Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 1600 | | Number of Logic Elements/Cells | 3800 | | Total RAM Bits | 51200 | | Number of I/O | 129 | | Number of Gates | 44000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 160-BQFP Exposed Pad | | Supplier Device Package | 160-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xc4044xl-2hq160i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # XC4000E and XC4000X Series Compared to the XC4000 For readers already familiar with the XC4000 family of Xilinx Field Programmable Gate Arrays, the major new features in the XC4000 Series devices are listed in this section. The biggest advantages of XC4000E and XC4000X devices are significantly increased system speed, greater capacity, and new architectural features, particularly Select-RAM memory. The XC4000X devices also offer many new routing features, including special high-speed clock buffers that can be used to capture input data with minimal delay. Any XC4000E device is pinout- and bitstream-compatible with the corresponding XC4000 device. An existing XC4000 bitstream can be used to program an XC4000E device. However, since the XC4000E includes many new features, an XC4000E bitstream cannot be loaded into an XC4000 device. XC4000X Series devices are not bitstream-compatible with equivalent array size devices in the XC4000 or XC4000E families. However, equivalent array size devices, such as the XC4025, XC4025E, XC4028EX, and XC4028XL, are pinout-compatible. ### Improvements in XC4000E and XC4000X ### Increased System Speed XC4000E and XC4000X devices can run at synchronous system clock rates of up to 80 MHz, and internal performance can exceed 150 MHz. This increase in performance over the previous families stems from improvements in both device processing and system architecture. XC4000 Series devices use a sub-micron multi-layer metal process. In addition, many architectural improvements have been made, as described below. The XC4000XL family is a high performance 3.3V family based on 0.35μ SRAM technology and supports system speeds to 80 MHz. ### **PCI Compliance** XC4000 Series -2 and faster speed grades are fully PCI compliant. XC4000E and XC4000X devices can be used to implement a one-chip PCI solution. ### Carry Logic The speed of the carry logic chain has increased dramatically. Some parameters, such as the delay on the carry chain through a single CLB (TBYP), have improved by as much as 50% from XC4000 values. See "Fast Carry Logic" on page 18 for more information. ## Select-RAM Memory: Edge-Triggered, Synchronous RAM Modes The RAM in any CLB can be configured for synchronous, edge-triggered, write operation. The read operation is not affected by this change to an edge-triggered write. #### **Dual-Port RAM** A separate option converts the 16x2 RAM in any CLB into a 16x1 dual-port RAM with simultaneous Read/Write. The function generators in each CLB can be configured as either level-sensitive (asynchronous) single-port RAM, edge-triggered (synchronous) single-port RAM, edge-triggered (synchronous) dual-port RAM, or as combinatorial logic. ### Configurable RAM Content The RAM content can now be loaded at configuration time, so that the RAM starts up with user-defined data. ### H Function Generator In current XC4000 Series devices, the H function generator is more versatile than in the original XC4000. Its inputs can come not only from the F and G function generators but also from up to three of the four control input lines. The H function generator can thus be totally or partially independent of the other two function generators, increasing the maximum capacity of the device. ### IOB Clock Enable The two flip-flops in each IOB have a common clock enable input, which through configuration can be activated individually for the input or output flip-flop or both. This clock enable operates exactly like the EC pin on the XC4000 CLB. This new feature makes the IOBs more versatile, and avoids the need for clock gating. ### **Output Drivers** The output pull-up structure defaults to a TTL-like totem-pole. This driver is an n-channel pull-up transistor, pulling to a voltage one transistor threshold below Vcc, just like the XC4000 family outputs. Alternatively, XC4000 Series devices can be globally configured with CMOS outputs, with p-channel pull-up transistors pulling to Vcc. Also, the configurable pull-up resistor in the XC4000 Series is a p-channel transistor that pulls to Vcc, whereas in the original XC4000 family it is an n-channel transistor that pulls to a voltage one transistor threshold below Vcc. Table 1: XC4000E and XC4000X Series Field Programmable Gate Arrays | | | Max Logic | Max. RAM | Typical | | | Number | | |-------------|-------|-----------|------------|------------------|---------|-------|------------|----------| | | Logic | Gates | Bits | Gate Range | CLB | Total | of | Max. | | Device | Cells | (No RAM) | (No Logic) | (Logic and RAM)* | Matrix | CLBs | Flip-Flops | User I/O | | XC4002XL | 152 | 1,600 | 2,048 | 1,000 - 3,000 | 8 x 8 | 64 | 256 | 64 | | XC4003E | 238 | 3,000 | 3,200 | 2,000 - 5,000 | 10 x 10 | 100 | 360 | 80 | | XC4005E/XL | 466 | 5,000 | 6,272 | 3,000 - 9,000 | 14 x 14 | 196 | 616 | 112 | | XC4006E | 608 | 6,000 | 8,192 | 4,000 - 12,000 | 16 x 16 | 256 | 768 | 128 | | XC4008E | 770 | 8,000 | 10,368 | 6,000 - 15,000 | 18 x 18 | 324 | 936 | 144 | | XC4010E/XL | 950 | 10,000 | 12,800 | 7,000 - 20,000 | 20 x 20 | 400 | 1,120 | 160 | | XC4013E/XL | 1368 | 13,000 | 18,432 | 10,000 - 30,000 | 24 x 24 | 576 | 1,536 | 192 | | XC4020E/XL | 1862 | 20,000 | 25,088 | 13,000 - 40,000 | 28 x 28 | 784 | 2,016 | 224 | | XC4025E | 2432 | 25,000 | 32,768 | 15,000 - 45,000 | 32 x 32 | 1,024 | 2,560 | 256 | | XC4028EX/XL | 2432 | 28,000 | 32,768 | 18,000 - 50,000 | 32 x 32 | 1,024 | 2,560 | 256 | | XC4036EX/XL | 3078 | 36,000 | 41,472 | 22,000 - 65,000 | 36 x 36 | 1,296 | 3,168 | 288 | | XC4044XL | 3800 | 44,000 | 51,200 | 27,000 - 80,000 | 40 x 40 | 1,600 | 3,840 | 320 | | XC4052XL | 4598 | 52,000 | 61,952 | 33,000 - 100,000 | 44 x 44 | 1,936 | 4,576 | 352 | | XC4062XL | 5472 | 62,000 | 73,728 | 40,000 - 130,000 | 48 x 48 | 2,304 | 5,376 | 384 | | XC4085XL | 7448 | 85,000 | 100,352 | 55,000 - 180,000 | 56 x 56 | 3,136 | 7,168 | 448 | ^{*} Max values of Typical Gate Range include 20-30% of CLBs used as RAM. **Note:** All functionality in low-voltage families is the same as in the corresponding 5-Volt family, except where numerical references are made to timing or power. ### Description XC4000 Series devices are implemented with a regular, flexible, programmable architecture of Configurable Logic Blocks (CLBs), interconnected by a powerful hierarchy of versatile routing resources, and surrounded by a perimeter of programmable Input/Output Blocks (IOBs). They have generous routing resources to accommodate the most complex interconnect patterns. The devices are customized by loading configuration data into internal memory cells. The FPGA can either actively read its configuration data from an external serial or byte-parallel PROM (master modes), or the configuration data can be written into the FPGA from an external device (slave and peripheral modes). XC4000 Series FPGAs are supported by powerful and sophisticated software, covering every aspect of design from schematic or behavioral entry, floor planning, simulation, automatic block placement and routing of interconnects, to the creation, downloading, and readback of the configuration bit stream. Because Xilinx FPGAs can be reprogrammed an unlimited number of times, they can be used in innovative designs where hardware is changed dynamically, or where hardware must be adapted to different user applications. FPGAs are ideal for shortening design and development cycles, and also offer a cost-effective solution for production rates well beyond 5,000 systems per month. ### Taking Advantage of Re-configuration FPGA devices can be re-configured to change logic function while resident in the system. This capability gives the system designer a new degree of freedom not available with any other type of logic. Hardware can be changed as easily as software. Design updates or modifications are easy, and can be made to products already in the field. An FPGA can even be re-configured dynamically to perform different functions at different times. Re-configurable logic can be used to implement system self-diagnostics, create systems capable of being re-configured for different environments or operations, or implement multi-purpose hardware for a given application. As an added benefit, using re-configurable FPGA devices simplifies hardware design and debugging and shortens product time-to-market. ### Input Thresholds The input thresholds of 5V devices can be globally configured for either TTL (1.2 V threshold) or CMOS (2.5 V threshold), just like XC2000 and XC3000 inputs. The two global adjustments of input threshold and output level are
independent of each other. The XC4000XL family has an input threshold of 1.6V, compatible with both 3.3V CMOS and TTL levels. ### Global Signal Access to Logic There is additional access from global clocks to the F and G function generator inputs. ### Configuration Pin Pull-Up Resistors During configuration, these pins have weak pull-up resistors. For the most popular configuration mode, Slave Serial, the mode pins can thus be left unconnected. The three mode inputs can be individually configured with or without weak pull-up or pull-down resistors. A pull-down resistor value of $4.7~\mathrm{k}\Omega$ is recommended. The three mode inputs can be individually configured with or without weak pull-up or pull-down resistors after configuration. The PROGRAM input pin has a permanent weak pull-up. ### Soft Start-up Like the XC3000A, XC4000 Series devices have "Soft Start-up." When the configuration process is finished and the device starts up, the first activation of the outputs is automatically slew-rate limited. This feature avoids potential ground bounce when all outputs are turned on simultaneously. Immediately after start-up, the slew rate of the individual outputs is, as in the XC4000 family, determined by the individual configuration option. ### XC4000 and XC4000A Compatibility Existing XC4000 bitstreams can be used to configure an XC4000E device. XC4000A bitstreams must be recompiled for use with the XC4000E due to improved routing resources, although the devices are pin-for-pin compatible. ### Additional Improvements in XC4000X Only ### Increased Routing New interconnect in the XC4000X includes twenty-two additional vertical lines in each column of CLBs and twelve new horizontal lines in each row of CLBs. The twelve "Quad Lines" in each CLB row and column include optional repowering buffers for maximum speed. Additional high-performance routing near the IOBs enhances pin flexibility. ### Faster Input and Output A fast, dedicated early clock sourced by global clock buffers is available for the IOBs. To ensure synchronization with the regular global clocks, a Fast Capture latch driven by the early clock is available. The input data can be initially loaded into the Fast Capture latch with the early clock, then transferred to the input flip-flop or latch with the low-skew global clock. A programmable delay on the input can be used to avoid hold-time requirements. See "IOB Input Signals" on page 20 for more information. ### Latch Capability in CLBs Storage elements in the XC4000X CLB can be configured as either flip-flops or latches. This capability makes the FPGA highly synthesis-compatible. ### IOB Output MUX From Output Clock A multiplexer in the IOB allows the output clock to select either the output data or the IOB clock enable as the output to the pad. Thus, two different data signals can share a single output pad, effectively doubling the number of device outputs without requiring a larger, more expensive package. This multiplexer can also be configured as an AND-gate to implement a very fast pin-to-pin path. See "IOB Output Signals" on page 23 for more information. ### Additional Address Bits Larger devices require more bits of configuration data. A daisy chain of several large XC4000X devices may require a PROM that cannot be addressed by the eighteen address bits supported in the XC4000E. The XC4000X Series therefore extends the addressing in Master Parallel configuration mode to 22 bits. ## **Detailed Functional Description** XC4000 Series devices achieve high speed through advanced semiconductor technology and improved architecture. The XC4000E and XC4000X support system clock rates of up to 80 MHz and internal performance in excess of 150 MHz. Compared to older Xilinx FPGA families, XC4000 Series devices are more powerful. They offer on-chip edge-triggered and dual-port RAM, clock enables on I/O flip-flops, and wide-input decoders. They are more versatile in many applications, especially those involving RAM. Design cycles are faster due to a combination of increased routing resources and more sophisticated software. ### **Basic Building Blocks** Xilinx user-programmable gate arrays include two major configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs). - CLBs provide the functional elements for constructing the user's logic. - IOBs provide the interface between the package pins and internal signal lines. Three other types of circuits are also available: - 3-State buffers (TBUFs) driving horizontal longlines are associated with each CLB. - Wide edge decoders are available around the periphery of each device. - An on-chip oscillator is provided. Programmable interconnect resources provide routing paths to connect the inputs and outputs of these configurable elements to the appropriate networks. The functionality of each circuit block is customized during configuration by programming internal static memory cells. The values stored in these memory cells determine the logic functions and interconnections implemented in the FPGA. Each of these available circuits is described in this section. ### **Configurable Logic Blocks (CLBs)** Configurable Logic Blocks implement most of the logic in an FPGA. The principal CLB elements are shown in Figure 1. Two 4-input function generators (F and G) offer unrestricted versatility. Most combinatorial logic functions need four or fewer inputs. However, a third function generator (H) is provided. The H function generator has three inputs. Either zero, one, or two of these inputs can be the outputs of F and G; the other input(s) are from outside the CLB. The CLB can, therefore, implement certain functions of up to nine variables, like parity check or expandable-identity comparison of two sets of four inputs. Each CLB contains two storage elements that can be used to store the function generator outputs. However, the storage elements and function generators can also be used independently. These storage elements can be configured as flip-flops in both XC4000E and XC4000X devices; in the XC4000X they can optionally be configured as latches. DIN can be used as a direct input to either of the two storage elements. H1 can drive the other through the H function generator. Function generator outputs can also drive two outputs independent of the storage element outputs. This versatility increases logic capacity and simplifies routing. Thirteen CLB inputs and four CLB outputs provide access to the function generators and storage elements. These inputs and outputs connect to the programmable interconnect resources outside the block. ### **Function Generators** Four independent inputs are provided to each of two function generators (F1 - F4 and G1 - G4). These function generators, with outputs labeled F' and G', are each capable of implementing any arbitrarily defined Boolean function of four inputs. The function generators are implemented as memory look-up tables. The propagation delay is therefore independent of the function implemented. A third function generator, labeled H', can implement any Boolean function of its three inputs. Two of these inputs can optionally be the F' and G' functional generator outputs. Alternatively, one or both of these inputs can come from outside the CLB (H2, H0). The third input must come from outside the block (H1). Signals from the function generators can exit the CLB on two outputs. F' or H' can be connected to the X output. G' or H' can be connected to the Y output. A CLB can be used to implement any of the following functions: - any function of up to four variables, plus any second function of up to four unrelated variables, plus any third function of up to three unrelated variables¹ - any single function of five variables - any function of four variables together with some functions of six variables - · some functions of up to nine variables. Implementing wide functions in a single block reduces both the number of blocks required and the delay in the signal path, achieving both increased capacity and speed. The versatility of the CLB function generators significantly improves system speed. In addition, the design-software tools can deal with each function generator independently. This flexibility improves cell usage. ^{1.} When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two unregistered function generator outputs are available from the CLB. #### Set/Reset An asynchronous storage element input (SR) can be configured as either set or reset. This configuration option determines the state in which each flip-flop becomes operational after configuration. It also determines the effect of a Global Set/Reset pulse during normal operation, and the effect of a pulse on the SR pin of the CLB. All three set/reset functions for any single flip-flop are controlled by the same configuration data bit. The set/reset state can be independently specified for each flip-flop. This input can also be independently disabled for either flip-flop. The set/reset state is specified by using the INIT attribute, or by placing the appropriate set or reset flip-flop library symbol. SR is active High. It is not invertible within the CLB. ### Global Set/Reset A separate Global Set/Reset line (not shown in Figure 1) sets or clears each storage element during power-up, re-configuration, or when a dedicated Reset net is driven active. This global net (GSR) does not compete with other routing resources; it uses a dedicated distribution network. Each flip-flop is configured as either globally set or reset in the same way that the local set/reset (SR) is specified. Therefore, if a flip-flop is set by SR, it is also set by GSR. Similarly, a reset flip-flop is reset by both SR and GSR. Figure 2: Schematic Symbols for Global Set/Reset GSR can be driven from any user-programmable pin as a global reset input. To use this global net, place an input pad and input buffer in the
schematic or HDL code, driving the GSR pin of the STARTUP symbol. (See Figure 2.) A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the Global Set/Reset signal. Alternatively, GSR can be driven from any internal node. ### Data Inputs and Outputs The source of a storage element data input is programmable. It is driven by any of the functions F', G', and H', or by the Direct In (DIN) block input. The flip-flops or latches drive the XQ and YQ CLB outputs. Two fast feed-through paths are available, as shown in Figure 1. A two-to-one multiplexer on each of the XQ and YQ outputs selects between a storage element output and any of the control inputs. This bypass is sometimes used by the automated router to repower internal signals. ### **Control Signals** Multiplexers in the CLB map the four control inputs (C1 - C4 in Figure 1) into the four internal control signals (H1, DIN/H2, SR/H0, and EC). Any of these inputs can drive any of the four internal control signals. When the logic function is enabled, the four inputs are: - EC Enable Clock - SR/H0 Asynchronous Set/Reset or H function generator Input 0 - DIN/H2 Direct In or H function generator Input 2 - H1 H function generator Input 1. When the memory function is enabled, the four inputs are: - EC Enable Clock - WE Write Enable - D0 Data Input to F and/or G function generator - D1 Data input to G function generator (16x1 and 16x2 modes) or 5th Address bit (32x1 mode). ### Using FPGA Flip-Flops and Latches The abundance of flip-flops in the XC4000 Series invites pipelined designs. This is a powerful way of increasing performance by breaking the function into smaller subfunctions and executing them in parallel, passing on the results through pipeline flip-flops. This method should be seriously considered wherever throughput is more important than latency. To include a CLB flip-flop, place the appropriate library symbol. For example, FDCE is a D-type flip-flop with clock enable and asynchronous clear. The corresponding latch symbol (for the XC4000X only) is called LDCE. In XC4000 Series devices, the flip flops can be used as registers or shift registers without blocking the function generators from performing a different, perhaps unrelated task. This ability increases the functional capacity of the devices. The CLB setup time is specified between the function generator inputs and the clock input K. Therefore, the specified CLB flip-flop setup time includes the delay through the function generator. ### Using Function Generators as RAM Optional modes for each CLB make the memory look-up tables in the F' and G' function generators usable as an array of Read/Write memory cells. Available modes are level-sensitive (similar to the XC4000/A/H families), edge-triggered, and dual-port edge-triggered. Depending on the selected mode, a single CLB can be configured as either a 16x2, 32x1, or 16x1 bit array. Supported CLB memory configurations and timing modes for single- and dual-port modes are shown in Table 3. XC4000 Series devices are the first programmable logic devices with edge-triggered (synchronous) and dual-port RAM accessible to the user. Edge-triggered RAM simplifies system timing. Dual-port RAM doubles the effective throughput of FIFO applications. These features can be individually programmed in any XC4000 Series CLB. ### Advantages of On-Chip and Edge-Triggered RAM The on-chip RAM is extremely fast. The read access time is the same as the logic delay. The write access time is slightly slower. Both access times are much faster than any off-chip solution, because they avoid I/O delays. Edge-triggered RAM, also called synchronous RAM, is a feature never before available in a Field Programmable Gate Array. The simplicity of designing with edge-triggered RAM, and the markedly higher achievable performance, add up to a significant improvement over existing devices with on-chip RAM. Three application notes are available from Xilinx that discuss edge-triggered RAM: "XC4000E Edge-Triggered and Dual-Port RAM Capability," "Implementing FIFOs in XC4000E RAM," and "Synchronous and Asynchronous FIFO Designs." All three application notes apply to both XC4000E and XC4000X RAM. **Table 3: Supported RAM Modes** | | 16 | 16 | 32 | Edge- | Level- | |-------------|----|----|----|-----------|-----------| | | х | х | x | Triggered | Sensitive | | | 1 | 2 | 1 | Timing | Timing | | Single-Port | V | √ | 1 | 1 | V | | Dual-Port | V | | | V | | ### **RAM Configuration Options** The function generators in any CLB can be configured as RAM arrays in the following sizes: - Two 16x1 RAMs: two data inputs and two data outputs with identical or, if preferred, different addressing for each RAM - One 32x1 RAM: one data input and one data output. One F or G function generator can be configured as a 16x1 RAM while the other function generators are used to implement any function of up to 5 inputs. Additionally, the XC4000 Series RAM may have either of two timing modes: - Edge-Triggered (Synchronous): data written by the designated edge of the CLB clock. WE acts as a true clock enable. - Level-Sensitive (Asynchronous): an external WE signal acts as the write strobe. The selected timing mode applies to both function generators within a CLB when both are configured as RAM. The number of read ports is also programmable: - Single Port: each function generator has a common read and write port - Dual Port: both function generators are configured together as a single 16x1 dual-port RAM with one write port and two read ports. Simultaneous read and write operations to the same or different addresses are supported. RAM configuration options are selected by placing the appropriate library symbol. ### **Choosing a RAM Configuration Mode** The appropriate choice of RAM mode for a given design should be based on timing and resource requirements, desired functionality, and the simplicity of the design process. Recommended usage is shown in Table 4. The difference between level-sensitive, edge-triggered, and dual-port RAM is only in the write operation. Read operation and timing is identical for all modes of operation. **Table 4: RAM Mode Selection** | | Level-Sens itive | Edge-Trigg
ered | Dual-Port
Edge-Trigg
ered | |----------------------------|------------------|--------------------|---------------------------------| | Use for New Designs? | No | Yes | Yes | | Size (16x1,
Registered) | 1/2 CLB | 1/2 CLB | 1 CLB | | Simultaneous
Read/Write | No | No | Yes | | Relative
Performance | Х | 2X | 2X (4X
effective) | ### **RAM Inputs and Outputs** The F1-F4 and G1-G4 inputs to the function generators act as address lines, selecting a particular memory cell in each look-up table. The functionality of the CLB control signals changes when the function generators are configured as RAM. The DIN/H2, H1, and SR/H0 lines become the two data inputs (D0, D1) and the Write Enable (WE) input for the 16x2 memory. When the 32x1 configuration is selected, D1 acts as the fifth address bit and D0 is the data input. The contents of the memory cell(s) being addressed are available at the F' and G' function-generator outputs. They can exit the CLB through its X and Y outputs, or can be captured in the CLB flip-flop(s). Configuring the CLB function generators as Read/Write memory does not affect the functionality of the other por- Figure 4: 16x2 (or 16x1) Edge-Triggered Single-Port RAM Figure 5: 32x1 Edge-Triggered Single-Port RAM (F and G addresses are identical) 6-14 May 14, 1999 (Version 1.6) Table 8: Supported Sources for XC4000 Series Device Inputs | | | 0E/EX
Inputs | XC4000XL
Series Inputs | |---|-------------|-----------------|---------------------------| | Source | 5 V,
TTL | 5 V,
CMOS | 3.3 V
CMOS | | Any device, Vcc = 3.3 V,
CMOS outputs | V | Unreli | √ | | XC4000 Series, Vcc = 5 V, TTL outputs | V | -able
Data | √ | | Any device, $Vcc = 5 \text{ V}$, TTL outputs $(Voh \le 3.7 \text{ V})$ | √ | Data | √ | | Any device, Vcc = 5 V,
CMOS outputs | V | √ | √ | #### XC4000XL 5-Volt Tolerant I/Os The I/Os on the XC4000XL are fully 5-volt tolerant even though the $V_{\rm CC}$ is 3.3 volts. This allows 5 V signals to directly connect to the XC4000XL inputs without damage, as shown in Table 8. In addition, the 3.3 volt $V_{\rm CC}$ can be applied before or after 5 volt signals are applied to the I/Os. This makes the XC4000XL immune to power supply sequencing problems. ### **Registered Inputs** The I1 and I2 signals that exit the block can each carry either the direct or registered input signal. The input and output storage elements in each IOB have a common clock enable input, which, through configuration, can be activated individually for the input or output flip-flop, or both. This clock enable operates exactly like the EC pin on the XC4000 Series CLB. It cannot be inverted within the IOB. The storage element behavior is shown in Table 9. Table 9: Input Register Functionality (active rising edge is shown) | Mode | Clock | Clock
Enable | D | Q | |-----------------|-------|-----------------|---|----| | Power-Up or GSR | X | X | Х | SR | | Flip-Flop | | 1* | D | D | | | 0 | Х | Х | Q | | Latch | 1 | 1* | Х | Q | | | 0 | 1* | D | D | | Both | Χ | 0 | Х | Q | Legend: X Don't care Rising edge SR Set or Reset value. Reset is default. 0* Input is Low or unconnected (default value) 1* Input is High or unconnected (default value) ### **Optional Delay Guarantees Zero Hold Time** The data input to the register can optionally be delayed by several nanoseconds. With the delay enabled, the setup time of the input flip-flop is increased so that normal clock routing does not result in a positive hold-time requirement. A positive hold time requirement can lead to
unreliable, temperature- or processing-dependent operation. The input flip-flop setup time is defined between the data measured at the device I/O pin and the clock input at the IOB (not at the clock pin). Any routing delay from the device clock pin to the clock input of the IOB must, therefore, be subtracted from this setup time to arrive at the real setup time requirement relative to the device pins. A short specified setup time might, therefore, result in a negative setup time at the device pins, i.e., a positive hold-time requirement. When a delay is inserted on the data line, more clock delay can be tolerated without causing a positive hold-time requirement. Sufficient delay eliminates the possibility of a data hold-time requirement at the external pin. The maximum delay is therefore inserted as the default. The XC4000E IOB has a one-tap delay element: either the delay is inserted (default), or it is not. The delay guarantees a zero hold time with respect to clocks routed through any of the XC4000E global clock buffers. (See "Global Nets and Buffers (XC4000E only)" on page 35 for a description of the global clock buffers in the XC4000E.) For a shorter input register setup time, with non-zero hold, attach a NODELAY attribute or property to the flip-flop. The XC4000X IOB has a two-tap delay element, with choices of a full delay, a partial delay, or no delay. The attributes or properties used to select the desired delay are shown in Table 10. The choices are no added attribute, MEDDELAY, and NODELAY. The default setting, with no added attribute, ensures no hold time with respect to any of the XC4000X clock buffers, including the Global Low-Skew buffers. MEDDELAY ensures no hold time with respect to the Global Early buffers. Inputs with NODELAY may have a positive hold time with respect to all clock buffers. For a description of each of these buffers, see "Global Nets and Buffers (XC4000X only)" on page 37. Table 10: XC4000X IOB Input Delay Element | Value | When to Use | |------------------|--| | full delay | Zero Hold with respect to Global | | (default, no | Low-Skew Buffer, Global Early Buffer | | attribute added) | | | MEDDELAY | Zero Hold with respect to Global Early | | | Buffer | | NODELAY | Short Setup, positive Hold time | Any XC4000 Series 5-Volt device with its outputs configured in TTL mode can drive the inputs of any typical 3.3-Volt device. (For a detailed discussion of how to interface between 5 V and 3.3 V devices, see the 3V Products section of *The Programmable Logic Data Book*.) Supported destinations for XC4000 Series device outputs are shown in Table 12. An output can be configured as open-drain (open-collector) by placing an OBUFT symbol in a schematic or HDL code, then tying the 3-state pin (T) to the output signal, and the input pin (I) to Ground. (See Figure 18.) Table 12: Supported Destinations for XC4000 Series Outputs | | XC | ries
i | | |----------------------------------|----------------|-------------|-------------------| | Destination | 3.3 V,
CMOS | 5 V,
TTL | 5 V,
CMOS | | Any typical device, Vcc = 3.3 V, | V | V | some ¹ | | CMOS-threshold inputs | | | | | Any device, Vcc = 5 V, | V | V | √ | | TTL-threshold inputs | | | | | Any device, Vcc = 5 V, | Unreliable | | | | CMOS-threshold inputs | Data | | | 1. Only if destination device has 5-V tolerant inputs Figure 18: Open-Drain Output ### **Output Slew Rate** The slew rate of each output buffer is, by default, reduced, to minimize power bus transients when switching non-critical signals. For critical signals, attach a FAST attribute or property to the output buffer or flip-flop. For XC4000E devices, maximum total capacitive load for simultaneous fast mode switching in the same direction is 200 pF for all package pins between each Power/Ground pin pair. For XC4000X devices, additional internal Power/Ground pin pairs are connected to special Power and Ground planes within the packages, to reduce ground bounce. Therefore, the maximum total capacitive load is 300 pF between each external Power/Ground pin pair. Maximum loading may vary for the low-voltage devices. For slew-rate limited outputs this total is two times larger for each device type: 400 pF for XC4000E devices and 600 pF for XC4000X devices. This maximum capacitive load should not be exceeded, as it can result in ground bounce of greater than 1.5 V amplitude and more than 5 ns duration. This level of ground bounce may cause undesired transient behavior on an output, or in the internal logic. This restriction is common to all high-speed digital ICs, and is not particular to Xilinx or the XC4000 Series. XC4000 Series devices have a feature called "Soft Start-up," designed to reduce ground bounce when all outputs are turned on simultaneously at the end of configuration. When the configuration process is finished and the device starts up, the first activation of the outputs is automatically slew-rate limited. Immediately following the initial activation of the I/O, the slew rate of the individual outputs is determined by the individual configuration option for each IOB. #### **Global Three-State** A separate Global 3-State line (not shown in Figure 15 or Figure 16) forces all FPGA outputs to the high-impedance state, unless boundary scan is enabled and is executing an EXTEST instruction. This global net (GTS) does not compete with other routing resources; it uses a dedicated distribution network. GTS can be driven from any user-programmable pin as a global 3-state input. To use this global net, place an input pad and input buffer in the schematic or HDL code, driving the GTS pin of the STARTUP symbol. A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the Global 3-State signal. Using GTS is similar to GSR. See Figure 2 on page 11 for details. Alternatively, GTS can be driven from any internal node. or clear on reset and after configuration. Other than the global GSR net, no user-controlled set/reset signal is available to the I/O flip-flops. The choice of set or clear applies to both the initial state of the flip-flop and the response to the Global Set/Reset pulse. See "Global Set/Reset" on page 11 for a description of how to use GSR. ### **JTAG Support** Embedded logic attached to the IOBs contains test structures compatible with IEEE Standard 1149.1 for boundary scan testing, permitting easy chip and board-level testing. More information is provided in "Boundary Scan" on page 42. ### **Three-State Buffers** A pair of 3-state buffers is associated with each CLB in the array. (See Figure 27 on page 30.) These 3-state buffers can be used to drive signals onto the nearest horizontal longlines above and below the CLB. They can therefore be used to implement multiplexed or bidirectional buses on the horizontal longlines, saving logic resources. Programmable pull-up resistors attached to these longlines help to implement a wide wired-AND function. The buffer enable is an active-High 3-state (i.e. an active-Low enable), as shown in Table 13. Another 3-state buffer with similar access is located near each I/O block along the right and left edges of the array. (See Figure 33 on page 34.) The horizontal longlines driven by the 3-state buffers have a weak keeper at each end. This circuit prevents undefined floating levels. However, it is overridden by any driver, even a pull-up resistor. Special longlines running along the perimeter of the array can be used to wire-AND signals coming from nearby IOBs or from internal longlines. These longlines form the wide edge decoders discussed in "Wide Edge Decoders" on page 27. ### Three-State Buffer Modes The 3-state buffers can be configured in three modes: - · Standard 3-state buffer - Wired-AND with input on the I pin - Wired OR-AND #### Standard 3-State Buffer All three pins are used. Place the library element BUFT. Connect the input to the I pin and the output to the O pin. The T pin is an active-High 3-state (i.e. an active-Low enable). Tie the T pin to Ground to implement a standard buffer. ### Wired-AND with Input on the I Pin The buffer can be used as a Wired-AND. Use the WAND1 library symbol, which is essentially an open-drain buffer. WAND4, WAND8, and WAND16 are also available. See the *XACT Libraries Guide* for further information. The T pin is internally tied to the I pin. Connect the input to the I pin and the output to the O pin. Connect the outputs of all the WAND1s together and attach a PULLUP symbol. ### Wired OR-AND The buffer can be configured as a Wired OR-AND. A High level on either input turns off the output. Use the WOR2AND library symbol, which is essentially an open-drain 2-input OR gate. The two input pins are functionally equivalent. Attach the two inputs to the I0 and I1 pins and tie the output to the O pin. Tie the outputs of all the WOR2ANDs together and attach a PULLUP symbol. ### Three-State Buffer Examples Figure 21 shows how to use the 3-state buffers to implement a wired-AND function. When all the buffer inputs are High, the pull-up resistor(s) provide the High output. Figure 22 shows how to use the 3-state buffers to implement a multiplexer. The selection is accomplished by the buffer 3-state signal. Pay particular attention to the polarity of the T pin when using these buffers in a design. Active-High 3-state (T) is identical to an active-Low output enable, as shown in Table 13. **Table 13: Three-State Buffer Functionality** | IN | Т | OUT | |----|---|-----| | X | 1 | Z | | IN | 0 | IN | Figure 21: Open-Drain Buffers Implement a Wired-AND Function Figure 22: 3-State Buffers Implement a Multiplexer ### Wide Edge Decoders Dedicated decoder circuitry boosts the performance of wide decoding functions. When the address or data field is wider than the function generator inputs, FPGAs need
multi-level decoding and are thus slower than PALs. XC4000 Series CLBs have nine inputs. Any decoder of up to nine inputs is, therefore, compact and fast. However, there is also a need for much wider decoders, especially for address decoding in large microprocessor systems. An XC4000 Series FPGA has four programmable decoders located on each edge of the device. The inputs to each decoder are any of the IOB I1 signals on that edge plus one local interconnect per CLB row or column. Each row or column of CLBs provides up to three variables or their compliments., as shown in Figure 23. Each decoder generates a High output (resistor pull-up) when the AND condition of the selected inputs, or their complements, is true. This is analogous to a product term in typical PAL devices. Each of these wired-AND gates is capable of accepting up to 42 inputs on the XC4005E and 72 on the XC4013E. There are up to 96 inputs for each decoder on the XC4028X and 132 on the XC4052X. The decoders may also be split in two when a larger number of narrower decoders are required, for a maximum of 32 decoders per device. The decoder outputs can drive CLB inputs, so they can be combined with other logic to form a PAL-like AND/OR structure. The decoder outputs can also be routed directly to the chip outputs. For fastest speed, the output should be on the same chip edge as the decoder. Very large PALs can be emulated by ORing the decoder outputs in a CLB. This decoding feature covers what has long been considered a weakness of older FPGAs. Users often resorted to external PALs for simple but fast decoding functions. Now, the dedicated decoders in the XC4000 Series device can implement these functions fast and efficiently. To use the wide edge decoders, place one or more of the WAND library symbols (WAND1, WAND4, WAND8, WAND16). Attach a DECODE attribute or property to each WAND symbol. Tie the outputs together and attach a PUL- LUP symbol. Location attributes or properties such as L (left edge) or TR (right half of top edge) should also be used to ensure the correct placement of the decoder inputs. Figure 23: XC4000 Series Edge Decoding Example Figure 24: XC4000 Series Oscillator Symbol ### **On-Chip Oscillator** XC4000 Series devices include an internal oscillator. This oscillator is used to clock the power-on time-out, for configuration memory clearing, and as the source of CCLK in Master configuration modes. The oscillator runs at a nominal 8 MHz frequency that varies with process, Vcc, and temperature. The output frequency falls between 4 and 10 MHz. The oscillator output is optionally available after configuration. Any two of four resynchronized taps of a built-in divider are also available. These taps are at the fourth, ninth, fourteenth and nineteenth bits of the divider. Therefore, if the primary oscillator output is running at the nominal 8 MHz, the user has access to an 8 MHz clock, plus any two of 500 kHz, 16kHz, 490Hz and 15Hz (up to 10% lower for low-voltage devices). These frequencies can vary by as much as -50% or +25%. These signals can be accessed by placing the OSC4 library element in a schematic or in HDL code (see Figure 24). The oscillator is automatically disabled after configuration if the OSC4 symbol is not used in the design. ### **Programmable Interconnect** All internal connections are composed of metal segments with programmable switching points and switching matrices to implement the desired routing. A structured, hierarchical matrix of routing resources is provided to achieve efficient automated routing. The XC4000E and XC4000X share a basic interconnect structure. XC4000X devices, however, have additional routing not available in the XC4000E. The extra routing resources allow high utilization in high-capacity devices. All XC4000X-specific routing resources are clearly identified throughout this section. Any resources not identified as XC4000X-specific are present in all XC4000 Series devices. This section describes the varied routing resources available in XC4000 Series devices. The implementation software automatically assigns the appropriate resources based on the density and timing requirements of the design. ### **Interconnect Overview** There are several types of interconnect. - CLB routing is associated with each row and column of the CLB array. - IOB routing forms a ring (called a VersaRing) around the outside of the CLB array. It connects the I/O with the internal logic blocks. Global routing consists of dedicated networks primarily designed to distribute clocks throughout the device with minimum delay and skew. Global routing can also be used for other high-fanout signals. Five interconnect types are distinguished by the relative length of their segments: single-length lines, double-length lines, quad and octal lines (XC4000X only), and longlines. In the XC4000X, direct connects allow fast data flow between adjacent CLBs, and between IOBs and CLBs. Extra routing is included in the IOB pad ring. The XC4000X also includes a ring of octal interconnect lines near the IOBs to improve pin-swapping and routing to locked pins. XC4000E/X devices include two types of global buffers. These global buffers have different properties, and are intended for different purposes. They are discussed in detail later in this section. ### **CLB Routing Connections** A high-level diagram of the routing resources associated with one CLB is shown in Figure 25. The shaded arrows represent routing present only in XC4000X devices. Table 14 shows how much routing of each type is available in XC4000E and XC4000X CLB arrays. Clearly, very large designs, or designs with a great deal of interconnect, will route more easily in the XC4000X. Smaller XC4000E designs, typically requiring significantly less interconnect, do not require the additional routing. Figure 27 on page 30 is a detailed diagram of both the XC4000E and the XC4000X CLB, with associated routing. The shaded square is the programmable switch matrix, present in both the XC4000E and the XC4000X. The L-shaped shaded area is present only in XC4000X devices. As shown in the figure, the XC4000X block is essentially an XC4000E block with additional routing. CLB inputs and outputs are distributed on all four sides, providing maximum routing flexibility. In general, the entire architecture is symmetrical and regular. It is well suited to established placement and routing algorithms. Inputs, outputs, and function generators can freely swap positions within a CLB to avoid routing congestion during the placement and routing operation. circuit prevents undefined floating levels. However, it is overridden by any driver, even a pull-up resistor. Each XC4000E longline has a programmable splitter switch at its center, as does each XC4000X longline driven by TBUFs. This switch can separate the line into two independent routing channels, each running half the width or height of the array. Each XC4000X longline not driven by TBUFs has a buffered programmable splitter switch at the 1/4, 1/2, and 3/4 points of the array. Due to the buffering, XC4000X longline performance does not deteriorate with the larger array sizes. If the longline is split, the resulting partial longlines are independent. Routing connectivity of the longlines is shown in Figure 27 on page 30. ### Direct Interconnect (XC4000X only) The XC4000X offers two direct, efficient and fast connections between adjacent CLBs. These nets facilitate a data flow from the left to the right side of the device, or from the top to the bottom, as shown in Figure 30. Signals routed on the direct interconnect exhibit minimum interconnect propagation delay and use no general routing resources. The direct interconnect is also present between CLBs and adjacent IOBs. Each IOB on the left and top device edges has a direct path to the nearest CLB. Each CLB on the right and bottom edges of the array has a direct path to the nearest two IOBs, since there are two IOBs for each row or column of CLBs. The place and route software uses direct interconnect whenever possible, to maximize routing resources and minimize interconnect delays. Figure 30: XC4000X Direct Interconnect ### I/O Routing XC4000 Series devices have additional routing around the IOB ring. This routing is called a VersaRing. The VersaRing facilitates pin-swapping and redesign without affecting board layout. Included are eight double-length lines spanning two CLBs (four IOBs), and four longlines. Global lines and Wide Edge Decoder lines are provided. XC4000X devices also include eight octal lines. A high-level diagram of the VersaRing is shown in Figure 31. The shaded arrows represent routing present only in XC4000X devices. Figure 33 on page 34 is a detailed diagram of the XC4000E and XC4000X VersaRing. The area shown includes two IOBs. There are two IOBs per CLB row or column, therefore this diagram corresponds to the CLB routing diagram shown in Figure 27 on page 30. The shaded areas represent routing and routing connections present only in XC4000X devices. ### Octal I/O Routing (XC4000X only) Between the XC4000X CLB array and the pad ring, eight interconnect tracks provide for versatility in pin assignment and fixed pinout flexibility. (See Figure 32 on page 33.) These routing tracks are called octals, because they can be broken every eight CLBs (sixteen IOBs) by a programmable buffer that also functions as a splitter switch. The buffers are staggered, so each line goes through a buffer at every eighth CLB location around the device edge. The octal lines bend around the corners of the device. The lines cross at the corners in such a way that the segment most recently buffered before the turn has the farthest distance to travel before the next buffer, as shown in Figure 32. 6-32 May 14, 1999 (Version 1.6) Figure 31: High-Level Routing Diagram of XC4000 Series VersaRing (Left Edge) WED = Wide Edge Decoder, IOB = I/O Block (shaded arrows indicate XC4000X only) Figure 32: XC4000X Octal I/O
Routing **Table 16: Pin Descriptions** | | I/O
During | I/O
After | | |---------------|---------------|------------------------------|---| | Pin Name | Config. | Config. | Pin Description | | Permanently D | Jealcated | Pins | | | VCC | I | I | Eight or more (depending on package) connections to the nominal +5 V supply voltage (+3.3 V for low-voltage devices). All must be connected, and each must be decoupled with a 0.01 - 0.1 μ F capacitor to Ground. | | GND | I | I | Eight or more (depending on package type) connections to Ground. All must be connected. | | CCLK | I or O | I | During configuration, Configuration Clock (CCLK) is an output in Master modes or Asynchronous Peripheral mode, but is an input in Slave mode and Synchronous Peripheral mode. After configuration, CCLK has a weak pull-up resistor and can be selected as the Readback Clock. There is no CCLK High or Low time restriction on XC4000 Series devices, except during Readback. See "Violating the Maximum High and Low Time Specification for the Readback Clock" on page 56 for an explanation of this exception. | | DONE | I/O | 0 | DONE is a bidirectional signal with an optional internal pull-up resistor. As an output, it indicates the completion of the configuration process. As an input, a Low level on DONE can be configured to delay the global logic initialization and the enabling of outputs. The optional pull-up resistor is selected as an option in the XACT step program that creates the configuration bitstream. The resistor is included by default. | | PROGRAM | I | I | PROGRAM is an active Low input that forces the FPGA to clear its configuration memory. It is used to initiate a configuration cycle. When PROGRAM goes High, the FPGA finishes the current clear cycle and executes another complete clear cycle, before it goes into a WAIT state and releases INIT. The PROGRAM pin has a permanent weak pull-up, so it need not be externally pulled up to Vcc. | | User I/O Pins | That Can | Have Spe | ecial Functions | | RDY/BUSY | 0 | I/O | During Peripheral mode configuration, this pin indicates when it is appropriate to write another byte of data into the FPGA. The same status is also available on D7 in Asynchronous Peripheral mode, if a read operation is performed when the device is selected. After configuration, RDY/BUSY is a user-programmable I/O pin. RDY/BUSY is pulled High with a high-impedance pull-up prior to INIT going High. | | RCLK | 0 | I/O | During Master Parallel configuration, each change on the A0-A17 outputs (A0 - A21 for XC4000X) is preceded by a rising edge on \overline{RCLK} , a redundant output signal. \overline{RCLK} is useful for clocked PROMs. It is rarely used during configuration. After configuration, \overline{RCLK} is a user-programmable I/O pin. | | M0, M1, M2 | I | I (M0),
O (M1),
I (M2) | As Mode inputs, these pins are sampled after $\overline{\text{INIT}}$ goes High to determine the configuration mode to be used. After configuration, M0 and M2 can be used as inputs, and M1 can be used as a 3-state output. These three pins have no associated input or output registers. During configuration, these pins have weak pull-up resistors. For the most popular configuration mode, Slave Serial, the mode pins can thus be left unconnected. The three mode inputs can be individually configured with or without weak pull-up or pull-down resistors. A pull-down resistor value of 4.7 k Ω is recommended. These pins can only be used as inputs or outputs when called out by special schematic definitions. To use these pins, place the library components MD0, MD1, and MD2 instead of the usual pad symbols. Input or output buffers must still be used. | | TDO | 0 | 0 | If boundary scan is used, this pin is the Test Data Output. If boundary scan is not used, this pin is a 3-state output without a register, after configuration is completed. This pin can be user output only when called out by special schematic definitions. To use this pin, place the library component TDO instead of the usual pad symbol. An output buffer must still be used. | ### **Configuration Modes** XC4000E devices have six configuration modes. XC4000X devices have the same six modes, plus an additional configuration mode. These modes are selected by a 3-bit input code applied to the M2, M1, and M0 inputs. There are three self-loading Master modes, two Peripheral modes, and a Serial Slave mode, which is used primarily for daisy-chained devices. The coding for mode selection is shown in Table 18. **Table 18: Configuration Modes** | Mode | M2 | M1 | MO | CCLK | Data | |---------------|----|----|----|--------|------------| | Master Serial | 0 | 0 | 0 | output | Bit-Serial | | Slave Serial | 1 | 1 | 1 | input | Bit-Serial | | Master | 1 | 0 | 0 | output | Byte-Wide, | | Parallel Up | | | | | increment | | | | | | | from 00000 | | Master | 1 | 1 | 0 | output | Byte-Wide, | | Parallel Down | | | | | decrement | | | | | | | from 3FFFF | | Peripheral | 0 | 1 | 1 | input | Byte-Wide | | Synchronous* | | | | | | | Peripheral | 1 | 0 | 1 | output | Byte-Wide | | Asynchronous | | | | | | | Reserved | 0 | 1 | 0 | _ | _ | | Reserved | 0 | 0 | 1 | _ | _ | ^{*} Can be considered byte-wide Slave Parallel A detailed description of each configuration mode, with timing information, is included later in this data sheet. During configuration, some of the I/O pins are used temporarily for the configuration process. All pins used during configuration are shown in Table 22 on page 58. ### Master Modes The three Master modes use an internal oscillator to generate a Configuration Clock (CCLK) for driving potential slave devices. They also generate address and timing for external PROM(s) containing the configuration data. Master Parallel (Up or Down) modes generate the CCLK signal and PROM addresses and receive byte parallel data. The data is internally serialized into the FPGA data-frame format. The up and down selection generates starting addresses at either zero or 3FFFF (3FFFFF when 22 address lines are used), for compatibility with different microprocessor addressing conventions. The Master Serial mode generates CCLK and receives the configuration data in serial form from a Xilinx serial-configuration PROM. CCLK speed is selectable as either 1 MHz (default) or 8 MHz. Configuration always starts at the default slow frequency, then can switch to the higher frequency during the first frame. Frequency tolerance is -50% to +25%. ### Additional Address lines in XC4000 devices The XC4000X devices have additional address lines (A18-A21) allowing the additional address space required to daisy-chain several large devices. The extra address lines are programmable in XC4000EX devices. By default these address lines are not activated. In the default mode, the devices are compatible with existing XC4000 and XC4000E products. If desired, the extra address lines can be used by specifying the address lines option in bitgen as 22 (bitgen -g AddressLines:22). The lines (A18-A21) are driven when a master device detects, via the bitstream, that it should be using all 22 address lines. Because these pins will initially be pulled high by internal pull-ups, designers using Master Parallel Up mode should use external pull down resistors on pins A18-A21. If Master Parallel Down mode is used external resistors are not necessary. All 22 address lines are always active in Master Parallel modes with XC4000XL devices. The additional address lines behave identically to the lower order address lines. If the Address Lines option in bitgen is set to 18, it will be ignored by the XC4000XL device. The additional address lines (A18-A21) are not available in the PC84 package. ### Peripheral Modes The two Peripheral modes accept byte-wide data from a bus. A RDY/BUSY status is available as a handshake signal. In Asynchronous Peripheral mode, the internal oscillator generates a CCLK burst signal that serializes the byte-wide data. CCLK can also drive slave devices. In the synchronous mode, an externally supplied clock input to CCLK serializes the data. ### Slave Serial Mode In Slave Serial mode, the FPGA receives serial configuration data on the rising edge of CCLK and, after loading its configuration, passes additional data out, resynchronized on the next falling edge of CCLK. Multiple slave devices with identical configurations can be wired with parallel DIN inputs. In this way, multiple devices can be configured simultaneously. ### **Serial Daisy Chain** Multiple devices with different configurations can be connected together in a "daisy chain," and a single combined bitstream used to configure the chain of slave devices. To configure a daisy chain of devices, wire the CCLK pins of all devices in parallel, as shown in Figure 51 on page 60. Connect the DOUT of each device to the DIN of the next. The lead or master FPGA and following slaves each passes resynchronized configuration data coming from a single source. The header data, including the length count, ### Start-up from a User Clock (STARTUP.CLK) When, instead of CCLK, a user-supplied start-up clock is selected, Q1 is used to bridge
the unknown phase relationship between CCLK and the user clock. This arbitration causes an unavoidable one-cycle uncertainty in the timing of the rest of the start-up sequence. ### DONE Goes High to Signal End of Configuration XC4000 Series devices read the expected length count from the bitstream and store it in an internal register. The length count varies according to the number of devices and the composition of the daisy chain. Each device also counts the number of CCLKs during configuration. Two conditions have to be met in order for the DONE pin to go high: - the chip's internal memory must be full, and - the configuration length count must be met, exactly. This is important because the counter that determines when the length count is met begins with the very first CCLK, not the first one after the preamble. Therefore, if a stray bit is inserted before the preamble, or the data source is not ready at the time of the first CCLK, the internal counter that holds the number of CCLKs will be one ahead of the actual number of data bits read. At the end of configuration, the configuration memory will be full, but the number of bits in the internal counter will not match the expected length count. As a consequence, a Master mode device will continue to send out CCLKs until the internal counter turns over to zero, and then reaches the correct length count a second time. This will take several seconds [2²⁴ * CCLK period] — which is sometimes interpreted as the device not configuring at all. If it is not possible to have the data ready at the time of the first CCLK, the problem can be avoided by increasing the number in the length count by the appropriate value. The *XACT User Guide* includes detailed information about manually altering the length count. Note that DONE is an open-drain output and does not go High unless an internal pull-up is activated or an external pull-up is attached. The internal pull-up is activated as the default by the bitstream generation software. ### Release of User I/O After DONE Goes High By default, the user I/O are released one CCLK cycle after the DONE pin goes High. If CCLK is not clocked after DONE goes High, the outputs remain in their initial state — 3-stated, with a 50 k Ω - 100 k Ω pull-up. The delay from DONE High to active user I/O is controlled by an option to the bitstream generation software. ### Release of Global Set/Reset After DONE Goes High By default, Global Set/Reset (GSR) is released two CCLK cycles after the DONE pin goes High. If CCLK is not clocked twice after DONE goes High, all flip-flops are held in their initial set or reset state. The delay from DONE High to GSR inactive is controlled by an option to the bitstream generation software. ### Configuration Complete After DONE Goes High Three full CCLK cycles are required after the DONE pin goes High, as shown in Figure 47 on page 53. If CCLK is not clocked three times after DONE goes High, readback cannot be initiated and most boundary scan instructions cannot be used. ## **Configuration Through the Boundary Scan Pins** XC4000 Series devices can be configured through the boundary scan pins. The basic procedure is as follows: - Power up the FPGA with INIT held Low (or drive the PROGRAM pin Low for more than 300 ns followed by a High while holding INIT Low). Holding INIT Low allows enough time to issue the CONFIG command to the FPGA. The pin can be used as I/O after configuration if a resistor is used to hold INIT Low. - Issue the CONFIG command to the TMS input - Wait for INIT to go High - Sequence the boundary scan Test Access Port to the SHIFT-DR state - Toggle TCK to clock data into TDI pin. The user must account for all TCK clock cycles after INIT goes High, as all of these cycles affect the Length Count compare. For more detailed information, refer to the Xilinx application note XAPP017, "Boundary Scan in XC4000 Devices." This application note also applies to XC4000E and XC4000X devices. ## **Configuration Switching Characteristics** ### Master Modes (XC4000E/EX) | Description | Symbol | Min | Max | Units | | |----------------------------|-----------|-------------------|-----|-------|------------| | | M0 = High | T _{POR} | 10 | 40 | ms | | Power-On Reset | M0 = Low | T _{POR} | 40 | 130 | ms | | Program Latency | | T _{PI} | 30 | 200 | μs per | | | | | | | CLB column | | CCLK (output) Delay | | T _{ICCK} | 40 | 250 | μs | | CCLK (output) Period, slow | | T _{CCLK} | 640 | 2000 | ns | | CCLK (output) Period, fast | | T _{CCLK} | 80 | 250 | ns | ## Master Modes (XC4000XL) | Description | | Symbol | Min | Max | Units | | |----------------------------|-------------------|-------------------|------|--------|------------|--| | | M0 = High | T _{POR} | 10 | 40 | ms | | | Power-On Reset | M0 = Low | T _{POR} | 40 | 130 | ms | | | Program Latency | T _{Pl} | 30 | 200 | μs per | | | | | | | | | CLB column | | | CCLK (output) Delay | | T _{ICCK} | 40 | 250 | μs | | | CCLK (output) Period, slow | T _{CCLK} | 540 | 1600 | ns | | | | CCLK (output) Period, fast | T _{CCLK} | 67 | 200 | ns | | | ## Slave and Peripheral Modes (All) | Description | Symbol | Min | Max | Units | |--------------------------------|-------------------|-----|-----|----------------------| | Power-On Reset | T _{POR} | 10 | 33 | ms | | Program Latency | T _{Pl} | 30 | 200 | μs per
CLB column | | CCLK (input) Delay (required) | T _{ICCK} | 4 | | μs | | CCLK (input) Period (required) | T _{CCLK} | 100 | | ns | Table 25: Component Availability Chart for XC4000E FPGAs | F | PINS | 84 | 100 | 100 | 120 | 144 | 156 | 160 | 191 | 208 | 208 | 223 | 225 | 240 | 240 | 299 | 304 | |----------|------|----------------|----------------|----------------|---------------|----------------|---------------|----------------|---------------|-------------------|----------------|---------------|---------------|-------------------|----------------|---------------|------------------| | Т | YPE | Plast.
PLCC | Plast.
PQFP | Plast.
VQFP | Ceram.
PGA | Plast.
TQFP | Ceram.
PGA | Plast.
PQFP | Ceram.
PGA | High-Perf.
QFP | Plast.
PQFP | Ceram.
PGA | Plast.
BGA | High-Perf.
QFP | Plast.
PQFP | Ceram.
PGA | High-Perf.
QF | | co | DDE | PC84 | PQ100 | VQ100 | PG120 | TQ144 | PG156 | PQ160 | PG191 | HQ208 | PQ208 | PG223 | BG225 | HQ240 | PQ240 | PG299 | HQ304 High-Perf. | | | -4 | CI | CI | CI | CI | | | | | | | | | | | | | | XC4003E | -3 | СІ | СІ | СІ | СІ | | | | | | | | | | | | | | AC4003E | -2 | CI | СІ | СІ | CI | | | | | | | | | | | | | | | -1 | С | С | С | С | | | | | | | | | | | | | | | -4 | СІ | СІ | | | СІ | СІ | СІ | | | CI | | | | | | | | XC4005E | -3 | СІ | СІ | | | СІ | СІ | СІ | | | СІ | | | | | | | | AC4005E | -2 | CI | СІ | | | СІ | СІ | СІ | | | СІ | | | | | | | | İ | -1 | С | С | | | С | С | С | | | С | | | | | | | | | -4 | CI | | | | CI | СІ | СІ | | | CI | | | | | | | | XC4006E | -3 | СІ | | | | CI | СІ | СІ | | | CI | | | | | | | | AC4000E | -2 | CI | | | | CI | CI | CI | | | CI | | | | | | | | Ī | -1 | С | | | | С | С | С | | | С | | | | | | | | | -4 | СІ | | | | | | CI | CI | | CI | | | | | | | | XC4008E | -3 | СІ | | | | | | CI | CI | | CI | | | | | | | | AC4000L | -2 | CI | | | | | | CI | CI | | CI | | | | | | | | | -1 | С | | | | | | С | С | | С | | | | | | | | | -4 | CI | | | | | | CI | CI | CI | CI | | CI | | | | | | XC4010E | -3 | CI | | | | | | CI | CI | CI | CI | | CI | | | | | | AC4010L | -2 | CI | | | | | | CI | CI | CI | CI | | CI | | | | | | | -1 | С | | | | | | С | С | С | С | | С | | | | | | | -4 | | | | | | | CI | | CI | CI | CI | CI | CI | CI | | | | XC4013E | -3 | | | | | | | CI | | CI | CI | CI | CI | CI | CI | | | | NO-1010L | -2 | | | | | | | CI | | CI | CI | CI | CI | CI | CI | | | | | -1 | | | | | | | С | | С | С | С | С | С | С | | | | XC4020E | -4 | | | | | | | | | CI | | CI | | CI | | | | | | -3 | | | | | | | | | CI | | CI | | CI | | | | | | -2 | | | | | | | | | CI | | CI | | CI | | | | | | -1 | | | | | | | | | С | | С | | С | | | | | | -4 | | | | | | | | | | | CI | | CI | | CI | CI | | XC4025E | -3 | | | | | | | | | | | CI | | CI | | CI | CI | | | -2 | | | | | | | | | | | С | | С | | С | С | C = Commercial $T_J = 0^{\circ}$ to +85°C I= Industrial $T_J = -40^{\circ}$ C to +100°C Table 26: Component Availability Chart for XC4000EX FPGAs | PINS 208 | | 240 | 299 | 304 | 352 | 411 | 432 | | |----------|----|-------------------|------------------------------|-------|-------------------|---------------|---------------|---------------| | TYPE | | High-Perf.
QFP | High-Perf. Ceram.
QFP PGA | | High-Perf.
QFP | Plast.
BGA | Ceram.
PGA | Plast.
BGA | | CODE | | HQ208 | HQ240 | PG299 | HQ304 | BG352 | PG411 | BG432 | | | -4 | CI | CI | CI | CI | CI | | | | XC4028EX | -3 | CI | CI | CI | CI | CI | | | | | -2 | С | С | С | С | С | | | | | -4 | | CI | | CI | CI | CI | CI | | XC4036EX | -3 | | CI | | CI | CI | CI | CI | | | -2 | | С | | С | С | С | С | 1/29/99 C = Commercial $T_J = 0^{\circ}$ to +85°C I= Industrial $T_J = -40^{\circ}$ C to +100°C ## XC4000 Series Electrical Characteristics and Device-Specific Pinout Table For the latest Electrical Characteristics and package/pinout information for each XC4000 Family, see the Xilinx web site at http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp ## **Ordering Information** X9020 ### **Revision Control** | Version | Description | |---------------|---| | 3/30/98 (1.5) | Updated XC4000XL timing and added XC4002XL | | 1/29/99 (1.5) | Updated pin diagrams | | 5/14/99 (1.6) | Replaced Electrical Specification and pinout pages for E, EX, and XL families with separate updates and | | | added URL link for electrical specifications/pinouts for Web users |