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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Detailed Functional Description
XC4000 Series devices achieve high speed through
advanced semiconductor technology and improved archi-
tecture. The XC4000E and XC4000X support system clock
rates of up to 80 MHz and internal performance in excess
of 150 MHz. Compared to older Xilinx FPGA families,
XC4000 Series devices are more powerful. They offer
on-chip edge-triggered and dual-port RAM, clock enables
on I/O flip-flops, and wide-input decoders. They are more
versatile in many applications, especially those involving
RAM. Design cycles are faster due to a combination of
increased routing resources and more sophisticated soft-
ware.

Basic Building Blocks
Xilinx user-programmable gate arrays include two major
configurable elements: configurable logic blocks (CLBs)
and input/output blocks (IOBs).

• CLBs provide the functional elements for constructing
the user’s logic.

• IOBs provide the interface between the package pins
and internal signal lines.

Three other types of circuits are also available:

• 3-State buffers (TBUFs) driving horizontal longlines are
associated with each CLB.

• Wide edge decoders are available around the periphery
of each device.

• An on-chip oscillator is provided.

Programmable interconnect resources provide routing
paths to connect the inputs and outputs of these config-
urable elements to the appropriate networks.

The functionality of each circuit block is customized during
configuration by programming internal static memory cells.
The values stored in these memory cells determine the
logic functions and interconnections implemented in the
FPGA. Each of these available circuits is described in this
section.

Configurable Logic Blocks (CLBs)
Configurable Logic Blocks implement most of the logic in
an FPGA. The principal CLB elements are shown in
Figure 1. Two 4-input function generators (F and G) offer
unrestricted versatility. Most combinatorial logic functions
need four or fewer inputs. However, a third function gener-
ator (H) is provided. The H function generator has three
inputs. Either zero, one, or two of these inputs can be the
outputs of F and G; the other input(s) are from outside the
CLB. The CLB can, therefore, implement certain functions
of up to nine variables, like parity check or expand-
able-identity comparison of two sets of four inputs.

Each CLB contains two storage elements that can be used
to store the function generator outputs. However, the stor-
age elements and function generators can also be used
independently. These storage elements can be configured
as flip-flops in both XC4000E and XC4000X devices; in the
XC4000X they can optionally be configured as latches. DIN
can be used as a direct input to either of the two storage
elements. H1 can drive the other through the H function
generator. Function generator outputs can also drive two
outputs independent of the storage element outputs. This
versatility increases logic capacity and simplifies routing.

Thirteen CLB inputs and four CLB outputs provide access
to the function generators and storage elements. These
inputs and outputs connect to the programmable intercon-
nect resources outside the block.

Function Generators

Four independent inputs are provided to each of two func-
tion generators (F1 - F4 and G1 - G4). These function gen-
erators, with outputs labeled F’ and G’, are each capable of
implementing any arbitrarily defined Boolean function of
four inputs. The function generators are implemented as
memory look-up tables. The propagation delay is therefore
independent of the function implemented.

A third function generator, labeled H’, can implement any
Boolean function of its three inputs. Two of these inputs can
optionally be the F’ and G’ functional generator outputs.
Alternatively, one or both of these inputs can come from
outside the CLB (H2, H0). The third input must come from
outside the block (H1).

Signals from the function generators can exit the CLB on
two outputs. F’ or H’ can be connected to the X output. G’ or
H’ can be connected to the Y output.

A CLB can be used to implement any of the following func-
tions:

• any function of up to four variables, plus any second
function of up to four unrelated variables, plus any third

function of up to three unrelated variables1

• any single function of five variables
• any function of four variables together with some

functions of six variables
• some functions of up to nine variables.

Implementing wide functions in a single block reduces both
the number of blocks required and the delay in the signal
path, achieving both increased capacity and speed.

The versatility of the CLB function generators significantly
improves system speed. In addition, the design-software
tools can deal with each function generator independently.
This flexibility improves cell usage.

1.  When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two
unregistered function generator outputs are available from the CLB.
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Set/Reset

An asynchronous storage element input (SR) can be con-
figured as either set or reset. This configuration option
determines the state in which each flip-flop becomes oper-
ational after configuration. It also determines the effect of a
Global Set/Reset pulse during normal operation, and the
effect of a pulse on the SR pin of the CLB. All three
set/reset functions for any single flip-flop are controlled by
the same configuration data bit.

The set/reset state can be independently specified for each
flip-flop. This input can also be independently disabled for
either flip-flop.

The set/reset state is specified by using the INIT attribute,
or by placing the appropriate set or reset flip-flop library
symbol.

SR is active High. It is not invertible within the CLB.

Global Set/Reset

A separate Global Set/Reset line (not shown in Figure 1)
sets or clears each storage element during power-up,
re-configuration, or when a dedicated Reset net is driven
active. This global net (GSR) does not compete with other
routing resources; it uses a dedicated distribution network.

Each flip-flop is configured as either globally set or reset in
the same way that the local set/reset (SR) is specified.
Therefore, if a flip-flop is set by SR, it is also set by GSR.
Similarly, a reset flip-flop is reset by both SR and GSR.

GSR can be driven from any user-programmable pin as a
global reset input. To use this global net, place an input pad
and input buffer in the schematic or HDL code, driving the
GSR pin of the STARTUP symbol. (See Figure 2.) A spe-
cific pin location can be assigned to this input using a LOC
attribute or property, just as with any other user-program-
mable pad. An inverter can optionally be inserted after the
input buffer to invert the sense of the Global Set/Reset sig-
nal.

Alternatively, GSR can be driven from any internal node.

Data Inputs and Outputs

The source of a storage element data input is programma-
ble. It is driven by any of the functions F’, G’, and H’, or by
the Direct In (DIN) block input. The flip-flops or latches drive
the XQ and YQ CLB outputs.

Two fast feed-through paths are available, as shown in
Figure 1. A two-to-one multiplexer on each of the XQ and
YQ outputs selects between a storage element output and
any of the control inputs. This bypass is sometimes used by
the automated router to repower internal signals.

Control Signals

Multiplexers in the CLB map the four control inputs (C1 - C4
in Figure 1) into the four internal control signals (H1,
DIN/H2, SR/H0, and EC). Any of these inputs can drive any
of the four internal control signals.

When the logic function is enabled, the four inputs are:

• EC — Enable Clock
• SR/H0 — Asynchronous Set/Reset or H function

generator Input 0
• DIN/H2 — Direct In or H function generator Input 2
• H1 — H function generator Input 1.

When the memory function is enabled, the four inputs are:

• EC — Enable Clock
• WE — Write Enable
• D0 — Data Input to F and/or G function generator
• D1 — Data input to G function generator (16x1 and

16x2 modes) or 5th Address bit (32x1 mode).

Using FPGA Flip-Flops and Latches

The abundance of flip-flops in the XC4000 Series invites
pipelined designs. This is a powerful way of increasing per-
formance by breaking the function into smaller subfunc-
tions and executing them in parallel, passing on the results
through pipeline flip-flops. This method should be seriously
considered wherever throughput is more important than
latency.

To include a CLB flip-flop, place the appropriate library
symbol. For example, FDCE is a D-type flip-flop with clock
enable and asynchronous clear. The corresponding latch
symbol (for the XC4000X only) is called LDCE.

In XC4000 Series devices, the flip flops can be used as reg-
isters or shift registers without blocking the function gener-
ators from performing a different, perhaps unrelated task.
This ability increases the functional capacity of the devices.

The CLB setup time is specified between the function gen-
erator inputs and the clock input K. Therefore, the specified
CLB flip-flop setup time includes the delay through the
function generator.

Using Function Generators as RAM

Optional modes for each CLB make the memory look-up
tables in the F’ and G’ function generators usable as an
array of Read/Write memory cells. Available modes are
level-sensitive (similar to the XC4000/A/H families),
edge-triggered, and dual-port edge-triggered. Depending
on the selected mode, a single CLB can be configured as
either a 16x2, 32x1, or 16x1 bit array.

PAD

IBUF

GSR
GTS

CLK DONEIN
Q1Q4

Q2
Q3

STARTUP

X5260

Figure 2:   Schematic Symbols for Global Set/Reset
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Figure 8 shows the write timing for level-sensitive, sin-
gle-port RAM.

The relationships between CLB pins and RAM inputs and
outputs for single-port level-sensitive mode are shown in
Table 7.

Figure 9 and Figure 10 show block diagrams of a CLB con-
figured as 16x2 and 32x1 level-sensitive, single-port RAM.

Initializing RAM at Configuration

Both RAM and ROM implementations of the XC4000
Series devices are initialized during configuration. The ini-
tial contents are defined via an INIT attribute or property

attached to the RAM or ROM symbol, as described in the
schematic library guide. If not defined, all RAM contents
are initialized to all zeros, by default.

RAM initialization occurs only during configuration. The
RAM content is not affected by Global Set/Reset.

Table 7: Single-Port Level-Sensitive RAM Signals
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Figure 7:   16x1 Edge-Triggered Dual-Port RAM

RAM Signal CLB Pin Function
D D0 or D1 Data In
A[3:0] F1-F4 or G1-G4 Address
WE WE Write Enable
O F’ or G’ Data Out

WCT

ADDRESS
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DATA IN

AST WPT

DST DHT

REQUIRED

AHT
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Figure 8:   Level-Sensitive RAM Write Timing
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Input/Output Blocks (IOBs)
User-configurable input/output blocks (IOBs) provide the
interface between external package pins and the internal
logic. Each IOB controls one package pin and can be con-
figured for input, output, or bidirectional signals.

Figure 15 shows a simplified block diagram of the
XC4000E IOB. A more complete diagram which includes
the boundary scan logic of the XC4000E IOB can be found
in Figure 40 on page 43, in the “Boundary Scan” section.

The XC4000X IOB contains some special features not
included in the XC4000E IOB. These features are high-
lighted in a simplified block diagram found in Figure 16, and
discussed throughout this section. When XC4000X special
features are discussed, they are clearly identified in the
text. Any feature not so identified is present in both
XC4000E and XC4000X devices.

IOB Input Signals

Two paths, labeled I1 and I2 in Figure 15 and Figure 16,
bring input signals into the array. Inputs also connect to an
input register that can be programmed as either an
edge-triggered flip-flop or a level-sensitive latch.

The choice is made by placing the appropriate library sym-
bol. For example, IFD is the basic input flip-flop (rising edge
triggered), and ILD is the basic input latch (transpar-
ent-High). Variations with inverted clocks are available, and
some combinations of latches and flip-flops can be imple-
mented in a single IOB, as described in the XACT Libraries
Guide.

The XC4000E inputs can be globally configured for either
TTL (1.2V) or 5.0 volt CMOS thresholds, using an option in
the bitstream generation software. There is a slight input
hysteresis of about 300mV. The XC4000E output levels are
also configurable; the two global adjustments of input
threshold and output level are independent.

Inputs on the XC4000XL are TTL compatible and 3.3V
CMOS compatible. Outputs on the XC4000XL are pulled to
the 3.3V positive supply.

The inputs of XC4000 Series 5-Volt devices can be driven
by the outputs of any 3.3-Volt device, if the 5-Volt inputs are
in TTL mode.

Supported sources for XC4000 Series device inputs are
shown in Table 8.
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Figure 14:   Detail of XC4000E Dedicated Carry Logic
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XC4000XL 5-Volt Tolerant I/Os

The I/Os on the XC4000XL are fully 5-volt tolerant even
though the VCC is 3.3 volts. This allows 5 V signals to
directly connect to the XC4000XL inputs without damage,
as shown in Table 8. In addition, the 3.3 volt VCC can be
applied before or after 5 volt signals are applied to the I/Os.
This makes the XC4000XL immune to power supply
sequencing problems.

Registered Inputs

The I1 and I2 signals that exit the block can each carry
either the direct or registered input signal.

The input and output storage elements in each IOB have a
common clock enable input, which, through configuration,
can be activated individually for the input or output flip-flop,
or both. This clock enable operates exactly like the EC pin
on the XC4000 Series CLB. It cannot be inverted within the
IOB.

The storage element behavior is shown in Table 9.

Table 9: Input Register Functionality
(active rising edge is shown)

Optional Delay Guarantees Zero Hold Time

The data input to the register can optionally be delayed by
several nanoseconds. With the delay enabled, the setup
time of the input flip-flop is increased so that normal clock
routing does not result in a positive hold-time requirement.
A positive hold time requirement can lead to unreliable,
temperature- or processing-dependent operation.

The input flip-flop setup time is defined between the data
measured at the device I/O pin and the clock input at the
IOB (not at the clock pin). Any routing delay from the device
clock pin to the clock input of the IOB must, therefore, be
subtracted from this setup time to arrive at the real setup
time requirement relative to the device pins. A short speci-
fied setup time might, therefore, result in a negative setup
time at the device pins, i.e., a positive hold-time require-
ment.

When a delay is inserted on the data line, more clock delay
can be tolerated without causing a positive hold-time
requirement. Sufficient delay eliminates the possibility of a
data hold-time requirement at the external pin. The maxi-
mum delay is therefore inserted as the default.

The XC4000E IOB has a one-tap delay element: either the
delay is inserted (default), or it is not. The delay guarantees
a zero hold time with respect to clocks routed through any
of the XC4000E global clock buffers. (See “Global Nets and
Buffers (XC4000E only)” on page 35 for a description of the
global clock buffers in the XC4000E.) For a shorter input
register setup time, with non-zero hold, attach a NODELAY
attribute or property to the flip-flop.

The XC4000X IOB has a two-tap delay element, with
choices of a full delay, a partial delay, or no delay. The
attributes or properties used to select the desired delay are
shown in Table 10. The choices are no added attribute,
MEDDELAY, and NODELAY. The default setting, with no
added attribute, ensures no hold time with respect to any of
the XC4000X clock buffers, including the Global Low-Skew
buffers. MEDDELAY ensures no hold time with respect to
the Global Early buffers. Inputs with NODELAY may have a
positive hold time with respect to all clock buffers. For a
description of each of these buffers, see “Global Nets and
Buffers (XC4000X only)” on page 37.

Table 10: XC4000X IOB Input Delay Element

Table 8: Supported Sources for XC4000 Series Device
Inputs

Source

XC4000E/EX
Series Inputs

XC4000XL
Series Inputs

5 V,
TTL

5 V,
CMOS

3.3 V
CMOS

Any device, Vcc = 3.3 V,
CMOS outputs

√
Unreli
-able
Data

√

XC4000 Series, Vcc = 5 V,
TTL outputs

√ √

Any device, Vcc = 5 V,
TTL outputs (Voh ≤ 3.7 V)

√ √

Any device, Vcc = 5 V,
CMOS outputs

√ √ √

Mode Clock
Clock

Enable
D Q

Power-Up or
GSR

X X X SR

Flip-Flop __/ 1* D D
0 X X Q

Latch  1 1* X Q
 0 1* D D

Both X 0 X Q
Legend:

X
__/
SR
0*
1*

Don’t care
Rising edge
Set or Reset value. Reset is default.
Input is Low or unconnected (default value)
Input is High or unconnected (default value)

Value When to Use
full delay
(default, no
attribute added)

Zero Hold with respect to Global
Low-Skew Buffer, Global Early Buffer

MEDDELAY Zero Hold with respect to Global Early
Buffer

NODELAY Short Setup, positive Hold time
6-22 May 14, 1999 (Version 1.6)
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Any XC4000 Series 5-Volt device with its outputs config-
ured in TTL mode can drive the inputs of any typical
3.3-Volt device. (For a detailed discussion of how to inter-
face between 5 V and 3.3 V devices, see the 3V Products
section of The Programmable Logic Data Book.)

Supported destinations for XC4000 Series device outputs
are shown in Table 12.

An output can be configured as open-drain (open-collector)
by placing an OBUFT symbol in a schematic or HDL code,
then tying the 3-state pin (T) to the output signal, and the
input pin (I) to Ground. (See Figure 18.)

Table 12: Supported Destinations for XC4000 Series
Outputs

Output Slew Rate

The slew rate of each output buffer is, by default, reduced,
to minimize power bus transients when switching non-criti-
cal signals. For critical signals, attach a FAST attribute or
property to the output buffer or flip-flop.

For XC4000E devices, maximum total capacitive load for
simultaneous fast mode switching in the same direction is
200 pF for all package pins between each Power/Ground
pin pair. For XC4000X devices, additional internal

Power/Ground pin pairs are connected to special Power
and Ground planes within the packages, to reduce ground
bounce. Therefore, the maximum total capacitive load is
300 pF between each external Power/Ground pin pair.
Maximum loading may vary for the low-voltage devices.

For slew-rate limited outputs this total is two times larger for
each device type: 400 pF for XC4000E devices and 600 pF
for XC4000X devices. This maximum capacitive load
should not be exceeded, as it can result in ground bounce
of greater than 1.5 V amplitude and more than 5 ns dura-
tion. This level of ground bounce may cause undesired
transient behavior on an output, or in the internal logic. This
restriction is common to all high-speed digital ICs, and is
not particular to Xilinx or the XC4000 Series.

XC4000 Series devices have a feature called “Soft
Start-up,” designed to reduce ground bounce when all out-
puts are turned on simultaneously at the end of configura-
tion. When the configuration process is finished and the
device starts up, the first activation of the outputs is auto-
matically slew-rate limited. Immediately following the initial
activation of the I/O, the slew rate of the individual outputs
is determined by the individual configuration option for each
IOB.

Global Three-State

A separate Global 3-State line (not shown in Figure 15 or
Figure 16) forces all FPGA outputs to the high-impedance
state, unless boundary scan is enabled and is executing an
EXTEST instruction. This global net (GTS) does not com-
pete with other routing resources; it uses a dedicated distri-
bution network.

GTS can be driven from any user-programmable pin as a
global 3-state input. To use this global net, place an input
pad and input buffer in the schematic or HDL code, driving
the GTS pin of the STARTUP symbol. A specific pin loca-
tion can be assigned to this input using a LOC attribute or
property, just as with any other user-programmable pad. An
inverter can optionally be inserted after the input buffer to
invert the sense of the Global 3-State signal. Using GTS is
similar to GSR. See Figure 2 on page 11 for details.

Alternatively, GTS can be driven from any internal node.

Destination

XC4000 Series
Outputs

3.3 V,
CMOS

5 V,
TTL

5 V,
CMOS

Any typical device, Vcc = 3.3 V,
CMOS-threshold inputs

√ √ some1

1. Only if destination device has 5-V tolerant inputs

Any device, Vcc = 5 V,
TTL-threshold inputs

√ √ √

Any device, Vcc = 5 V,
CMOS-threshold inputs

Unreliable
Data

√

X6702

OPAD
OBUFT

Figure 18:   Open-Drain Output
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Output Multiplexer/2-Input Function Generator
(XC4000X only)

As shown in Figure 16 on page 21, the output path in the
XC4000X IOB contains an additional multiplexer not avail-
able in the XC4000E IOB. The multiplexer can also be con-
figured as a 2-input function generator, implementing a
pass-gate, AND-gate, OR-gate, or XOR-gate, with 0, 1, or 2
inverted inputs. The logic used to implement these func-
tions is shown in the upper gray area of Figure 16.

When configured as a multiplexer, this feature allows two
output signals to time-share the same output pad; effec-
tively doubling the number of device outputs without requir-
ing a larger, more expensive package.

When the MUX is configured as a 2-input function genera-
tor, logic can be implemented within the IOB itself. Com-
bined with a Global Early buffer, this arrangement allows
very high-speed gating of a single signal. For example, a
wide decoder can be implemented in CLBs, and its output
gated with a Read or Write Strobe Driven by a BUFGE
buffer, as shown in Figure 19. The critical-path pin-to-pin
delay of this circuit is less than 6 nanoseconds.

As shown in Figure 16, the IOB input pins Out, Output
Clock, and Clock Enable have different delays and different
flexibilities regarding polarity. Additionally, Output Clock
sources are more limited than the other inputs. Therefore,
the Xilinx software does not move logic into the IOB func-
tion generators unless explicitly directed to do so.

The user can specify that the IOB function generator be
used, by placing special library symbols beginning with the
letter “O.” For example, a 2-input AND-gate in the IOB func-
tion generator is called OAND2. Use the symbol input pin
labelled “F” for the signal on the critical path. This signal is
placed on the OK pin — the IOB input with the shortest
delay to the function generator. Two examples are shown in
Figure 20.

Other IOB Options

There are a number of other programmable options in the
XC4000 Series IOB.

Pull-up and Pull-down Resistors

Programmable pull-up and pull-down resistors are useful
for tying unused pins to Vcc or Ground to minimize power
consumption and reduce noise sensitivity. The configurable
pull-up resistor is a p-channel transistor that pulls to Vcc.
The configurable pull-down resistor is an n-channel transis-
tor that pulls to Ground.

The value of these resistors is 50 kΩ − 100 kΩ. This high
value makes them unsuitable as wired-AND pull-up resis-
tors.

The pull-up resistors for most user-programmable IOBs are
active during the configuration process. See Table 22 on
page 58 for a list of pins with pull-ups active before and dur-
ing configuration.

After configuration, voltage levels of unused pads, bonded
or un-bonded, must be valid logic levels, to reduce noise
sensitivity and avoid excess current. Therefore, by default,
unused pads are configured with the internal pull-up resis-
tor active. Alternatively, they can be individually configured
with the pull-down resistor, or as a driven output, or to be
driven by an external source. To activate the internal
pull-up, attach the PULLUP library component to the net
attached to the pad. To activate the internal pull-down,
attach the PULLDOWN library component to the net
attached to the pad.

Independent Clocks

Separate clock signals are provided for the input and output
flip-flops. The clock can be independently inverted for each
flip-flop within the IOB, generating either falling-edge or ris-
ing-edge triggered flip-flops. The clock inputs for each IOB
are independent, except that in the XC4000X, the Fast
Capture latch shares an IOB input with the output clock pin.

Early Clock for IOBs (XC4000X only)

Special early clocks are available for IOBs. These clocks
are sourced by the same sources as the Global Low-Skew
buffers, but are separately buffered. They have fewer loads
and therefore less delay. The early clock can drive either
the IOB output clock or the IOB input clock, or both. The
early clock allows fast capture of input data, and fast
clock-to-output on output data. The Global Early buffers
that drive these clocks are described in “Global Nets and
Buffers (XC4000X only)” on page 37.

Global Set/Reset

As with the CLB registers, the Global Set/Reset signal
(GSR) can be used to set or clear the input and output reg-
isters, depending on the value of the INIT attribute or prop-
erty. The two flip-flops can be individually configured to set

IPAD

F OPAD
FAST

BUFGE

OAND2
from

internal

logic

X9019

Figure 19:   Fast Pin-to-Pin Path in XC4000X
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Figure 20:   AND & MUX Symbols in XC4000X IOB
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or clear on reset and after configuration. Other than the glo-
bal GSR net, no user-controlled set/reset signal is available
to the I/O flip-flops. The choice of set or clear applies to
both the initial state of the flip-flop and the response to the
Global Set/Reset pulse. See “Global Set/Reset” on
page 11 for a description of how to use GSR.

JTAG Support

Embedded logic attached to the IOBs contains test struc-
tures compatible with IEEE Standard 1149.1 for boundary
scan testing, permitting easy chip and board-level testing.
More information is provided in “Boundary Scan” on
page 42.

Three-State Buffers
A pair of 3-state buffers is associated with each CLB in the
array. (See Figure 27 on page 30.) These 3-state buffers
can be used to drive signals onto the nearest horizontal
longlines above and below the CLB. They can therefore be
used to implement multiplexed or bidirectional buses on the
horizontal longlines, saving logic resources. Programmable
pull-up resistors attached to these longlines help to imple-
ment a wide wired-AND function.

The buffer enable is an active-High 3-state (i.e. an
active-Low enable), as shown in Table 13.

Another 3-state buffer with similar access is located near
each I/O block along the right and left edges of the array.
(See Figure 33 on page 34.)

The horizontal longlines driven by the 3-state buffers have
a weak keeper at each end. This circuit prevents undefined
floating levels. However, it is overridden by any driver, even
a pull-up resistor.

Special longlines running along the perimeter of the array
can be used to wire-AND signals coming from nearby IOBs
or from internal longlines. These longlines form the wide
edge decoders discussed in “Wide Edge Decoders” on
page 27.

Three-State Buffer Modes

The 3-state buffers can be configured in three modes:

• Standard 3-state buffer
• Wired-AND with input on the I pin
• Wired OR-AND

Standard 3-State Buffer

All three pins are used. Place the library element BUFT.
Connect the input to the I pin and the output to the O pin.
The T pin is an active-High 3-state (i.e. an active-Low
enable). Tie the T pin to Ground to implement a standard
buffer.

Wired-AND with Input on the I Pin

The buffer can be used as a Wired-AND. Use the WAND1
library symbol, which is essentially an open-drain buffer.
WAND4, WAND8, and WAND16 are also available. See the
XACT Libraries Guide for further information.

The T pin is internally tied to the I pin. Connect the input to
the I pin and the output to the O pin. Connect the outputs of
all the WAND1s together and attach a PULLUP symbol.

Wired OR-AND

The buffer can be configured as a Wired OR-AND. A High
level on either input turns off the output. Use the
WOR2AND library symbol, which is essentially an
open-drain 2-input OR gate. The two input pins are func-
tionally equivalent. Attach the two inputs to the I0 and I1
pins and tie the output to the O pin. Tie the outputs of all the
WOR2ANDs together and attach a PULLUP symbol.

Three-State Buffer Examples

Figure 21 shows how to use the 3-state buffers to imple-
ment a wired-AND function. When all the buffer inputs are
High, the pull-up resistor(s) provide the High output.

Figure 22 shows how to use the 3-state buffers to imple-
ment a multiplexer. The selection is accomplished by the
buffer 3-state signal.

Pay particular attention to the polarity of the T pin when
using these buffers in a design. Active-High 3-state (T) is
identical to an active-Low output enable, as shown in
Table 13.

Table 13: Three-State Buffer Functionality
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Figure 21:   Open-Drain Buffers Implement a Wired-AND Function
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Figure 41 on page 44 is a diagram of the XC4000 Series
boundary scan logic. It includes three bits of Data Register
per IOB, the IEEE 1149.1 Test Access Port controller, and
the Instruction Register with decodes.

XC4000 Series devices can also be configured through the
boundary scan logic. See “Readback” on page 55.

Data Registers
The primary data register is the boundary scan register. For
each IOB pin in the FPGA, bonded or not, it includes three
bits for In, Out and 3-State Control. Non-IOB pins have
appropriate partial bit population for In or Out only. PRO-
GRAM, CCLK and DONE are not included in the boundary
scan register. Each EXTEST CAPTURE-DR state captures
all In, Out, and 3-state pins.

The data register also includes the following non-pin bits:
TDO.T, and TDO.O, which are always bits 0 and 1 of the

data register, respectively, and BSCANT.UPD, which is
always the last bit of the data register. These three bound-
ary scan bits are special-purpose Xilinx test signals.

The other standard data register is the single flip-flop
BYPASS register. It synchronizes data being passed
through the FPGA to the next downstream boundary scan
device.

The FPGA provides two additional data registers that can
be specified using the BSCAN macro. The FPGA provides
two user pins (BSCAN.SEL1 and BSCAN.SEL2) which are
the decodes of two user instructions. For these instructions,
two corresponding pins (BSCAN.TDO1 and
BSCAN.TDO2) allow user scan data to be shifted out on
TDO. The data register clock (BSCAN.DRCK) is available
for control of test logic which the user may wish to imple-
ment with CLBs. The NAND of TCK and RUN-TEST-IDLE
is also provided (BSCAN.IDLE).

Figure 40:   Block Diagram of XC4000E IOB with Boundary Scan (some details not shown).
XC4000X Boundary Scan Logic is Identical.
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Instruction Set
The XC4000 Series boundary scan instruction set also
includes instructions to configure the device and read back
the configuration data. The instruction set is coded as
shown in Table 17.

Bit Sequence
The bit sequence within each IOB is: In, Out, 3-State. The
input-only M0 and M2 mode pins contribute only the In bit
to the boundary scan I/O data register, while the out-
put-only M1 pin contributes all three bits.

The first two bits in the I/O data register are TDO.T and
TDO.O, which can be used for the capture of internal sig-
nals. The final bit is BSCANT.UPD, which can be used to
drive an internal net. These locations are primarily used by
Xilinx for internal testing.

From a cavity-up view of the chip (as shown in XDE or
Epic), starting in the upper right chip corner, the boundary
scan data-register bits are ordered as shown in Figure 42.
The device-specific pinout tables for the XC4000 Series
include the boundary scan locations for each IOB pin.

BSDL (Boundary Scan Description Language) files for
XC4000 Series devices are available on the Xilinx FTP site.

Including Boundary Scan in a Schematic
If boundary scan is only to be used during configuration, no
special schematic elements need be included in the sche-
matic or HDL code. In this case, the special boundary scan
pins TDI, TMS, TCK and TDO can be used for user func-
tions after configuration.

To indicate that boundary scan remain enabled after config-
uration, place the BSCAN library symbol and connect the
TDI, TMS, TCK and TDO pad symbols to the appropriate
pins, as shown in Figure 43.

Even if the boundary scan symbol is used in a schematic,
the input pins TMS, TCK, and TDI can still be used as
inputs to be routed to internal logic. Care must be taken not
to force the chip into an undesired boundary scan state by
inadvertently applying boundary scan input patterns to
these pins. The simplest way to prevent this is to keep TMS
High, and then apply whatever signal is desired to TDI and
TCK.
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Figure 41:   XC4000 Series Boundary Scan Logic
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Setting CCLK Frequency
For Master modes, CCLK can be generated in either of two
frequencies. In the default slow mode, the frequency
ranges from 0.5 MHz to 1.25 MHz for XC4000E and
XC4000EX devices and from 0.6 MHz to 1.8 MHz for
XC4000XL devices. In fast CCLK mode, the frequency
ranges from 4 MHz to 10 MHz for XC4000E/EX devices and
from 5 MHz to 15 MHz for XC4000XL devices. The fre-
quency is selected by an option when running the bitstream
generation software. If an XC4000 Series Master is driving
an XC3000- or XC2000-family slave, slow CCLK mode
must be used. In addition, an XC4000XL device driving a
XC4000E or XC4000EX should use slow mode. Slow mode
is the default.

Table 19: XC4000 Series Data Stream Formats

Data Stream Format
The data stream (“bitstream”) format is identical for all con-
figuration modes.

The data stream formats are shown in Table 19. Bit-serial
data is read from left to right, and byte-parallel data is effec-
tively assembled from this serial bitstream, with the first bit
in each byte assigned to D0.

The configuration data stream begins with a string of eight
ones, a preamble code, followed by a 24-bit length count
and a separator field of ones. This header is followed by the
actual configuration data in frames. The length and number
of frames depends on the device type (see Table 20 and
Table 21). Each frame begins with a start field and ends
with an error check. A postamble code is required to signal
the end of data for a single device. In all cases, additional
start-up bytes of data are required to provide four clocks for
the startup sequence at the end of configuration. Long
daisy chains require additional startup bytes to shift the last
data through the chain. All startup bytes are don’t-cares;
these bytes are not included in bitstreams created by the
Xilinx software.

A selection of CRC or non-CRC error checking is allowed
by the bitstream generation software. The non-CRC error
checking tests for a designated end-of-frame field for each
frame. For CRC error checking, the software calculates a
running CRC and inserts a unique four-bit partial check at
the end of each frame. The 11-bit CRC check of the last
frame of an FPGA includes the last seven data bits.

Detection of an error results in the suspension of data load-
ing and the pulling down of the INIT pin. In Master modes,
CCLK and address signals continue to operate externally.
The user must detect INIT and initialize a new configuration
by pulsing the PROGRAM pin Low or cycling Vcc.

Data Type
All Other

Modes (D0...)
Fill Byte 11111111b
Preamble Code 0010b
Length Count COUNT(23:0)
Fill Bits 1111b
Start Field 0b
Data Frame DATA(n-1:0)
CRC or Constant
Field Check

xxxx (CRC)
or 0110b

Extend Write Cycle —
Postamble 01111111b
Start-Up Bytes xxh
Legend:
Not shaded Once per bitstream
Light Once per data frame
Dark Once per device
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Readback
The user can read back the content of configuration mem-
ory and the level of certain internal nodes without interfer-
ing with the normal operation of the device.

Readback not only reports the downloaded configuration
bits, but can also include the present state of the device,
represented by the content of all flip-flops and latches in
CLBs and IOBs, as well as the content of function genera-
tors used as RAMs.

Note that in XC4000 Series devices, configuration data is
not inverted with respect to configuration as it is in XC2000
and XC3000 families.

XC4000 Series Readback does not use any dedicated
pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA,
RDBK.RIP and RDBK.CLK) that can be routed to any IOB.
To access the internal Readback signals, place the READ-

BACK library symbol and attach the appropriate pad sym-
bols, as shown in Figure 49.

After Readback has been initiated by a High level on
RDBK.TRIG after configuration, the RDBK.RIP (Read In
Progress) output goes High on the next rising edge of
RDBK.CLK. Subsequent rising edges of this clock shift out
Readback data on the RDBK.DATA net.

Readback data does not include the preamble, but starts
with five dummy bits (all High) followed by the Start bit
(Low) of the first frame. The first two data bits of the first
frame are always High.

Each frame ends with four error check bits. They are read
back as High. The last seven bits of the last frame are also
read back as High. An additional Start bit (Low) and an
11-bit Cyclic Redundancy Check (CRC) signature follow,
before RDBK.RIP returns Low.
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Figure 48:   Start-up Logic
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Table 22: Pin Functions During Configuration

CONFIGURATION MODE <M2:M1:M0>
SLAVE
SERIAL
<1:1:1>

MASTER
SERIAL
<0:0:0>

SYNCH.
PERIPHERAL

<0:1:1>

ASYNCH.
PERIPHERAL

<1:0:1>

MASTER
PARALLEL DOWN

<1:1:0>

MASTER
PARALLEL UP

<1:0:0>

USER
OPERATION

M2(HIGH) (I) M2(LOW) (I) M2(LOW) (I) M2(HIGH) (I) M2(HIGH) (I) M2(HIGH) (I) (I)
M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) (O)
M0(HIGH) (I) M0(LOW) (I) M0(HIGH) (I) M0(HIGH) (I) M0(LOW) (I) M0(LOW) (I) (I)
HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) I/O
LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) I/O

INIT INIT INIT INIT INIT INIT I/O
DONE DONE DONE DONE DONE DONE DONE

PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM
CCLK (I) CCLK (O) CCLK (I) CCLK (O) CCLK (O) CCLK (O) CCLK (I)

RDY/BUSY (O) RDY/BUSY (O) RCLK (O) RCLK (O) I/O
RS (I) I/O

CS0 (I) I/O
DATA 7 (I) DATA 7 (I) DATA 7 (I) DATA 7 (I) I/O
DATA 6 (I) DATA 6 (I) DATA 6 (I) DATA 6 (I) I/O
DATA 5 (I) DATA 5 (I) DATA 5 (I) DATA 5 (I) I/O
DATA 4 (I) DATA 4 (I) DATA 4 (I) DATA 4 (I) I/O
DATA 3 (I) DATA 3 (I) DATA 3 (I) DATA 3 (I) I/O
DATA 2 (I) DATA 2 (I) DATA 2 (I) DATA 2 (I) I/O
DATA 1 (I) DATA 1 (I) DATA 1 (I) DATA 1 (I) I/O

DIN (I) DIN (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) I/O
DOUT DOUT DOUT DOUT DOUT DOUT SGCK4-GCK6-I/O

TDI TDI TDI TDI TDI TDI TDI-I/O
TCK TCK TCK TCK TCK TCK TCK-I/O
TMS TMS TMS TMS TMS TMS TMS-I/O
TDO TDO TDO TDO TDO TDO TDO-(O)

WS (I) A0 A0 I/O
A1 A1 PGCK4-GCK7-I/O

CS1 A2 A2 I/O
A3 A3 I/O
A4 A4 I/O
A5 A5 I/O
A6 A6 I/O
A7 A7 I/O
A8 A8 I/O
A9 A9 I/O

A10 A10 I/O
A11 A11 I/O
A12 A12 I/O
A13 A13 I/O
A14 A14 I/O
A15 A15 SGCK1-GCK8-I/O
A16 A16 PGCK1-GCK1-I/O
A17 A17 I/O
A18* A18* I/O
A19* A19* I/O
A20* A20* I/O
A21* A21* I/O

ALL OTHERS
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Table 23: Pin Functions During Configuration

CONFIGURATION MODE <M2:M1:M0>
SLAVE
SERIAL
<1:1:1>

MASTER
SERIAL
<0:0:0>

SYNCH.
PERIPHERAL

<0:1:1>

ASYNCH.
PERIPHERAL

<1:0:1>

MASTER
PARALLEL DOWN

<1:1:0>

MASTER
PARALLEL UP

<1:0:0>

USER
OPERATION

M2(HIGH) (I) M2(LOW) (I) M2(LOW) (I) M2(HIGH) (I) M2(HIGH) (I) M2(HIGH) (I) (I)
M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) (O)
M0(HIGH) (I) M0(LOW) (I) M0(HIGH) (I) M0(HIGH) (I) M0(LOW) (I) M0(LOW) (I) (I)
HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) I/O
LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) I/O

INIT INIT INIT INIT INIT INIT I/O
DONE DONE DONE DONE DONE DONE DONE

PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM
CCLK (I) CCLK (O) CCLK (I) CCLK (O) CCLK (O) CCLK (O) CCLK (I)

RDY/BUSY (O) RDY/BUSY (O) RCLK (O) RCLK (O) I/O
RS (I) I/O

CS0 (I) I/O
DATA 7 (I) DATA 7 (I) DATA 7 (I) DATA 7 (I) I/O
DATA 6 (I) DATA 6 (I) DATA 6 (I) DATA 6 (I) I/O
DATA 5 (I) DATA 5 (I) DATA 5 (I) DATA 5 (I) I/O
DATA 4 (I) DATA 4 (I) DATA 4 (I) DATA 4 (I) I/O
DATA 3 (I) DATA 3 (I) DATA 3 (I) DATA 3 (I) I/O
DATA 2 (I) DATA 2 (I) DATA 2 (I) DATA 2 (I) I/O
DATA 1 (I) DATA 1 (I) DATA 1 (I) DATA 1 (I) I/O

DIN (I) DIN (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) I/O
DOUT DOUT DOUT DOUT DOUT DOUT SGCK4-GCK6-I/O

TDI TDI TDI TDI TDI TDI TDI-I/O
TCK TCK TCK TCK TCK TCK TCK-I/O
TMS TMS TMS TMS TMS TMS TMS-I/O
TDO TDO TDO TDO TDO TDO TDO-(O)

WS (I) A0 A0 I/O
A1 A1 PGCK4-GCK7-I/O

CS1 A2 A2 I/O
A3 A3 I/O
A4 A4 I/O
A5 A5 I/O
A6 A6 I/O
A7 A7 I/O
A8 A8 I/O
A9 A9 I/O

A10 A10 I/O
A11 A11 I/O
A12 A12 I/O
A13 A13 I/O
A14 A14 I/O
A15 A15 SGCK1-GCK8-I/O
A16 A16 PGCK1-GCK1-I/O
A17 A17 I/O
A18* A18* I/O
A19* A19* I/O
A20* A20* I/O
A21* A21* I/O

ALL OTHERS
* XC4000X only
Notes 1. A shaded table cell represents a 50 kΩ - 100 kΩ pull-up before and during configuration.

2. (I) represents an input; (O) represents an output.
3. INIT is an open-drain output during configuration.
May 14, 1999 (Version 1.6) 6-59



R

XC4000E and XC4000X Series Field Programmable Gate Arrays
Product Obsolete or Under Obsolescence
Configuration Timing
The seven configuration modes are discussed in detail in
this section. Timing specifications are included.

Slave Serial Mode
In Slave Serial mode, an external signal drives the CCLK
input of the FPGA. The serial configuration bitstream must
be available at the DIN input of the lead FPGA a short
setup time before each rising CCLK edge.

The lead FPGA then presents the preamble data—and all
data that overflows the lead device—on its DOUT pin.

There is an internal delay of 0.5 CCLK periods, which
means that DOUT changes on the falling CCLK edge, and
the next FPGA in the daisy chain accepts data on the sub-
sequent rising CCLK edge.

Figure 51 shows a full master/slave system. An XC4000
Series device in Slave Serial mode should be connected as
shown in the third device from the left.

Slave Serial mode is selected by a <111> on the mode pins
(M2, M1, M0). Slave Serial is the default mode if the mode
pins are left unconnected, as they have weak pull-up resis-
tors during configuration.

Figure 52:   Slave Serial Mode Programming Switching Characteristics
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Figure 51:   Master/Slave Serial Mode Circuit Diagram
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CCLK
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X5379

Description Symbol Min Max Units

CCLK

DIN setup 1 TDCC 20 ns
DIN hold 2 TCCD 0 ns
DIN to DOUT 3 TCCO 30 ns
High time 4 TCCH 45 ns
Low time 5 TCCL 45 ns
Frequency FCC 10 MHz

Note: Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High.
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Master Serial Mode
In Master Serial mode, the CCLK output of the lead FPGA
drives a Xilinx Serial PROM that feeds the FPGA DIN input.
Each rising edge of the CCLK output increments the Serial
PROM internal address counter. The next data bit is put on
the SPROM data output, connected to the FPGA DIN pin.
The lead FPGA accepts this data on the subsequent rising
CCLK edge.

The lead FPGA then presents the preamble data—and all
data that overflows the lead device—on its DOUT pin.
There is an internal pipeline delay of 1.5 CCLK periods,
which means that DOUT changes on the falling CCLK
edge, and the next FPGA in the daisy chain accepts data
on the subsequent rising CCLK edge.

In the bitstream generation software, the user can specify
Fast ConfigRate, which, starting several bits into the first
frame, increases the CCLK frequency by a factor of eight.

For actual timing values please refer to “Configuration
Switching Characteristics” on page 68. Be sure that the
serial PROM and slaves are fast enough to support this
data rate. XC2000, XC3000/A, and XC3100A devices do
not support the Fast ConfigRate option.

The SPROM CE input can be driven from either LDC or
DONE. Using LDC avoids potential contention on the DIN
pin, if this pin is configured as user-I/O, but LDC is then
restricted to be a permanently High user output after con-
figuration. Using DONE can also avoid contention on DIN,
provided the early DONE option is invoked.

Figure 51 on page 60 shows a full master/slave system.
The leftmost device is in Master Serial mode.

Master Serial mode is selected by a <000> on the mode
pins (M2, M1, M0).

Figure 53:   Master Serial Mode Programming Switching Characteristics

Description Symbol Min Max Units

CCLK
DIN setup 1 TDSCK 20 ns
DIN hold 2 TCKDS 0 ns

Notes: 1. At power-up, Vcc must rise from 2.0 V to Vcc min in less than 25 ms, otherwise delay configuration by pulling PROGRAM
Low until Vcc is valid.

2. Master Serial mode timing is based on testing in slave mode.

Serial Data In

CCLK

(Output)

Serial DOUT

(Output)

1 TDSCK

2 TCKDS

n n + 1 n + 2

n – 3 n – 2 n – 1 n 

X3223
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Master Parallel Modes
In the two Master Parallel modes, the lead FPGA directly
addresses an industry-standard byte-wide EPROM, and
accepts eight data bits just before incrementing or decre-
menting the address outputs.

The eight data bits are serialized in the lead FPGA, which
then presents the preamble data—and all data that over-
flows the lead device—on its DOUT pin. There is an inter-
nal delay of 1.5 CCLK periods, after the rising CCLK edge
that accepts a byte of data (and also changes the EPROM
address) until the falling CCLK edge that makes the LSB
(D0) of this byte appear at DOUT. This means that DOUT
changes on the falling CCLK edge, and the next FPGA in
the daisy chain accepts data on the subsequent rising
CCLK edge.

The PROM address pins can be incremented or decre-
mented, depending on the mode pin settings. This option
allows the FPGA to share the PROM with a wide variety of
microprocessors and micro controllers. Some processors
must boot from the bottom of memory (all zeros) while oth-
ers must boot from the top. The FPGA is flexible and can
load its configuration bitstream from either end of the mem-
ory.

Master Parallel Up mode is selected by a <100> on the
mode pins (M2, M1, M0). The EPROM addresses start at
00000 and increment.

Master Parallel Down mode is selected by a <110> on the
mode pins. The EPROM addresses start at 3FFFF and
decrement.

Additional Address lines in XC4000 devices

The XC4000X devices have additional address lines
(A18-A21) allowing the additional address space required
to daisy-chain several large devices.

The extra address lines are programmable in XC4000EX
devices. By default these address lines are not activated. In
the default mode, the devices are compatible with existing
XC4000 and XC4000E products. If desired, the extra
address lines can be used by specifying the address lines
option in bitgen as 22 (bitgen -g AddressLines:22). The
lines (A18-A21) are driven when a master device detects,
via the bitstream, that it should be using all 22 address
lines. Because these pins will initially be pulled high by
internal pull-ups, designers using Master Parallel Up mode
should use external pull down resistors on pins A18-A21. If
Master Parallel Down mode is used external resistors are
not necessary.

All 22 address lines are always active in Master Parallel
modes with XC4000XL devices. The additional address
lines behave identically to the lower order address lines. If
the Address Lines option in bitgen is set to 18, it will be
ignored by the XC4000XL device.

The additional address lines (A18-A21) are not available in
the PC84 package.

M0 M1

DOUT

VCC

M2

PROGRAM

D7

D6

D5

D4

D3

D2

D1

D0

PROGRAM

CCLK

DIN

M0 M1 M2

DOUT

PROGRAM

EPROM

(8K x 8)


(OR LARGER)

A10

A11

A12

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

D7

DONE

D6

D5

D4

D3

D2

D1

D0

N/C

N/C

CE

OE

XC4000E/X

SLAVE





8DATA BUS

CCLK

A15

A14

A13

A12

A11

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

INIT 

INIT 

. . .

. . .

. . .
USER CONTROL OF HIGHER

ORDER PROM ADDRESS BITS

CAN BE USED TO SELECT BETWEEN

ALTERNATIVE CONFIGURATIONS

DONE

TO DIN OF OPTIONAL

DAISY-CHAINED FPGAS

A16 . . .

A17 . . .

HIGH 

or 


LOW

X9026

TO CCLK OF OPTIONAL

DAISY-CHAINED FPGAS

4.7KΩ

4.7KΩ

NOTE:M0 can be shorted

to Ground if not used

as I/O.

Figure 54:   Master Parallel Mode Circuit Diagram
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Figure 59:   Asynchronous Peripheral Mode Programming Switching Characteristics

Previous Byte D6 D7 D0 D1 D2

1 TCA

2 TDC

4TWTRB

3 TCD

6 TBUSY

READY

BUSY

RS, CS0

WS, CS1 

D7 

WS/CS0

RS, CS1

D0-D7

CCLK

RDY/BUSY

DOUT

Write to LCA Read Status

X6097

7 4

Description Symbol Min Max Units

Write

Effective Write time
(CS0, WS=Low; RS, CS1=High)

1 TCA 100 ns

DIN setup time 2 TDC 60 ns
DIN hold time 3 TCD 0 ns

RDY

RDY/BUSY delay after end of
Write or Read

4 TWTRB 60 ns

RDY/BUSY active after beginning
of Read

7 60 ns

RDY/BUSY Low output (Note 4) 6 TBUSY 2 9 CCLK
periods

Notes: 1. Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High.
2. The time from the end of WS to CCLK cycle for the new byte of data depends on the completion of previous byte

processing and the phase of the internal timing generator for CCLK.
3. CCLK and DOUT timing is tested in slave mode.
4. TBUSY indicates that the double-buffered parallel-to-serial converter is not yet ready to receive new data. The shortest

TBUSY occurs when a byte is loaded into an empty parallel-to-serial converter. The longest TBUSY occurs when a new word
is loaded into the input register before the second-level buffer has started shifting out data

This timing diagram shows very relaxed requirements. Data need not be held beyond the rising edge of WS. RDY/BUSY will
go active within 60 ns after the end of WS. A new write may be asserted immediately after RDY/BUSY goes Low, but write
may not be terminated until RDY/BUSY has been High for one CCLK period.
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Configuration Switching Characteristics

Master Modes (XC4000E/EX)

Master Modes (XC4000XL)

Slave and Peripheral Modes (All)

Description Symbol Min Max Units

Power-On Reset
M0 = High TPOR 10 40 ms
M0 = Low TPOR 40 130 ms

Program Latency TPI 30 200 µs per
CLB column

CCLK (output) Delay TICCK 40 250 µs
CCLK (output) Period, slow TCCLK 640 2000 ns
CCLK (output) Period, fast TCCLK 80 250 ns

Description Symbol Min Max Units

Power-On Reset
M0 = High TPOR 10 40 ms
M0 = Low TPOR 40 130 ms

Program Latency TPI 30 200 µs per
CLB column

CCLK (output) Delay TICCK 40 250 µs
CCLK (output) Period, slow TCCLK 540 1600 ns
CCLK (output) Period, fast TCCLK 67 200 ns

Description Symbol Min Max Units
Power-On Reset TPOR 10 33 ms
Program Latency TPI 30 200 µs per

CLB column
CCLK (input) Delay (required) TICCK 4 µs
CCLK (input) Period (required) TCCLK 100 ns

VALID

PROGRAM

INIT

Vcc

PIT

PORT

ICCKT CCLKT

CCLK OUTPUT or INPUT

M0, M1, M2 DONE RESPONSE

<300 ns

<300 ns

>300 ns

RE-PROGRAM

X1532

(Required)

I /O
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Table 25: Component Availability Chart for XC4000E FPGAs

PINS 84 100 100 120 144 156 160 191 208 208 223 225 240 240 299 304

TYPE

P
la

st
.

P
LC

C
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la

st
.

P
Q

F
P

P
la

st
.

V
Q

F
P

C
er

am
.

P
G

A

P
la
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.

T
Q

F
P

C
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.

P
G

A

P
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st
.

P
Q

F
P

C
er

am
.

P
G

A

H
ig

h-
P

er
f.

Q
F

P

P
la

st
.

P
Q

F
P

C
er

am
.

P
G

A

P
la

st
.

B
G

A

H
ig

h-
P

er
f.

Q
F

P

P
la

st
.

P
Q

F
P

C
er

am
.

P
G

A

H
ig

h-
P

er
f.

Q
F

CODE
P

C
84

P
Q

10
0

V
Q

10
0

P
G

12
0

T
Q

14
4

P
G

15
6

P
Q

16
0

P
G

19
1

H
Q

20
8

P
Q

20
8

P
G

22
3

B
G

22
5

H
Q

24
0

P
Q

24
0

P
G

29
9

H
Q

30
4

XC4003E

-4 C I C I C I C I

-3 C I C I C I C I

-2 C I C I C I C I

-1 C C C C

XC4005E

-4 C I C I C I C I C I C I

-3 C I C I C I C I C I C I

-2 C I C I C I C I C I C I

-1 C C C C C C

XC4006E

-4 C I C I C I C I C I

-3 C I C I C I C I C I

-2 C I C I C I C I C I

-1 C C C C C

XC4008E

-4 C I C I C I C I

-3 C I C I C I C I

-2 C I C I C I C I

-1 C C C C

XC4010E

-4 C I C I C I C I C I C I

-3 C I C I C I C I C I C I

-2 C I C I C I C I C I C I

-1 C C C C C C

XC4013E

-4 C I C I C I C I C I C I C I

-3 C I C I C I C I C I C I C I

-2 C I C I C I C I C I C I C I

-1 C C C C C C C

XC4020E

-4 C I C I C I

-3 C I C I C I

-2 C I C I C I

-1 C C C

XC4025E
-4 C I C I C I C I

-3 C I C I C I C I

-2 C C C C

1/29/99

C = Commercial TJ = 0° to +85°C
I= Industrial TJ = -40°C to +100°C

Table 26: Component Availability Chart for XC4000EX FPGAs

PINS 208 240 299 304 352 411 432

TYPE
High-Perf.

QFP
High-Perf.

QFP
Ceram.

PGA
High-Perf.

QFP
Plast.
BGA

Ceram.
PGA

Plast.
BGA

CODE HQ208 HQ240 PG299 HQ304 BG352 PG411 BG432

XC4028EX
-4 C I C I C I C I C I

-3 C I C I C I C I C I

-2 C C C C C

XC4036EX
-4 C I C I C I C I C I

-3 C I C I C I C I C I

-2 C C C C C

1/29/99

C = Commercial TJ = 0° to +85°C
I= Industrial TJ = -40°C to +100°C
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