x1 RAM array with one write port and two read ports. The resulting RAM array can be read and written simultaneously at two independent addresses. Simultaneous read and write operations at the same address are also supported. Dual-port mode always has edge-triggered write timing, as shown in Figure 3. Figure 6 shows a simple model of an XC4000 Series CLB configured as dual-port RAM. One address port, labeled A[3:0], supplies both the read and write address for the F function generator. This function generator behaves the same as a 16x1 single-port edge-triggered RAM array. The RAM output, Single Port Out (SPO), appears at the F function generator output. SPO, therefore, reflects the data at address A[3:0]. The other address port, labeled DPRA[3:0] for Dual Port Read Address, supplies the read address for the G function generator. The write address for the G function generator, however, comes from the address A[3:0]. The output from this 16x1 RAM array, Dual Port Out (DPO), appears at the G function generator output. DPO, therefore, reflects the data at address DPRA[3:0]. Therefore, by using A[3:0] for the write address and DPRA[3:0] for the read address, and reading only the DPO output, a FIFO that can read and write simultaneously is easily generated. Simultaneous access doubles the effective throughput of the FIFO. The relationships between CLB pins and RAM inputs and outputs for dual-port, edge-triggered mode are shown in Table 6. See Figure 7 on page 16 for a block diagram of a CLB configured in this mode. Figure 6: XC4000 Series Dual-Port RAM, Simple Model Table 6: Dual-Port Edge-Triggered RAM Signals | RAM Signal | CLB Pin | Function | |------------|---------|---------------------------| | D | D0 | Data In | | A[3:0] | F1-F4 | Read Address for F, | | | | Write Address for F and G | | DPRA[3:0] | G1-G4 | Read Address for G | | WE | WE | Write Enable | | WCLK | K | Clock | | SPO | F' | Single Port Out | | | | (addressed by A[3:0]) | | DPO | G' | Dual Port Out | | | | (addressed by DPRA[3:0]) | **Note:** The pulse following the active edge of WCLK (T_{WPS} in Figure 3) must be less than one millisecond wide. For most applications, this requirement is not overly restrictive; however, it must not be forgotten. Stopping WCLK at this point in the write cycle could result in excessive current and even damage to the larger devices if many CLBs are configured as edge-triggered RAM. #### Single-Port Level-Sensitive Timing Mode **Note:** Edge-triggered mode is recommended for all new designs. Level-sensitive mode, also called asynchronous mode, is still supported for XC4000 Series backward-compatibility with the XC4000 family. Level-sensitive RAM timing is simple in concept but can be complicated in execution. Data and address signals are presented, then a positive pulse on the write enable pin (WE) performs a write into the RAM at the designated address. As indicated by the "level-sensitive" label, this RAM acts like a latch. During the WE High pulse, changing the data lines results in new data written to the old address. Changing the address lines while WE is High results in spurious data written to the new address—and possibly at other addresses as well, as the address lines inevitably do not all change simultaneously. The user must generate a carefully timed WE signal. The delay on the WE signal and the address lines must be carefully verified to ensure that
WE does not become active until after the address lines have settled, and that WE goes inactive before the address lines change again. The data must be stable before and after the falling edge of WE. In practical terms, WE is usually generated by a 2X clock. If a 2X clock is not available, the falling edge of the system clock can be used. However, there are inherent risks in this approach, since the WE pulse must be guaranteed inactive before the next rising edge of the system clock. Several older application notes are available from Xilinx that discuss the design of level-sensitive RAMs. However, the edge-triggered RAM available in the XC4000 Series is superior to level-sensitive RAM for almost every application. Figure 13: Fast Carry Logic in XC4000E CLB (shaded area not present in XC4000X) Figure 28: Single- and Double-Length Lines, with Programmable Switch Matrices (PSMs) ### **Double-Length Lines** The double-length lines consist of a grid of metal segments, each twice as long as the single-length lines: they run past two CLBs before entering a switch matrix. Double-length lines are grouped in pairs with the switch matrices staggered, so that each line goes through a switch matrix at every other row or column of CLBs (see Figure 28). There are four vertical and four horizontal double-length lines associated with each CLB. These lines provide faster signal routing over intermediate distances, while retaining routing flexibility. Double-length lines are connected by way of the programmable switch matrices. Routing connectivity is shown in Figure 27. ### Quad Lines (XC4000X only) XC4000X devices also include twelve vertical and twelve horizontal quad lines per CLB row and column. Quad lines are four times as long as the single-length lines. They are interconnected via buffered switch matrices (shown as diamonds in Figure 27 on page 30). Quad lines run past four CLBs before entering a buffered switch matrix. They are grouped in fours, with the buffered switch matrices staggered, so that each line goes through a buffered switch matrix at every fourth CLB location in that row or column. (See Figure 29.) The buffered switch matrixes have four pins, one on each edge. All of the pins are bidirectional. Any pin can drive any or all of the other pins. Each buffered switch matrix contains one buffer and six pass transistors. It resembles the programmable switch matrix shown in Figure 26, with the addition of a programmable buffer. There can be up to two independent inputs Figure 29: Quad Lines (XC4000X only) and up to two independent outputs. Only one of the independent inputs can be buffered. The place and route software automatically uses the timing requirements of the design to determine whether or not a quad line signal should be buffered. A heavily loaded signal is typically buffered, while a lightly loaded one is not. One scenario is to alternate buffers and pass transistors. This allows both vertical and horizontal quad lines to be buffered at alternating buffered switch matrices. Due to the buffered switch matrices, quad lines are very fast. They provide the fastest available method of routing heavily loaded signals for long distances across the device. #### Longlines Longlines form a grid of metal interconnect segments that run the entire length or width of the array. Longlines are intended for high fan-out, time-critical signal nets, or nets that are distributed over long distances. In XC4000X devices, quad lines are preferred for critical nets, because the buffered switch matrices make them faster for high fan-out nets. Two horizontal longlines per CLB can be driven by 3-state or open-drain drivers (TBUFs). They can therefore implement unidirectional or bidirectional buses, wide multiplexers, or wired-AND functions. (See "Three-State Buffers" on page 26 for more details.) Each horizontal longline driven by TBUFs has either two (XC4000E) or eight (XC4000X) pull-up resistors. To activate these resistors, attach a PULLUP symbol to the long-line net. The software automatically activates the appropriate number of pull-ups. There is also a weak keeper at each end of these two horizontal longlines. This circuit prevents undefined floating levels. However, it is overridden by any driver, even a pull-up resistor. Each XC4000E longline has a programmable splitter switch at its center, as does each XC4000X longline driven by TBUFs. This switch can separate the line into two independent routing channels, each running half the width or height of the array. Each XC4000X longline not driven by TBUFs has a buffered programmable splitter switch at the 1/4, 1/2, and 3/4 points of the array. Due to the buffering, XC4000X longline performance does not deteriorate with the larger array sizes. If the longline is split, the resulting partial longlines are independent. Routing connectivity of the longlines is shown in Figure 27 on page 30. ## Direct Interconnect (XC4000X only) The XC4000X offers two direct, efficient and fast connections between adjacent CLBs. These nets facilitate a data flow from the left to the right side of the device, or from the top to the bottom, as shown in Figure 30. Signals routed on the direct interconnect exhibit minimum interconnect propagation delay and use no general routing resources. The direct interconnect is also present between CLBs and adjacent IOBs. Each IOB on the left and top device edges has a direct path to the nearest CLB. Each CLB on the right and bottom edges of the array has a direct path to the nearest two IOBs, since there are two IOBs for each row or column of CLBs. The place and route software uses direct interconnect whenever possible, to maximize routing resources and minimize interconnect delays. Figure 30: XC4000X Direct Interconnect ## I/O Routing XC4000 Series devices have additional routing around the IOB ring. This routing is called a VersaRing. The VersaRing facilitates pin-swapping and redesign without affecting board layout. Included are eight double-length lines spanning two CLBs (four IOBs), and four longlines. Global lines and Wide Edge Decoder lines are provided. XC4000X devices also include eight octal lines. A high-level diagram of the VersaRing is shown in Figure 31. The shaded arrows represent routing present only in XC4000X devices. Figure 33 on page 34 is a detailed diagram of the XC4000E and XC4000X VersaRing. The area shown includes two IOBs. There are two IOBs per CLB row or column, therefore this diagram corresponds to the CLB routing diagram shown in Figure 27 on page 30. The shaded areas represent routing and routing connections present only in XC4000X devices. ### Octal I/O Routing (XC4000X only) Between the XC4000X CLB array and the pad ring, eight interconnect tracks provide for versatility in pin assignment and fixed pinout flexibility. (See Figure 32 on page 33.) These routing tracks are called octals, because they can be broken every eight CLBs (sixteen IOBs) by a programmable buffer that also functions as a splitter switch. The buffers are staggered, so each line goes through a buffer at every eighth CLB location around the device edge. The octal lines bend around the corners of the device. The lines cross at the corners in such a way that the segment most recently buffered before the turn has the farthest distance to travel before the next buffer, as shown in Figure 32. 6-32 May 14, 1999 (Version 1.6) Figure 31: High-Level Routing Diagram of XC4000 Series VersaRing (Left Edge) WED = Wide Edge Decoder, IOB = I/O Block (shaded arrows indicate XC4000X only) Figure 32: XC4000X Octal I/O Routing Figure 41: XC4000 Series Boundary Scan Logic #### **Instruction Set** The XC4000 Series boundary scan instruction set also includes instructions to configure the device and read back the configuration data. The instruction set is coded as shown in Table 17. ## **Bit Sequence** The bit sequence within each IOB is: In, Out, 3-State. The input-only M0 and M2 mode pins contribute only the In bit to the boundary scan I/O data register, while the output-only M1 pin contributes all three bits. The first two bits in the I/O data register are TDO.T and TDO.O, which can be used for the capture of internal signals. The final bit is BSCANT.UPD, which can be used to drive an internal net. These locations are primarily used by Xilinx for internal testing. From a cavity-up view of the chip (as shown in XDE or Epic), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 42. The device-specific pinout tables for the XC4000 Series include the boundary scan locations for each IOB pin. BSDL (Boundary Scan Description Language) files for XC4000 Series devices are available on the Xilinx FTP site. ## **Including Boundary Scan in a Schematic** If boundary scan is only to be used during configuration, no special schematic elements need be included in the schematic or HDL code. In this case, the special boundary scan pins TDI, TMS, TCK and TDO can be used for user functions after configuration. To indicate that boundary scan remain enabled after configuration, place the BSCAN library symbol and connect the TDI, TMS, TCK and TDO pad symbols to the appropriate pins, as shown in Figure 43. Even if the boundary scan symbol is used in a schematic, the input pins TMS, TCK, and TDI can still be used as inputs to be routed to internal logic. Care must be taken not to force the chip into an undesired boundary scan state by inadvertently applying boundary scan input patterns to these pins. The simplest way to prevent this is to keep TMS High, and then apply whatever signal is desired to TDI and TCK. **Table 17: Boundary Scan Instructions** | | uction | | Test
Selected | TDO Source | I/O Data
Source | |---|--------|---|--------------------|--------------------|--------------------| | 0 | 0 | 0 | EXTEST | DR | DR | | 0 | 0 | 1 | SAMPLE/PR
ELOAD | DR | Pin/Logic | | 0 | 1 | 0 | USER 1 | BSCAN.
TDO1 | User Logic | | 0 | 1 | 1 |
USER 2 | BSCAN.
TDO2 | User Logic | | 1 | 0 | 0 | READBACK | Readback
Data | Pin/Logic | | 1 | 0 | 1 | CONFIGURE | DOUT | Disabled | | 1 | 1 | 0 | Reserved | | | | 1 | 1 | 1 | BYPASS | Bypass
Register | _ | X6075 Figure 42: Boundary Scan Bit Sequence ## **Avoiding Inadvertent Boundary Scan** If TMS or TCK is used as user I/O, care must be taken to ensure that at least one of these pins is held constant during configuration. In some applications, a situation may occur where TMS or TCK is driven during configuration. This may cause the device to go into boundary scan mode and disrupt the configuration process. To prevent activation of boundary scan during configuration, do either of the following: - TMS: Tie High to put the Test Access Port controller in a benign RESET state - TCK: Tie High or Low—don't toggle this clock input. For more information regarding boundary scan, refer to the Xilinx Application Note XAPP 017.001, "Boundary Scan in XC4000E Devices." Figure 43: Boundary Scan Schematic Example ## Configuration Configuration is the process of loading design-specific programming data into one or more FPGAs to define the functional operation of the internal blocks and their interconnections. This is somewhat like loading the command registers of a programmable peripheral chip. XC4000 Series devices use several hundred bits of configuration data per CLB and its associated interconnects. Each configuration bit defines the state of a static memory cell that controls either a function look-up table bit, a multiplexer input, or an interconnect pass transistor. The XACT step development system translates the design into a netlist file. It automatically partitions, places and routes the logic and generates the configuration data in PROM format. ## **Special Purpose Pins** Three configuration mode pins (M2, M1, M0) are sampled prior to configuration to determine the configuration mode. After configuration, these pins can be used as auxiliary connections. M2 and M0 can be used as inputs, and M1 can be used as an output. The XACT step development system does not use these resources unless they are explicitly specified in the design entry. This is done by placing a special pad symbol called MD2, MD1, or MD0 instead of the input or output pad symbol. In XC4000 Series devices, the mode pins have weak pull-up resistors during configuration. With all three mode pins High, Slave Serial mode is selected, which is the most popular configuration mode. Therefore, for the most common configuration mode, the mode pins can be left unconnected. (Note, however, that the internal pull-up resistor value can be as high as 100 k Ω .) After configuration, these pins can individually have weak pull-up or pull-down resistors, as specified in the design. A pull-down resistor value of 4.7 k Ω is recommended. These pins are located in the lower left chip corner and are near the readback nets. This location allows convenient routing if compatibility with the XC2000 and XC3000 family conventions of M0/RT, M1/RD is desired. ## **Configuration Modes** XC4000E devices have six configuration modes. XC4000X devices have the same six modes, plus an additional configuration mode. These modes are selected by a 3-bit input code applied to the M2, M1, and M0 inputs. There are three self-loading Master modes, two Peripheral modes, and a Serial Slave mode, which is used primarily for daisy-chained devices. The coding for mode selection is shown in Table 18. **Table 18: Configuration Modes** | Mode | M2 | M1 | МО | CCLK | Data | |---------------|----|----|----|--------|------------| | Master Serial | 0 | 0 | 0 | output | Bit-Serial | | Slave Serial | 1 | 1 | 1 | input | Bit-Serial | | Master | 1 | 0 | 0 | output | Byte-Wide, | | Parallel Up | | | | | increment | | | | | | | from 00000 | | Master | 1 | 1 | 0 | output | Byte-Wide, | | Parallel Down | | | | | decrement | | | | | | | from 3FFFF | | Peripheral | 0 | 1 | 1 | input | Byte-Wide | | Synchronous* | | | | | | | Peripheral | 1 | 0 | 1 | output | Byte-Wide | | Asynchronous | | | | | | | Reserved | 0 | 1 | 0 | _ | _ | | Reserved | 0 | 0 | 1 | _ | _ | ^{*} Can be considered byte-wide Slave Parallel A detailed description of each configuration mode, with timing information, is included later in this data sheet. During configuration, some of the I/O pins are used temporarily for the configuration process. All pins used during configuration are shown in Table 22 on page 58. #### Master Modes The three Master modes use an internal oscillator to generate a Configuration Clock (CCLK) for driving potential slave devices. They also generate address and timing for external PROM(s) containing the configuration data. Master Parallel (Up or Down) modes generate the CCLK signal and PROM addresses and receive byte parallel data. The data is internally serialized into the FPGA data-frame format. The up and down selection generates starting addresses at either zero or 3FFFF (3FFFFF when 22 address lines are used), for compatibility with different microprocessor addressing conventions. The Master Serial mode generates CCLK and receives the configuration data in serial form from a Xilinx serial-configuration PROM. CCLK speed is selectable as either 1 MHz (default) or 8 MHz. Configuration always starts at the default slow frequency, then can switch to the higher frequency during the first frame. Frequency tolerance is -50% to +25%. #### Additional Address lines in XC4000 devices The XC4000X devices have additional address lines (A18-A21) allowing the additional address space required to daisy-chain several large devices. The extra address lines are programmable in XC4000EX devices. By default these address lines are not activated. In the default mode, the devices are compatible with existing XC4000 and XC4000E products. If desired, the extra address lines can be used by specifying the address lines option in bitgen as 22 (bitgen -g AddressLines:22). The lines (A18-A21) are driven when a master device detects, via the bitstream, that it should be using all 22 address lines. Because these pins will initially be pulled high by internal pull-ups, designers using Master Parallel Up mode should use external pull down resistors on pins A18-A21. If Master Parallel Down mode is used external resistors are not necessary. All 22 address lines are always active in Master Parallel modes with XC4000XL devices. The additional address lines behave identically to the lower order address lines. If the Address Lines option in bitgen is set to 18, it will be ignored by the XC4000XL device. The additional address lines (A18-A21) are not available in the PC84 package. ## Peripheral Modes The two Peripheral modes accept byte-wide data from a bus. A RDY/BUSY status is available as a handshake signal. In Asynchronous Peripheral mode, the internal oscillator generates a CCLK burst signal that serializes the byte-wide data. CCLK can also drive slave devices. In the synchronous mode, an externally supplied clock input to CCLK serializes the data. ### Slave Serial Mode In Slave Serial mode, the FPGA receives serial configuration data on the rising edge of CCLK and, after loading its configuration, passes additional data out, resynchronized on the next falling edge of CCLK. Multiple slave devices with identical configurations can be wired with parallel DIN inputs. In this way, multiple devices can be configured simultaneously. #### **Serial Daisy Chain** Multiple devices with different configurations can be connected together in a "daisy chain," and a single combined bitstream used to configure the chain of slave devices. To configure a daisy chain of devices, wire the CCLK pins of all devices in parallel, as shown in Figure 51 on page 60. Connect the DOUT of each device to the DIN of the next. The lead or master FPGA and following slaves each passes resynchronized configuration data coming from a single source. The header data, including the length count, # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays is passed through and is captured by each FPGA when it recognizes the 0010 preamble. Following the length-count data, each FPGA outputs a High on DOUT until it has received its required number of data frames. After an FPGA has received its configuration data, it passes on any additional frame start bits and configuration data on DOUT. When the total number of configuration clocks applied after memory initialization equals the value of the 24-bit length count, the FPGAs begin the start-up sequence and become operational together. FPGA I/O are normally released two CCLK cycles after the last configuration bit is received. Figure 47 on page 53 shows the start-up timing for an XC4000 Series device. The daisy-chained bitstream is not simply a concatenation of the individual bitstreams. The PROM file formatter must be used to combine the bitstreams for a daisy-chained configuration. #### **Multi-Family Daisy Chain** All Xilinx FPGAs of the XC2000, XC3000, and XC4000 Series use a compatible bitstream format and can, therefore, be connected in a daisy chain in an arbitrary sequence. There is, however, one limitation. The lead device must belong to the highest family in the chain. If the chain contains XC4000 Series devices, the master normally cannot be an XC2000 or XC3000 device. The reason for this rule is shown in Figure 47 on page 53. Since all devices in the chain store the same length count value and generate or receive one common sequence of CCLK pulses, they all recognize length-count match on the same CCLK edge, as indicated on the left edge of Figure 47. The master device then generates additional CCLK pulses until it reaches its finish point F. The different families generate or require different numbers of additional CCLK pulses until they reach F. Not reaching F means that the device does not really finish its configuration, although DONE may have gone High, the outputs
became active, and the internal reset was released. For the XC4000 Series device, not reaching F means that readback cannot be ini- tiated and most boundary scan instructions cannot be used. The user has some control over the relative timing of these events and can, therefore, make sure that they occur at the proper time and the finish point F is reached. Timing is controlled using options in the bitstream generation software. #### XC3000 Master with an XC4000 Series Slave Some designers want to use an inexpensive lead device in peripheral mode and have the more precious I/O pins of the XC4000 Series devices all available for user I/O. Figure 44 provides a solution for that case. This solution requires one CLB, one IOB and pin, and an internal oscillator with a frequency of up to 5 MHz as a clock source. The XC3000 master device must be configured with late Internal Reset, which is the default option. One CLB and one IOB in the lead XC3000-family device are used to generate the additional CCLK pulse required by the XC4000 Series devices. When the lead device removes the internal RESET signal, the 2-bit shift register responds to its clock input and generates an active Low output signal for the duration of the subsequent clock period. An external connection between this output and CCLK thus creates the extra CCLK pulse. Figure 44: CCLK Generation for XC3000 Master Driving an XC4000 Series Slave ## **Setting CCLK Frequency** For Master modes, CCLK can be generated in either of two frequencies. In the default slow mode, the frequency ranges from 0.5 MHz to 1.25 MHz for XC4000E and XC4000EX devices and from 0.6 MHz to 1.8 MHz for XC4000XL devices. In fast CCLK mode, the frequency ranges from 4 MHz to 10 MHz for XC4000E/EX devices and from 5 MHz to 15 MHz for XC4000XL devices. The frequency is selected by an option when running the bitstream generation software. If an XC4000 Series Master is driving an XC3000- or XC2000-family slave, slow CCLK mode must be used. In addition, an XC4000XL device driving a XC4000E or XC4000EX should use slow mode. Slow mode is the default Table 19: XC4000 Series Data Stream Formats | Data Type | All Other
Modes (D0) | |--------------------|-------------------------| | Fill Byte | 11111111b | | Preamble Code | 0010b | | Length Count | COUNT(23:0) | | Fill Bits | 1111b | | Start Field | Ob | | Data Frame | DATA(n-1:0) | | CRC or Constant | xxxx (CRC) | | Field Check | or 0110b | | Extend Write Cycle | _ | | Postamble | 01111111b | | Start-Up Bytes | xxh | | Legend: | | | Not shaded | Once per bitstream | | Light | Once per data frame | | Dark | Once per device | #### **Data Stream Format** The data stream ("bitstream") format is identical for all configuration modes. The data stream formats are shown in Table 19. Bit-serial data is read from left to right, and byte-parallel data is effectively assembled from this serial bitstream, with the first bit in each byte assigned to D0. The configuration data stream begins with a string of eight ones, a preamble code, followed by a 24-bit length count and a separator field of ones. This header is followed by the actual configuration data in frames. The length and number of frames depends on the device type (see Table 20 and Table 21). Each frame begins with a start field and ends with an error check. A postamble code is required to signal the end of data for a single device. In all cases, additional start-up bytes of data are required to provide four clocks for the startup sequence at the end of configuration. Long daisy chains require additional startup bytes to shift the last data through the chain. All startup bytes are don't-cares; these bytes are not included in bitstreams created by the Xilinx software. A selection of CRC or non-CRC error checking is allowed by the bitstream generation software. The non-CRC error checking tests for a designated end-of-frame field for each frame. For CRC error checking, the software calculates a running CRC and inserts a unique four-bit partial check at the end of each frame. The 11-bit CRC check of the last frame of an FPGA includes the last seven data bits. Detection of an error results in the suspension of data loading and the pulling down of the $\overline{\text{INIT}}$ pin. In Master modes, CCLK and address signals continue to operate externally. The user must detect $\overline{\text{INIT}}$ and initialize a new configuration by pulsing the $\overline{\text{PROGRAM}}$ pin Low or cycling Vcc. ## Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays Low. During this time delay, or as long as the PROGRAM input is asserted, the configuration logic is held in a Configuration Memory Clear state. The configuration-memory frames are consecutively initialized, using the internal oscillator. At the end of each complete pass through the frame addressing, the power-on time-out delay circuitry and the level of the PROGRAM pin are tested. If neither is asserted, the logic initiates one additional clearing of the configuration frames and then tests the NIT input. #### Initialization During initialization and configuration, user pins HDC, $\overline{\text{LDC}}$, $\overline{\text{INIT}}$ and DONE provide status outputs for the system interface. The outputs $\overline{\text{LDC}}$, $\overline{\text{INIT}}$ and DONE are held Low and HDC is held High starting at the initial application of power. The open drain \overline{INIT} pin is released after the final initialization pass through the frame addresses. There is a deliberate delay of 50 to 250 μs (up to 10% longer for low-voltage devices) before a Master-mode device recognizes an inactive \overline{INIT} . Two internal clocks after the \overline{INIT} pin is recognized as High, the FPGA samples the three mode lines to determine the configuration mode. The appropriate interface lines become active and the configuration preamble and data can be loaded.Configuration The 0010 preamble code indicates that the following 24 bits represent the length count. The length count is the total number of configuration clocks needed to load the complete configuration data. (Four additional configuration clocks are required to complete the configuration process, as discussed below.) After the preamble and the length count have been passed through to all devices in the daisy chain, DOUT is held High to prevent frame start bits from reaching any daisy-chained devices. A specific configuration bit, early in the first frame of a master device, controls the configuration-clock rate and can increase it by a factor of eight. Therefore, if a fast configuration clock is selected by the bitstream, the slower clock rate is used until this configuration bit is detected. Each frame has a start field followed by the frame-configuration data bits and a frame error field. If a frame data error is detected, the FPGA halts loading, and signals the error by pulling the open-drain $\overline{\text{INIT}}$ pin Low. After all configuration frames have been loaded into an FPGA, DOUT again follows the input data so that the remaining data is passed on to the next device. ## **Delaying Configuration After Power-Up** There are two methods of delaying configuration after power-up: put a logic Low on the PROGRAM input, or pull the bidirectional INIT pin Low, using an open-collector (open-drain) driver. (See Figure 46 on page 50.) A Low on the PROGRAM input is the more radical approach, and is recommended when the power-supply rise time is excessive or poorly defined. As long as \$\overline{PRO}\$ GRAM is Low, the FPGA keeps clearing its configuration memory. When \$\overline{PROGRAM}\$ goes High, the configuration memory is cleared one more time, followed by the beginning of configuration, provided the \$\overline{INIT}\$ input is not externally held Low. Note that a Low on the \$\overline{PROGRAM}\$ input automatically forces a Low on the \$\overline{INIT}\$ output. The XC4000 Series \$\overline{PROGRAM}\$ pin has a permanent weak pull-up. Using an open-collector or open-drain driver to hold \overline{INIT} Low before the beginning of configuration causes the FPGA to wait after completing the configuration memory clear operation. When \overline{INIT} is no longer held Low externally, the device determines its configuration mode by capturing its mode pins, and is ready to start the configuration process. A master device waits up to an additional 250 μs to make sure that any slaves in the optional daisy chain have seen that \overline{INIT} is High. #### Start-Up Start-up is the transition from the configuration process to the intended user operation. This transition involves a change from one clock source to another, and a change from interfacing parallel or serial configuration data where most outputs are 3-stated, to normal operation with I/O pins active in the user-system. Start-up must make sure that the user-logic 'wakes up' gracefully, that the outputs become active without causing contention with the configuration signals, and that the internal flip-flops are released from the global Reset or Set at the right time. Figure 47 describes start-up timing for the three Xilinx families in detail. The configuration modes can use any of the four timing sequences. To access the internal start-up signals, place the STARTUP library symbol. #### **Start-up Timing** Different FPGA families have different start-up sequences. The XC2000 family goes through a fixed sequence. DONE goes High and the internal global Reset is de-activated one CCLK period after the I/O become active. The XC3000A family offers some flexibility. DONE can be programmed to go High one CCLK period before or after the I/O become active. Independent of DONE, the internal global Reset is de-activated one CCLK period before or after the I/O become active. The XC4000 Series offers additional flexibility. The three events — DONE going High, the internal Set/Reset being de-activated,
and the user I/O going active — can all occur in any arbitrary sequence. Each of them can occur one CCLK period before or after, or simultaneous with, any of the others. This relative timing is selected by means of software options in the bitstream generation software. # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays The default option, and the most practical one, is for DONE to go High first, disconnecting the configuration data source and avoiding any contention when the I/Os become active one clock later. Reset/Set is then released another clock period later to make sure that user-operation starts from stable internal conditions. This is the most common sequence, shown with heavy lines in Figure 47, but the designer can modify it to meet particular requirements. Normally, the start-up sequence is controlled by the internal device oscillator output (CCLK), which is asynchronous to the system clock. XC4000 Series offers another start-up clocking option, UCLK_NOSYNC. The three events described above need not be triggered by CCLK. They can, as a configuration option, be triggered by a user clock. This means that the device can wake up in synchronism with the user system. When the UCLK_SYNC option is enabled, the user can externally hold the open-drain DONE output Low, and thus stall all further progress in the start-up sequence until DONE is released and has gone High. This option can be used to force synchronization of several FPGAs to a common user clock, or to guarantee that all devices are successfully configured before any I/Os go active. If either of these two options is selected, and no user clock is specified in the design or attached to the device, the chip could reach a point where the configuration of the device is complete and the Done pin is asserted, but the outputs do not become active. The solution is either to recreate the bitstream specifying the start-up clock as CCLK, or to supply the appropriate user clock. #### Start-up Sequence The Start-up sequence begins when the configuration memory is full, and the total number of configuration clocks received since $\overline{\text{INIT}}$ went High equals the loaded value of the length count. The next rising clock edge sets a flip-flop Q0, shown in Figure 48. Q0 is the leading bit of a 5-bit shift register. The outputs of this register can be programmed to control three events. - The release of the open-drain DONE output - The change of configuration-related pins to the user function, activating all IOBs. - The termination of the global Set/Reset initialization of all CLB and IOB storage elements. The DONE pin can also be wire-ANDed with DONE pins of other FPGAs or with other external signals, and can then be used as input to bit Q3 of the start-up register. This is called "Start-up Timing Synchronous to Done In" and is selected by either CCLK SYNC or UCLK SYNC. When DONE is not used as an input, the operation is called "Start-up Timing Not Synchronous to DONE In," and is selected by either CCLK_NOSYNC or UCLK_NOSYNC. As a configuration option, the start-up control register beyond Q0 can be clocked either by subsequent CCLK pulses or from an on-chip user net called STARTUP.CLK. These signals can be accessed by placing the STARTUP library symbol. #### **Start-up from CCLK** If CCLK is used to drive the start-up, Q0 through Q3 provide the timing. Heavy lines in Figure 47 show the default timing, which is compatible with XC2000 and XC3000 devices using early DONE and late Reset. The thin lines indicate all other possible timing options. # **Configuration Timing** The seven configuration modes are discussed in detail in this section. Timing specifications are included. #### **Slave Serial Mode** In Slave Serial mode, an external signal drives the CCLK input of the FPGA. The serial configuration bitstream must be available at the DIN input of the lead FPGA a short setup time before each rising CCLK edge. The lead FPGA then presents the preamble data—and all data that overflows the lead device—on its DOUT pin. There is an internal delay of 0.5 CCLK periods, which means that DOUT changes on the falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge. Figure 51 shows a full master/slave system. An XC4000 Series device in Slave Serial mode should be connected as shown in the third device from the left. Slave Serial mode is selected by a <111> on the mode pins (M2, M1, M0). Slave Serial is the default mode if the mode pins are left unconnected, as they have weak pull-up resistors during configuration. Figure 51: Master/Slave Serial Mode Circuit Diagram | | Description | | Symbol | Min | Max | Units | |------|-------------|---|------------------|-----|-----|-------| | | DIN setup | 1 | T _{DCC} | 20 | | ns | | | DIN hold | 2 | T _{CCD} | 0 | | ns | | CCLK | DIN to DOUT | 3 | T _{CCO} | | 30 | ns | | CCLK | High time | 4 | T _{CCH} | 45 | | ns | | | Low time | 5 | T _{CCL} | 45 | | ns | | | Frequency | | F _{CC} | | 10 | MHz | Note: Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High. Figure 52: Slave Serial Mode Programming Switching Characteristics #### **Master Parallel Modes** In the two Master Parallel modes, the lead FPGA directly addresses an industry-standard byte-wide EPROM, and accepts eight data bits just before incrementing or decrementing the address outputs. The eight data bits are serialized in the lead FPGA, which then presents the preamble data—and all data that overflows the lead device—on its DOUT pin. There is an internal delay of 1.5 CCLK periods, after the rising CCLK edge that accepts a byte of data (and also changes the EPROM address) until the falling CCLK edge that makes the LSB (D0) of this byte appear at DOUT. This means that DOUT changes on the falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge. The PROM address pins can be incremented or decremented, depending on the mode pin settings. This option allows the FPGA to share the PROM with a wide variety of microprocessors and micro controllers. Some processors must boot from the bottom of memory (all zeros) while others must boot from the top. The FPGA is flexible and can load its configuration bitstream from either end of the memory. Master Parallel Up mode is selected by a <100> on the mode pins (M2, M1, M0). The EPROM addresses start at 00000 and increment. Master Parallel Down mode is selected by a <110> on the mode pins. The EPROM addresses start at 3FFFF and decrement. #### Additional Address lines in XC4000 devices The XC4000X devices have additional address lines (A18-A21) allowing the additional address space required to daisy-chain several large devices. The extra address lines are programmable in XC4000EX devices. By default these address lines are not activated. In the default mode, the devices are compatible with existing XC4000 and XC4000E products. If desired, the extra address lines can be used by specifying the address lines option in bitgen as 22 (bitgen -g AddressLines:22). The lines (A18-A21) are driven when a master device detects, via the bitstream, that it should be using all 22 address lines. Because these pins will initially be pulled high by internal pull-ups, designers using Master Parallel Up mode should use external pull down resistors on pins A18-A21. If Master Parallel Down mode is used external resistors are not necessary. All 22 address lines are always active in Master Parallel modes with XC4000XL devices. The additional address lines behave identically to the lower order address lines. If the Address Lines option in bitgen is set to 18, it will be ignored by the XC4000XL device. The additional address lines (A18-A21) are not available in the PC84 package. Figure 54: Master Parallel Mode Circuit Diagram | | Description | Symbol | Min | Max | Units | |------|------------------------|------------------|-----|-----|-------| | | INIT (High) setup time | T _{IC} | 5 | | μs | | | D0 - D7 setup time | T _{DC} | 60 | | ns | | CCLK | D0 - D7 hold time | T _{CD} | 0 | | ns | | CCLK | CCLK High time | T _{CCH} | 50 | | ns | | | CCLK Low time | T _{CCL} | 60 | | ns | | | CCLK Frequency | F _{CC} | | 8 | MHz | Notes: 1. Peripheral Synchronous mode can be considered Slave Parallel mode. An external CCLK provides timing, clocking in the **first** data byte on the **second** rising edge of CCLK after INIT goes High. Subsequent data bytes are clocked in on every eighth consecutive rising edge of CCLK. - 2. The RDY/BUSY line goes High for one CCLK period after data has been clocked in, although synchronous operation does not require such a response. - 3. The pin name RDY/BUSY is a misnomer. In Synchronous Peripheral mode this is really an ACKNOWLEDGE signal. - 4. Note that data starts to shift out serially on the DOUT pin 0.5 CCLK periods after it was loaded in parallel. Therefore, additional CCLK pulses are clearly required after the last byte has been loaded. Figure 57: Synchronous Peripheral Mode Programming Switching Characteristics ## **Asynchronous Peripheral Mode** #### Write to FPGA Asynchronous Peripheral mode uses the trailing edge of the logic AND condition of \overline{WS} and $\overline{CS0}$ being Low and \overline{RS} and CS1 being High to accept byte-wide data from a microprocessor bus. In the lead FPGA, this data is loaded into a double-buffered UART-like parallel-to-serial converter and is serially shifted into the internal logic. The lead FPGA presents the preamble data (and all data that overflows the lead device) on its DOUT pin. The RDY/BUSY output from the lead FPGA acts as a handshake signal to the microprocessor. RDY/BUSY goes Low when a byte has been received, and goes High again when the byte-wide input buffer has transferred its information into the shift register, and the buffer is ready to receive new data. A new write may be started immediately, as
soon as the RDY/BUSY output has gone Low, acknowledging receipt of the previous data. Write may not be terminated until RDY/BUSY is High again for one CCLK period. Note that RDY/BUSY is pulled High with a high-impedance pull-up prior to INIT going High. The length of the $\overline{\text{BUSY}}$ signal depends on the activity in the UART. If the shift register was empty when the new byte was received, the $\overline{\text{BUSY}}$ signal lasts for only two CCLK periods. If the shift register was still full when the new byte was received, the $\overline{\text{BUSY}}$ signal can be as long as nine CCLK periods. Note that after the last byte has been entered, only seven of its bits are shifted out. CCLK remains High with DOUT equal to bit 6 (the next-to-last bit) of the last byte entered. The READY/BUSY handshake can be ignored if the delay from any one Write to the end of the next Write is guaranteed to be longer than 10 CCLK periods. #### Status Read The logic AND condition of the \overline{CSO} , CS1and \overline{RS} inputs puts the device status on the Data bus. - D7 High indicates Ready - D7 Low indicates Busy - D0 through D6 go unconditionally High It is mandatory that the whole start-up sequence be started and completed by one byte-wide input. Otherwise, the pins used as Write Strobe or Chip Enable might become active outputs and interfere with the final byte transfer. If this transfer does not occur, the start-up sequence is not completed all the way to the finish (point F in Figure 47 on page 53). In this case, at worst, the internal reset is not released. At best, Readback and Boundary Scan are inhibited. The length-count value, as generated by the XACT*step* software, ensures that these problems never occur. Although RDY/ $\overline{\text{BUSY}}$ is brought out as a separate signal, microprocessors can more easily read this information on one of the data lines. For this purpose, D7 represents the RDY/ $\overline{\text{BUSY}}$ status when $\overline{\text{RS}}$ is Low, $\overline{\text{WS}}$ is High, and the two chip select lines are both active. Asynchronous Peripheral mode is selected by a <101> on the mode pins (M2, M1, M0). Figure 58: Asynchronous Peripheral Mode Circuit Diagram # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays Table 25: Component Availability Chart for XC4000E FPGAs | Р | PINS | 84 | 100 | 100 | 120 | 144 | 156 | 160 | 191 | 208 | 208 | 223 | 225 | 240 | 240 | 299 | 304 | |------------|------|----------------|----------------|----------------|---------------|----------------|---------------|----------------|---------------|-------------------|----------------|---------------|---------------|-------------------|----------------|---------------|------------------| | יד | YPE | Plast.
PLCC | Plast.
PQFP | Plast.
VQFP | Ceram.
PGA | Plast.
TQFP | Ceram.
PGA | Plast.
PQFP | Ceram.
PGA | High-Perf.
QFP | Plast.
PQFP | Ceram.
PGA | Plast.
BGA | High-Perf.
QFP | Plast.
PQFP | Ceram.
PGA | High-Perf.
QF | | CC | DDE | PC84 | PQ100 | VQ100 | PG120 | TQ144 | PG156 | PQ160 | PG191 | HQ208 | PQ208 | PG223 | BG225 | HQ240 | PQ240 | PG299 | HQ304 High-Perf. | | | -4 | CI | CI | CI | CI | | | | | | | | | | | | | | XC4003E | -3 | СІ | СІ | СІ | СІ | | | | | | | | | | | | | | AC4003E | -2 | СІ | CI | СІ | CI | | | | | | | | | | | | | | | -1 | С | С | С | С | | | | | | | | | | | | | | | -4 | СІ | CI | | | СІ | СІ | CI | | | CI | | | | | | | | XC4005E | -3 | СІ | СІ | | | СІ | СІ | СІ | | | СІ | | | | | | | | AC4005E | -2 | СІ | СІ | | | CI | СІ | СІ | | | СІ | | | | | | | | | -1 | С | С | | | С | С | С | | | С | | | | | | | | | -4 | СІ | | | | CI | CI | СІ | | | CI | | | | | | | | XC4006E | -3 | СІ | | | | CI | СІ | СІ | | | CI | | | | | | | | AC4000E | -2 | CI | | | | CI | CI | CI | | | CI | | | | | | | | | -1 | С | | | | С | С | С | | | С | | | | | | | | | -4 | CI | | | | | | CI | CI | | CI | | | | | | | | XC4008E | -3 | CI | | | | | | СІ | CI | | CI | | | | | | | | AC4000L | -2 | CI | | | | | | CI | CI | | CI | | | | | | | | | -1 | С | | | | | | С | С | | С | | | | | | | | | -4 | CI | | | | | | CI | СІ | CI | CI | | CI | | | | | | XC4010E | -3 | CI | | | | | | CI | CI | CI | CI | | CI | | | | | | AC4010L | -2 | CI | | | | | | CI | CI | CI | CI | | CI | | | | | | | -1 | С | | | | | | С | С | С | С | | С | | | | | | | -4 | | | | | | | CI | | CI | CI | CI | CI | CI | CI | | | | XC4013E | -3 | | | | | | | CI | | CI | CI | CI | CI | CI | CI | | | | 7.0 10 10L | -2 | | | | | | | CI | | CI | CI | CI | CI | CI | CI | | | | | -1 | | | | | | | С | | С | С | С | С | С | С | | | | | -4 | | | | | | | | | CI | | CI | | CI | | | | | XC4020E | -3 | | | | | | | | | CI | | CI | | CI | | | | | 7.0 10202 | -2 | | | | | | | | | CI | | CI | | CI | | | | | | -1 | | | | | | | | | С | | С | | С | | | | | <u>-</u> | -4 | | | | | | | | | | | CI | | CI | | CI | CI | | XC4025E | -3 | | | | | | | | | | | CI | | CI | | CI | CI | | 1/29/99 | -2 | | | | | | | | | | | С | | С | | С | С | C = Commercial $T_J = 0^{\circ}$ to +85°C I= Industrial $T_J = -40^{\circ}$ C to +100°C Table 26: Component Availability Chart for XC4000EX FPGAs | F | PINS | 208 | 240 | 299 | 304 | 352 | 411 | 432 | |----------|------------------------|-------|-------------------|---------------|-------------------|---------------|---------------|---------------| | Т | TYPE High-Perf.
QFP | | High-Perf.
QFP | Ceram.
PGA | High-Perf.
QFP | Plast.
BGA | Ceram.
PGA | Plast.
BGA | | C | ODE | HQ208 | HQ240 | PG299 | HQ304 | BG352 | PG411 | BG432 | | | -4 | CI | CI | CI | CI | CI | | | | XC4028EX | -3 | CI | CI | CI | CI | CI | | | | | -2 | С | С | С | С | С | | | | | -4 | | CI | | CI | CI | CI | CI | | XC4036EX | -3 | | CI | | CI | CI | CI | CI | | | -2 | | С | | С | С | С | С | 1/29/99 C = Commercial $T_J = 0^{\circ}$ to +85°C I= Industrial $T_J = -40^{\circ}$ C to +100°C # **User I/O Per Package** Table 27, Table 28, and Table 29 show the number of user I/Os available in each package for XC4000-Series devices. Call your local sales office for the latest availability information, or see the Xilinx website at http://www.xilinx.com for the latest revision of the specifications. Table 27: User I/O Chart for XC4000XL FPGAs | | | | | | | | | Maxiı | num | Use | r Acc | essil | ole I/ | O by | Pacl | kage | Туре |) | | | | | | |------------|-----|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|------|-------|--------------|-------|-------|------|------|-------| | . . | Max | PC84 | PQ100 | VQ100 | TQ144 | HT144 | HQ160 | PQ160 | TQ176 | HT176 | HQ208 | PQ208 | HQ240 | PQ240 | BG256 | G299 | HQ304 | G352 | PG411 | BG432 | G475 | G259 | BG560 | | Device | I/O | П | ď | > | Ĕ | I | Ĭ | ď | Ĕ | I | Ĭ | ď | Ĭ | ď | ă | ď | Ĭ | ă | ď | ă | ď | ď | ă | | XC4002XL | 64 | 61 | 64 | 64 | XC4005XL | 112 | 61 | 77 | 77 | 112 | | | 112 | | | | 112 | | | | | | | | | | | | | XC4010XL | 160 | 61 | 77 | | 113 | | | 129 | 145 | | | 160 | | | 160 | | | | | | | | | | XC4013XL | 192 | | | | | 113 | | 129 | | 145 | | 160 | | 192 | 192 | | | | | | | | | | XC4020XL | 224 | | | | | 113 | | 129 | | 145 | | 160 | | 192 | 205 | | | | | | | | | | XC4028XL | 256 | | | | | | 129 | | | | 160 | | 193 | | 205 | 256 | 256 | 256 | | | | | | | XC4036XL | 288 | | | | | | 129 | | | | 160 | | 193 | | | | 256 | 288 | 288 | 288 | | | | | XC4044XL | 320 | | | | | | 129 | | | | 160 | | 193 | | | | 256 | 289 | 320 | 320 | | | | | XC4052XL | 352 | | | | | | | | | | | | 193 | | | | 256 | | 352 | 352 | | | 352 | | XC4062XL | 384 | | | | | | | | | | | | 193 | | | | 256 | | | 352 | 384 | | 384 | | XC4085XL | 448 | | | | | | | | | | | | | | | | | | | 352 | | 448 | 448 | 1/29/99 Table 28: User I/O Chart for XC4000E FPGAs | | | | | | | Maxi | imum l | Jser A | ccessil | ole I/O | by Pa | ckage | Туре | | | | | |---------|------------|------|-------|-------|-------|-------|--------|--------|---------|---------|-------|-------|-------|-------|-------|-------|-------| | Device | Max
I/O | PC84 | PQ100 | /Q100 | PG120 | FQ144 | PG156 | PQ160 | PG191 | HQ208 | PQ208 | PG223 | BG225 | HQ240 | PQ240 | PG299 | HQ304 | | XC4003E | 80 | 61 | 77 | 77 | 80 | ' | | | | | | | | | | | _ | | XC4005E | 112 | 61 | 77 | | | 112 | 112 | 112 | | | 112 | | | | | | | | XC4006E | 128 | 61 | | | | 113 | 125 | 128 | | | 128 | | | | | | | | XC4008E | 144 | 61 | | | | | | 129 | 144 | | 144 | | | | | | | | XC4010E | 160 | 61 | | | | | | 129 | 160 | 160 | 160 | | 160 | | | | | | XC4013E | 192 | | | | | | | 129 | | 160 | 160 | 192 | 192 | 192 | 192 | | | | XC4020E | 224 | | | | | | | | | 160 | | 192 | | 193 | | | | | XC4025E | 256 | | | | | | | | | | | 192 | | 193 | | 256 | 256 | 1/29/99 Table 29: User I/O Chart for XC4000EX FPGAs | | Max | | Maximum User Accessible I/O by Package Type | | | | | | | | | | | | |----------|-----|-------|---|-----|-----|-----|-----|-----|--|--|--|--|--|--| | Device | I/O | HQ208 | Q208 HQ240 PG299 HQ304 BG352 PG411 BG432 | | | | | | | | | | | | | XC4028EX | 256 | 160 | 193 | 256 | 256 | 256 | | | | | | | | | | XC4036EX | 288 | | 193 | | 256 | 288 | 288 | 288 | | | | | | | 1/29/99 # XC4000 Series Electrical Characteristics and Device-Specific Pinout Table For the latest Electrical Characteristics and package/pinout information for each XC4000 Family, see the Xilinx web site at http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp ## **Ordering Information** X9020 ## **Revision Control** | Version | Description | |---------------|---| | 3/30/98 (1.5) | Updated XC4000XL timing and added XC4002XL | | 1/29/99 (1.5) | Updated pin diagrams | | 5/14/99 (1.6) | Replaced
Electrical Specification and pinout pages for E, EX, and XL families with separate updates and | | | added URL link for electrical specifications/pinouts for Web users |