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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Set/Reset

An asynchronous storage element input (SR) can be con-
figured as either set or reset. This configuration option
determines the state in which each flip-flop becomes oper-
ational after configuration. It also determines the effect of a
Global Set/Reset pulse during normal operation, and the
effect of a pulse on the SR pin of the CLB. All three
set/reset functions for any single flip-flop are controlled by
the same configuration data bit.

The set/reset state can be independently specified for each
flip-flop. This input can also be independently disabled for
either flip-flop.

The set/reset state is specified by using the INIT attribute,
or by placing the appropriate set or reset flip-flop library
symbol.

SR is active High. It is not invertible within the CLB.

Global Set/Reset

A separate Global Set/Reset line (not shown in Figure 1)
sets or clears each storage element during power-up,
re-configuration, or when a dedicated Reset net is driven
active. This global net (GSR) does not compete with other
routing resources; it uses a dedicated distribution network.

Each flip-flop is configured as either globally set or reset in
the same way that the local set/reset (SR) is specified.
Therefore, if a flip-flop is set by SR, it is also set by GSR.
Similarly, a reset flip-flop is reset by both SR and GSR.

GSR can be driven from any user-programmable pin as a
global reset input. To use this global net, place an input pad
and input buffer in the schematic or HDL code, driving the
GSR pin of the STARTUP symbol. (See Figure 2.) A spe-
cific pin location can be assigned to this input using a LOC
attribute or property, just as with any other user-program-
mable pad. An inverter can optionally be inserted after the
input buffer to invert the sense of the Global Set/Reset sig-
nal.

Alternatively, GSR can be driven from any internal node.

Data Inputs and Outputs

The source of a storage element data input is programma-
ble. It is driven by any of the functions F’, G’, and H’, or by
the Direct In (DIN) block input. The flip-flops or latches drive
the XQ and YQ CLB outputs.

Two fast feed-through paths are available, as shown in
Figure 1. A two-to-one multiplexer on each of the XQ and
YQ outputs selects between a storage element output and
any of the control inputs. This bypass is sometimes used by
the automated router to repower internal signals.

Control Signals

Multiplexers in the CLB map the four control inputs (C1 - C4
in Figure 1) into the four internal control signals (H1,
DIN/H2, SR/H0, and EC). Any of these inputs can drive any
of the four internal control signals.

When the logic function is enabled, the four inputs are:

• EC — Enable Clock
• SR/H0 — Asynchronous Set/Reset or H function

generator Input 0
• DIN/H2 — Direct In or H function generator Input 2
• H1 — H function generator Input 1.

When the memory function is enabled, the four inputs are:

• EC — Enable Clock
• WE — Write Enable
• D0 — Data Input to F and/or G function generator
• D1 — Data input to G function generator (16x1 and

16x2 modes) or 5th Address bit (32x1 mode).

Using FPGA Flip-Flops and Latches

The abundance of flip-flops in the XC4000 Series invites
pipelined designs. This is a powerful way of increasing per-
formance by breaking the function into smaller subfunc-
tions and executing them in parallel, passing on the results
through pipeline flip-flops. This method should be seriously
considered wherever throughput is more important than
latency.

To include a CLB flip-flop, place the appropriate library
symbol. For example, FDCE is a D-type flip-flop with clock
enable and asynchronous clear. The corresponding latch
symbol (for the XC4000X only) is called LDCE.

In XC4000 Series devices, the flip flops can be used as reg-
isters or shift registers without blocking the function gener-
ators from performing a different, perhaps unrelated task.
This ability increases the functional capacity of the devices.

The CLB setup time is specified between the function gen-
erator inputs and the clock input K. Therefore, the specified
CLB flip-flop setup time includes the delay through the
function generator.

Using Function Generators as RAM

Optional modes for each CLB make the memory look-up
tables in the F’ and G’ function generators usable as an
array of Read/Write memory cells. Available modes are
level-sensitive (similar to the XC4000/A/H families),
edge-triggered, and dual-port edge-triggered. Depending
on the selected mode, a single CLB can be configured as
either a 16x2, 32x1, or 16x1 bit array.

PAD

IBUF

GSR
GTS

CLK DONEIN
Q1Q4

Q2
Q3

STARTUP

X5260

Figure 2:   Schematic Symbols for Global Set/Reset
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Supported CLB memory configurations and timing modes
for single- and dual-port modes are shown in Table 3.

XC4000 Series devices are the first programmable logic
devices with edge-triggered (synchronous) and dual-port
RAM accessible to the user. Edge-triggered RAM simpli-
fies system timing. Dual-port RAM doubles the effective
throughput of FIFO applications. These features can be
individually programmed in any XC4000 Series CLB.

Advantages of On-Chip and Edge-Triggered RAM

The on-chip RAM is extremely fast. The read access time is
the same as the logic delay. The write access time is
slightly slower. Both access times are much faster than
any off-chip solution, because they avoid I/O delays.

Edge-triggered RAM, also called synchronous RAM, is a
feature never before available in a Field Programmable
Gate Array. The simplicity of designing with edge-triggered
RAM, and the markedly higher achievable performance,
add up to a significant improvement over existing devices
with on-chip RAM.

Three application notes are available from Xilinx that dis-
cuss edge-triggered RAM: “XC4000E Edge-Triggered and
Dual-Port RAM Capability,” “Implementing FIFOs in
XC4000E RAM,” and “Synchronous and Asynchronous
FIFO Designs.” All three application notes apply to both
XC4000E and XC4000X RAM.

RAM Configuration Options

The function generators in any CLB can be configured as
RAM arrays in the following sizes:

• Two 16x1 RAMs: two data inputs and two data outputs
with identical or, if preferred, different addressing for
each RAM

• One 32x1 RAM: one data input and one data output.

One F or G function generator can be configured as a 16x1
RAM while the other function generators are used to imple-
ment any function of up to 5 inputs.

Additionally, the XC4000 Series RAM may have either of
two timing modes:

• Edge-Triggered (Synchronous): data written by the
designated edge of the CLB clock. WE acts as a true
clock enable.

• Level-Sensitive (Asynchronous): an external WE signal
acts as the write strobe.

The selected timing mode applies to both function genera-
tors within a CLB when both are configured as RAM.

The number of read ports is also programmable:

• Single Port: each function generator has a common
read and write port

• Dual Port: both function generators are configured
together as a single 16x1 dual-port RAM with one write
port and two read ports. Simultaneous read and write
operations to the same or different addresses are
supported.

RAM configuration options are selected by placing the
appropriate library symbol.

Choosing a RAM Configuration Mode

The appropriate choice of RAM mode for a given design
should be based on timing and resource requirements,
desired functionality, and the simplicity of the design pro-
cess. Recommended usage is shown in Table 4.

The difference between level-sensitive, edge-triggered,
and dual-port RAM is only in the write operation. Read
operation and timing is identical for all modes of operation.

RAM Inputs and Outputs

The F1-F4 and G1-G4 inputs to the function generators act
as address lines, selecting a particular memory cell in each
look-up table.

The functionality of the CLB control signals changes when
the function generators are configured as RAM. The
DIN/H2, H1, and SR/H0 lines become the two data inputs
(D0, D1) and the Write Enable (WE) input for the 16x2
memory. When the 32x1 configuration is selected, D1 acts
as the fifth address bit and D0 is the data input.

The contents of the memory cell(s) being addressed are
available at the F’ and G’ function-generator outputs. They
can exit the CLB through its X and Y outputs, or can be cap-
tured in the CLB flip-flop(s).

Configuring the CLB function generators as Read/Write
memory does not affect the functionality of the other por-

Table 3: Supported RAM Modes

16
x
1

16
x
2

32
x
1

Edge-
Triggered

Timing

Level-
Sensitive

Timing
Single-Port √ √ √ √ √
Dual-Port √ √

Table 4: RAM Mode Selection

Level-Sens
itive

Edge-Trigg
ered

Dual-Port
Edge-Trigg

ered
Use for New
Designs?

No Yes Yes

Size (16x1,
Registered)

1/2 CLB 1/2 CLB 1 CLB

Simultaneous
Read/Write

No No Yes

Relative
Performance

X 2X
2X (4X

effective)
6-12 May 14, 1999 (Version 1.6)



R

XC4000E and XC4000X Series Field Programmable Gate Arrays

6

Product Obsolete or Under Obsolescence
Enable




G'
4


G1 • • • G4 

F1 • • • F4 

WRITE

DECODER




1 of 16

DIN

16-LATCH

ARRAY

X6746

4


 READ ADDRESS





MUX

Enable




F'
WRITE


DECODER




1 of 16

DIN

16-LATCH

ARRAY

4


 READ ADDRESS





MUX
4




C1 • • • C4 
4




WE D1 D0 EC

Figure 9:   16x2 (or 16x1) Level-Sensitive Single-Port RAM
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Figure 10:   32x1 Level-Sensitive Single-Port RAM (F and G addresses are identical)
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Figure 13:   Fast Carry Logic in XC4000E CLB (shaded area not present in XC4000X)
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Figure 15:   Simplified Block Diagram of XC4000E IOB
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Figure 16:   Simplified Block Diagram of XC4000X IOB (shaded areas indicate differences from XC4000E)
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Wide Edge Decoders
Dedicated decoder circuitry boosts the performance of
wide decoding functions. When the address or data field is
wider than the function generator inputs, FPGAs need
multi-level decoding and are thus slower than PALs.
XC4000 Series CLBs have nine inputs. Any decoder of up
to nine inputs is, therefore, compact and fast. However,
there is also a need for much wider decoders, especially for
address decoding in large microprocessor systems.

An XC4000 Series FPGA has four programmable decoders
located on each edge of the device. The inputs to each
decoder are any of the IOB I1 signals on that edge plus one
local interconnect per CLB row or column. Each row or col-
umn of CLBs provides up to three variables or their compli-
ments., as shown in Figure 23. Each decoder generates a
High output (resistor pull-up) when the AND condition of
the selected inputs, or their complements, is true. This is
analogous to a product term in typical PAL devices.

Each of these wired-AND gates is capable of accepting up
to 42 inputs on the XC4005E and 72 on the XC4013E.
There are up to 96 inputs for each decoder on the
XC4028X and 132 on the XC4052X. The decoders may
also be split in two when a larger number of narrower
decoders are required, for a maximum of 32 decoders per
device.

The decoder outputs can drive CLB inputs, so they can be
combined with other logic to form a PAL-like AND/OR struc-
ture. The decoder outputs can also be routed directly to the
chip outputs. For fastest speed, the output should be on the
same chip edge as the decoder. Very large PALs can be
emulated by ORing the decoder outputs in a CLB. This
decoding feature covers what has long been considered a
weakness of older FPGAs. Users often resorted to external
PALs for simple but fast decoding functions. Now, the dedi-
cated decoders in the XC4000 Series device can imple-
ment these functions fast and efficiently.

To use the wide edge decoders, place one or more of the
WAND library symbols (WAND1, WAND4, WAND8,
WAND16). Attach a DECODE attribute or property to each
WAND symbol. Tie the outputs together and attach a PUL-

LUP symbol. Location attributes or properties such as L
(left edge) or TR (right half of top edge) should also be used
to ensure the correct placement of the decoder inputs.

On-Chip Oscillator
XC4000 Series devices include an internal oscillator. This
oscillator is used to clock the power-on time-out, for config-
uration memory clearing, and as the source of CCLK in
Master configuration modes. The oscillator runs at a nomi-
nal 8 MHz frequency that varies with process, Vcc, and
temperature. The output frequency falls between 4 and 10
MHz.

DNDCDBDA

A B C N

Z = DA • A + DB • B + DC • C + DN • N
~100 kΩ

"Weak Keeper"

X6466

BUFT BUFT BUFT BUFT

Figure 22:   3-State Buffers Implement a Multiplexer
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(           C) .....

(A • B • C) .....

(A • B • C) .....
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X2627

C

Figure 23:   XC4000 Series Edge Decoding Example
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Figure 24:   XC4000 Series Oscillator Symbol
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Table 14: Routing per CLB in XC4000 Series Devices

Programmable Switch Matrices

The horizontal and vertical single- and double-length lines
intersect at a box called a programmable switch matrix
(PSM). Each switch matrix consists of programmable pass
transistors used to establish connections between the lines
(see Figure 26).

For example, a single-length signal entering on the right
side of the switch matrix can be routed to a single-length
line on the top, left, or bottom sides, or any combination
thereof, if multiple branches are required. Similarly, a dou-
ble-length signal can be routed to a double-length line on
any or all of the other three edges of the programmable
switch matrix.

Single-Length Lines

Single-length lines provide the greatest interconnect flexi-
bility and offer fast routing between adjacent blocks. There
are eight vertical and eight horizontal single-length lines
associated with each CLB. These lines connect the switch-
ing matrices that are located in every row and a column of
CLBs.

Single-length lines are connected by way of the program-
mable switch matrices, as shown in Figure 28. Routing
connectivity is shown in Figure 27.

Single-length lines incur a delay whenever they go through
a switching matrix. Therefore, they are not suitable for rout-
ing signals for long distances. They are normally used to
conduct signals within a localized area and to provide the
branching for nets with fanout greater than one.
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Figure 25:   High-Level Routing Diagram of XC4000 Series CLB (shaded arrows indicate XC4000X only)
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Figure 26:   Programmable Switch Matrix (PSM)
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Figure 27:   Detail of Programmable Interconnect Associated with XC4000 Series CLB
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The top and bottom Global Early buffers are about 1 ns
slower clock to out than the left and right Global Early buff-
ers.

The Global Early buffers can be driven by either semi-ded-
icated pads or internal logic. They share pads with the Glo-
bal Low-Skew buffers, so a single net can drive both global
buffers, as described above.

To use a Global Early buffer, place a BUFGE element in a
schematic or in HDL code. If desired, attach a LOC
attribute or property to direct placement to the designated
location. For example, attach a LOC=T attribute or property
to direct that a BUFGE be placed in one of the two Global
Early buffers on the top edge of the device, or a LOC=TR to
indicate the Global Early buffer on the top edge of the
device, on the right.

Power Distribution
Power for the FPGA is distributed through a grid to achieve
high noise immunity and isolation between logic and I/O.
Inside the FPGA, a dedicated Vcc and Ground ring sur-
rounding the logic array provides power to the I/O drivers,
as shown in Figure 39. An independent matrix of Vcc and
Ground lines supplies the interior logic of the device.

This power distribution grid provides a stable supply and
ground for all internal logic, providing the external package
power pins are all connected and appropriately de-coupled.
Typically, a 0.1 µF capacitor connected between each Vcc
pin and the board’s Ground plane will provide adequate
de-coupling.

Output buffers capable of driving/sinking the specified 12
mA loads under specified worst-case conditions may be
capable of driving/sinking up to 10 times as much current
under best case conditions.

Noise can be reduced by minimizing external load capaci-
tance and reducing simultaneous output transitions in the
same direction. It may also be beneficial to locate heavily
loaded output buffers near the Ground pads. The I/O Block
output buffers have a slew-rate limited mode (default) which
should be used where output rise and fall times are not
speed-critical.

Pin Descriptions
There are three types of pins in the XC4000 Series
devices:

• Permanently dedicated pins
• User I/O pins that can have special functions
• Unrestricted user-programmable I/O pins.

Before and during configuration, all outputs not used for the
configuration process are 3-stated with a 50 kΩ - 100 kΩ
pull-up resistor.

After configuration, if an IOB is unused it is configured as
an input with a 50 kΩ - 100 kΩ pull-up resistor.

XC4000 Series devices have no dedicated Reset input.
Any user I/O can be configured to drive the Global
Set/Reset net, GSR. See “Global Set/Reset” on page 11
for more information on GSR.

XC4000 Series devices have no Powerdown control input,
as the XC3000 and XC2000 families do. The
XC3000/XC2000 Powerdown control also 3-stated all of the
device
I/O pins. For XC4000 Series devices, use the global 3-state
net, GTS, instead. This net 3-states all outputs, but does
not place the device in low-power mode. See “IOB Output
Signals” on page 23 for more information on GTS.

Device pins for XC4000 Series devices are described in
Table 16. Pin functions during configuration for each of the
seven configuration modes are summarized in Table 22 on
page 58, in the “Configuration Timing” section.
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Figure 39:   XC4000 Series Power Distribution
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TDI, TCK,
TMS

I
I/O
or I

(JTAG)

If boundary scan is used, these pins are Test Data In, Test Clock, and Test Mode Select
inputs respectively. They come directly from the pads, bypassing the IOBs. These pins
can also be used as inputs to the CLB logic after configuration is completed.
If the BSCAN symbol is not placed in the design, all boundary scan functions are inhib-
ited once configuration is completed, and these pins become user-programmable I/O.
The pins can be used automatically or user-constrained. To use them, use "LOC=" or
place the library components TDI, TCK, and TMS instead of the usual pad symbols. In-
put or output buffers must still be used.

HDC O I/O
High During Configuration (HDC) is driven High until the I/O go active. It is available as
a control output indicating that configuration is not yet completed. After configuration,
HDC is a user-programmable I/O pin.

LDC O I/O
Low During Configuration (LDC) is driven Low until the I/O go active. It is available as a
control output indicating that configuration is not yet completed. After configuration,
LDC is a user-programmable I/O pin.

INIT I/O I/O

Before and during configuration, INIT is a bidirectional signal. A 1 kΩ - 10 kΩ external
pull-up resistor is recommended.
As an active-Low open-drain output, INIT is held Low during the power stabilization and
internal clearing of the configuration memory.   As an active-Low input, it can be used
to hold the FPGA in the internal WAIT state before the start of configuration.   Master
mode devices stay in a WAIT state an additional 30 to 300 µs after INIT has gone High.
During configuration, a Low on this output indicates that a configuration data error has
occurred. After the I/O go active, INIT is a user-programmable I/O pin.

PGCK1 -
PGCK4

(XC4000E
only)

Weak
Pull-up

I or I/O

Four Primary Global inputs each drive a dedicated internal global net with short delay
and minimal skew. If not used to drive a global buffer, any of these pins is a user-pro-
grammable I/O.
The PGCK1-PGCK4 pins drive the four Primary Global Buffers. Any input pad symbol
connected directly to the input of a BUFGP symbol is automatically placed on one of
these pins.

SGCK1 -
SGCK4

(XC4000E
only)

Weak
Pull-up

I or I/O

Four Secondary Global inputs each drive a dedicated internal global net with short delay
and minimal skew. These internal global nets can also be driven from internal logic. If
not used to drive a global net, any of these pins is a user-programmable I/O pin.
The SGCK1-SGCK4 pins provide the shortest path to the four Secondary Global Buff-
ers. Any input pad symbol connected directly to the input of a BUFGS symbol is auto-
matically placed on one of these pins.

GCK1 -
GCK8

(XC4000X
only)

Weak
Pull-up

I or I/O

Eight inputs can each drive a Global Low-Skew buffer. In addition, each can drive a Glo-
bal Early buffer. Each pair of global buffers can also be driven from internal logic, but
must share an input signal. If not used to drive a global buffer, any of these pins is a
user-programmable I/O.
Any input pad symbol connected directly to the input of a BUFGLS or BUFGE symbol
is automatically placed on one of these pins.

FCLK1 -
FCLK4

(XC4000XLA
and

XC4000XV
only)

Weak
Pull-up

I or I/O

Four inputs can each drive a Fast Clock (FCLK) buffer which can deliver a clock signal
to any IOB clock input in the octant of the die served by the Fast Clock buffer. Two Fast
Clock buffers serve the two IOB octants on the left side of the die and the other two Fast
Clock buffers serve the two IOB octants on the right side of the die. On each side of the
die, one Fast Clock buffer serves the upper octant and the other serves the lower octant.
If not used to drive a Fast Clock buffer, any of these pins is a user-programmable I/O.

Table 16: Pin Descriptions (Continued)

Pin Name

I/O
During
Config.

I/O
After

Config. Pin Description
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Instruction Set
The XC4000 Series boundary scan instruction set also
includes instructions to configure the device and read back
the configuration data. The instruction set is coded as
shown in Table 17.

Bit Sequence
The bit sequence within each IOB is: In, Out, 3-State. The
input-only M0 and M2 mode pins contribute only the In bit
to the boundary scan I/O data register, while the out-
put-only M1 pin contributes all three bits.

The first two bits in the I/O data register are TDO.T and
TDO.O, which can be used for the capture of internal sig-
nals. The final bit is BSCANT.UPD, which can be used to
drive an internal net. These locations are primarily used by
Xilinx for internal testing.

From a cavity-up view of the chip (as shown in XDE or
Epic), starting in the upper right chip corner, the boundary
scan data-register bits are ordered as shown in Figure 42.
The device-specific pinout tables for the XC4000 Series
include the boundary scan locations for each IOB pin.

BSDL (Boundary Scan Description Language) files for
XC4000 Series devices are available on the Xilinx FTP site.

Including Boundary Scan in a Schematic
If boundary scan is only to be used during configuration, no
special schematic elements need be included in the sche-
matic or HDL code. In this case, the special boundary scan
pins TDI, TMS, TCK and TDO can be used for user func-
tions after configuration.

To indicate that boundary scan remain enabled after config-
uration, place the BSCAN library symbol and connect the
TDI, TMS, TCK and TDO pad symbols to the appropriate
pins, as shown in Figure 43.

Even if the boundary scan symbol is used in a schematic,
the input pins TMS, TCK, and TDI can still be used as
inputs to be routed to internal logic. Care must be taken not
to force the chip into an undesired boundary scan state by
inadvertently applying boundary scan input patterns to
these pins. The simplest way to prevent this is to keep TMS
High, and then apply whatever signal is desired to TDI and
TCK.

D Q

D Q

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

M

U

X

BYPASS

REGISTER

IOB IOB

TDO

TDI

IOB IOB IOB

1

0

1

0

1

0

1

0

1

0

sd

LE

D Q

D Q

D Q

1

0

1

0

1

0

1

0

D Q

LE

sd

sd

LE

D Q

sd

LE

D Q

IOB

D Q
1

0
D Q

LE

sd

IOB.T

DATA IN

IOB.I

IOB.Q

IOB.T

IOB.I

SHIFT/

CAPTURE

CLOCK DATA

REGISTER

DATAOUT UPDATE EXTEST

X9016

INSTRUCTION REGISTER

Figure 41:   XC4000 Series Boundary Scan Logic
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Table 17: Boundary Scan Instructions

Avoiding Inadvertent Boundary Scan
If TMS or TCK is used as user I/O, care must be taken to
ensure that at least one of these pins is held constant dur-
ing configuration. In some applications, a situation may
occur where TMS or TCK is driven during configuration.
This may cause the device to go into boundary scan mode
and disrupt the configuration process.

To prevent activation of boundary scan during configura-
tion, do either of the following:

• TMS: Tie High to put the Test Access Port controller
in a benign RESET state

• TCK: Tie High or Low—don't toggle this clock input.

For more information regarding boundary scan, refer to the
Xilinx Application Note XAPP 017.001, “Boundary Scan in
XC4000E Devices.“

Configuration
Configuration is the process of loading design-specific pro-
gramming data into one or more FPGAs to define the func-
tional operation of the internal blocks and their
interconnections. This is somewhat like loading the com-
mand registers of a programmable peripheral chip. XC4000
Series devices use several hundred bits of configuration
data per CLB and its associated interconnects. Each con-
figuration bit defines the state of a static memory cell that
controls either a function look-up table bit, a multiplexer
input, or an interconnect pass transistor. The XACTstep
development system translates the design into a netlist file.
It automatically partitions, places and routes the logic and
generates the configuration data in PROM format.

Special Purpose Pins
Three configuration mode pins (M2, M1, M0) are sampled
prior to configuration to determine the configuration mode.
After configuration, these pins can be used as auxiliary
connections. M2 and M0 can be used as inputs, and M1
can be used as an output. The XACTstep development sys-
tem does not use these resources unless they are explicitly
specified in the design entry. This is done by placing a spe-
cial pad symbol called MD2, MD1, or MD0 instead of the
input or output pad symbol.

In XC4000 Series devices, the mode pins have weak
pull-up resistors during configuration. With all three mode
pins High, Slave Serial mode is selected, which is the most
popular configuration mode. Therefore, for the most com-
mon configuration mode, the mode pins can be left uncon-
nected. (Note, however, that the internal pull-up resistor
value can be as high as 100 kΩ.) After configuration, these
pins can individually have weak pull-up or pull-down resis-
tors, as specified in the design. A pull-down resistor value
of 4.7 kΩ is recommended.

These pins are located in the lower left chip corner and are
near the readback nets. This location allows convenient
routing if compatibility with the XC2000 and XC3000 family
conventions of M0/RT, M1/RD is desired.

Instruction I2
I1      I0

Test
Selected

TDO Source
I/O Data
Source

0 0 0 EXTEST DR DR
0 0 1 SAMPLE/PR

ELOAD
DR Pin/Logic

0 1 0 USER 1 BSCAN.
TDO1

User Logic

0 1 1 USER 2 BSCAN.
TDO2

User Logic

1 0 0 READBACK Readback
Data

Pin/Logic

1 0 1 CONFIGURE DOUT Disabled
1 1 0 Reserved — —
1 1 1 BYPASS Bypass

Register
—

Bit 0 ( TDO end)

Bit 1

Bit 2

TDO.T

TDO.O



Top-edge IOBs (Right to Left)





Left-edge IOBs (Top to Bottom)



MD1.T

MD1.O

MD1.I

MD0.I

MD2.I



Bottom-edge IOBs (Left to Right)





Right-edge IOBs (Bottom to Top)



B SCANT.UPD(TDI end)




X6075

Figure 42:    Boundary Scan Bit Sequence

TDI



TMS



TCK



TDO1



TDO2

TDO




DRCK




IDLE




SEL1




SEL2

TDI

TMS

TCK

TDO

BSCAN

To User

Logic

IBUF

Optional

From

User Logic

To User

Logic

X2675




Figure 43:   Boundary Scan Schematic Example
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Configuration Modes
XC4000E devices have six configuration modes. XC4000X
devices have the same six modes, plus an additional con-
figuration mode. These modes are selected by a 3-bit input
code applied to the M2, M1, and M0 inputs. There are three
self-loading Master modes, two Peripheral modes, and a
Serial Slave mode, which is used primarily for
daisy-chained devices. The coding for mode selection is
shown in Table 18.

A detailed description of each configuration mode, with tim-
ing information, is included later in this data sheet. During
configuration, some of the I/O pins are used temporarily for
the configuration process. All pins used during configura-
tion are shown in Table 22 on page 58.

Master Modes

The three Master modes use an internal oscillator to gener-
ate a Configuration Clock (CCLK) for driving potential slave
devices. They also generate address and timing for exter-
nal PROM(s) containing the configuration data.

Master Parallel (Up or Down) modes generate the CCLK
signal and PROM addresses and receive byte parallel data.
The data is internally serialized into the FPGA data-frame
format. The up and down selection generates starting
addresses at either zero or 3FFFF (3FFFFF when 22
address lines are used), for compatibility with different
microprocessor addressing conventions. The Master Serial
mode generates CCLK and receives the configuration data
in serial form from a Xilinx serial-configuration PROM.

CCLK speed is selectable as either 1 MHz (default) or 8
MHz. Configuration always starts at the default slow fre-
quency, then can switch to the higher frequency during the
first frame. Frequency tolerance is -50% to +25%.

Additional Address lines in XC4000 devices

The XC4000X devices have additional address lines
(A18-A21) allowing the additional address space required
to daisy-chain several large devices.

The extra address lines are programmable in XC4000EX
devices. By default these address lines are not activated. In
the default mode, the devices are compatible with existing
XC4000 and XC4000E products. If desired, the extra
address lines can be used by specifying the address lines
option in bitgen as 22 (bitgen -g AddressLines:22). The
lines (A18-A21) are driven when a master device detects,
via the bitstream, that it should be using all 22 address
lines. Because these pins will initially be pulled high by
internal pull-ups, designers using Master Parallel Up mode
should use external pull down resistors on pins A18-A21. If
Master Parallel Down mode is used external resistors are
not necessary.

All 22 address lines are always active in Master Parallel
modes with XC4000XL devices. The additional address
lines behave identically to the lower order address lines. If
the Address Lines option in bitgen is set to 18, it will be
ignored by the XC4000XL device.

The additional address lines (A18-A21) are not available in
the PC84 package.

Peripheral Modes

The two Peripheral modes accept byte-wide data from a
bus. A RDY/BUSY status is available as a handshake sig-
nal. In Asynchronous Peripheral mode, the internal oscilla-
tor generates a CCLK burst signal that serializes the
byte-wide data. CCLK can also drive slave devices. In the
synchronous mode, an externally supplied clock input to
CCLK serializes the data.

Slave Serial Mode

In Slave Serial mode, the FPGA receives serial configura-
tion data on the rising edge of CCLK and, after loading its
configuration, passes additional data out, resynchronized
on the next falling edge of CCLK.

Multiple slave devices with identical configurations can be
wired with parallel DIN inputs. In this way, multiple devices
can be configured simultaneously.

Serial Daisy Chain

Multiple devices with different configurations can be con-
nected together in a “daisy chain,” and a single combined
bitstream used to configure the chain of slave devices.

To configure a daisy chain of devices, wire the CCLK pins
of all devices in parallel, as shown in Figure 51 on page
60. Connect the DOUT of each device to the DIN of the
next. The lead or master FPGA and following slaves each
passes resynchronized configuration data coming from a
single source. The header data, including the length count,

Table 18: Configuration Modes

Mode M2 M1 M0 CCLK Data
Master Serial 0 0 0 output Bit-Serial
Slave Serial 1 1 1 input Bit-Serial
Master
Parallel Up

1 0 0 output Byte-Wide,
increment

from 00000
Master
Parallel Down

1 1 0 output Byte-Wide,
decrement

from 3FFFF
Peripheral
Synchronous*

0 1 1 input Byte-Wide

Peripheral
Asynchronous

1 0 1 output Byte-Wide

Reserved 0 1 0 — —
Reserved 0 0 1 — —
* Can be considered byte-wide Slave Parallel
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Setting CCLK Frequency
For Master modes, CCLK can be generated in either of two
frequencies. In the default slow mode, the frequency
ranges from 0.5 MHz to 1.25 MHz for XC4000E and
XC4000EX devices and from 0.6 MHz to 1.8 MHz for
XC4000XL devices. In fast CCLK mode, the frequency
ranges from 4 MHz to 10 MHz for XC4000E/EX devices and
from 5 MHz to 15 MHz for XC4000XL devices. The fre-
quency is selected by an option when running the bitstream
generation software. If an XC4000 Series Master is driving
an XC3000- or XC2000-family slave, slow CCLK mode
must be used. In addition, an XC4000XL device driving a
XC4000E or XC4000EX should use slow mode. Slow mode
is the default.

Table 19: XC4000 Series Data Stream Formats

Data Stream Format
The data stream (“bitstream”) format is identical for all con-
figuration modes.

The data stream formats are shown in Table 19. Bit-serial
data is read from left to right, and byte-parallel data is effec-
tively assembled from this serial bitstream, with the first bit
in each byte assigned to D0.

The configuration data stream begins with a string of eight
ones, a preamble code, followed by a 24-bit length count
and a separator field of ones. This header is followed by the
actual configuration data in frames. The length and number
of frames depends on the device type (see Table 20 and
Table 21). Each frame begins with a start field and ends
with an error check. A postamble code is required to signal
the end of data for a single device. In all cases, additional
start-up bytes of data are required to provide four clocks for
the startup sequence at the end of configuration. Long
daisy chains require additional startup bytes to shift the last
data through the chain. All startup bytes are don’t-cares;
these bytes are not included in bitstreams created by the
Xilinx software.

A selection of CRC or non-CRC error checking is allowed
by the bitstream generation software. The non-CRC error
checking tests for a designated end-of-frame field for each
frame. For CRC error checking, the software calculates a
running CRC and inserts a unique four-bit partial check at
the end of each frame. The 11-bit CRC check of the last
frame of an FPGA includes the last seven data bits.

Detection of an error results in the suspension of data load-
ing and the pulling down of the INIT pin. In Master modes,
CCLK and address signals continue to operate externally.
The user must detect INIT and initialize a new configuration
by pulsing the PROGRAM pin Low or cycling Vcc.

Data Type
All Other

Modes (D0...)
Fill Byte 11111111b
Preamble Code 0010b
Length Count COUNT(23:0)
Fill Bits 1111b
Start Field 0b
Data Frame DATA(n-1:0)
CRC or Constant
Field Check

xxxx (CRC)
or 0110b

Extend Write Cycle —
Postamble 01111111b
Start-Up Bytes xxh
Legend:
Not shaded Once per bitstream
Light Once per data frame
Dark Once per device
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XC4000E/EX/XL Program Readback Switching Characteristic Guidelines
Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100%
functionally tested. Internal timing parameters are not measured directly. They are derived from benchmark timing patterns
that are taken at device introduction, prior to any process improvements.

The following guidelines reflect worst-case values over the recommended operating conditions.

Note 1: Timing parameters apply to all speed grades.
Note 2: If rdbk.TRIG is High prior to Finished, Finished will trigger the first Readback.

Note 1: Timing parameters apply to all speed grades.
Note 2: If rdbk.TRIG is High prior to Finished, Finished will trigger the first Readback.

RTRCT
RCRTT RCRTT

2 2

RCLT4

RCRRT
6

RCHT 5

RCRDT
7

DUMMY DUMMYrdbk.DATA

rdbk.RIP

rdclk.I

rdbk.TRIG

Finished

Internal Net

VALID

X1790

VALID

1 RTRCT1

E/EX
Description Symbol Min Max Units

rdbk.TRIG rdbk.TRIG setup to initiate and abort Readback
rdbk.TRIG hold to initiate and abort Readback

1
2

TRTRC
TRCRT

200
50

-
-

ns
ns

rdclk.1 rdbk.DATA delay
rdbk.RIP delay
High time
Low time

7
6
5
4

TRCRD
TRCRR
TRCH
TRCL

-
-

250
250

250
250
500
500

ns
ns
ns
ns

XL
Description Symbol Min Max Units

rdbk.TRIG rdbk.TRIG setup to initiate and abort Readback
rdbk.TRIG hold to initiate and abort Readback

1
2

TRTRC
TRCRT

200
50

-
-

ns
ns

rdclk.1 rdbk.DATA delay
rdbk.RIP delay
High time
Low time

7
6
5
4

TRCRD
TRCRR
TRCH
TRCL

-
-

250
250

250
250
500
500

ns
ns
ns
ns
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Table 22: Pin Functions During Configuration

CONFIGURATION MODE <M2:M1:M0>
SLAVE
SERIAL
<1:1:1>

MASTER
SERIAL
<0:0:0>

SYNCH.
PERIPHERAL

<0:1:1>

ASYNCH.
PERIPHERAL

<1:0:1>

MASTER
PARALLEL DOWN

<1:1:0>

MASTER
PARALLEL UP

<1:0:0>

USER
OPERATION

M2(HIGH) (I) M2(LOW) (I) M2(LOW) (I) M2(HIGH) (I) M2(HIGH) (I) M2(HIGH) (I) (I)
M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) M1(HIGH) (I) M1(LOW) (I) (O)
M0(HIGH) (I) M0(LOW) (I) M0(HIGH) (I) M0(HIGH) (I) M0(LOW) (I) M0(LOW) (I) (I)
HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) HDC (HIGH) I/O
LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) LDC (LOW) I/O

INIT INIT INIT INIT INIT INIT I/O
DONE DONE DONE DONE DONE DONE DONE

PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM (I) PROGRAM
CCLK (I) CCLK (O) CCLK (I) CCLK (O) CCLK (O) CCLK (O) CCLK (I)

RDY/BUSY (O) RDY/BUSY (O) RCLK (O) RCLK (O) I/O
RS (I) I/O

CS0 (I) I/O
DATA 7 (I) DATA 7 (I) DATA 7 (I) DATA 7 (I) I/O
DATA 6 (I) DATA 6 (I) DATA 6 (I) DATA 6 (I) I/O
DATA 5 (I) DATA 5 (I) DATA 5 (I) DATA 5 (I) I/O
DATA 4 (I) DATA 4 (I) DATA 4 (I) DATA 4 (I) I/O
DATA 3 (I) DATA 3 (I) DATA 3 (I) DATA 3 (I) I/O
DATA 2 (I) DATA 2 (I) DATA 2 (I) DATA 2 (I) I/O
DATA 1 (I) DATA 1 (I) DATA 1 (I) DATA 1 (I) I/O

DIN (I) DIN (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) DATA 0 (I) I/O
DOUT DOUT DOUT DOUT DOUT DOUT SGCK4-GCK6-I/O

TDI TDI TDI TDI TDI TDI TDI-I/O
TCK TCK TCK TCK TCK TCK TCK-I/O
TMS TMS TMS TMS TMS TMS TMS-I/O
TDO TDO TDO TDO TDO TDO TDO-(O)

WS (I) A0 A0 I/O
A1 A1 PGCK4-GCK7-I/O

CS1 A2 A2 I/O
A3 A3 I/O
A4 A4 I/O
A5 A5 I/O
A6 A6 I/O
A7 A7 I/O
A8 A8 I/O
A9 A9 I/O

A10 A10 I/O
A11 A11 I/O
A12 A12 I/O
A13 A13 I/O
A14 A14 I/O
A15 A15 SGCK1-GCK8-I/O
A16 A16 PGCK1-GCK1-I/O
A17 A17 I/O
A18* A18* I/O
A19* A19* I/O
A20* A20* I/O
A21* A21* I/O

ALL OTHERS
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Synchronous Peripheral Mode
Synchronous Peripheral mode can also be considered
Slave Parallel mode. An external signal drives the CCLK
input(s) of the FPGA(s). The first byte of parallel configura-
tion data must be available at the Data inputs of the lead
FPGA a short setup time before the rising CCLK edge.
Subsequent data bytes are clocked in on every eighth con-
secutive rising CCLK edge.

The same CCLK edge that accepts data, also causes the
RDY/BUSY output to go High for one CCLK period. The pin
name is a misnomer. In Synchronous Peripheral mode it is
really an ACKNOWLEDGE signal. Synchronous operation
does not require this response, but it is a meaningful signal
for test purposes. Note that RDY/BUSY is pulled High with
a high-impedance pullup prior to INIT going High.

The lead FPGA serializes the data and presents the pre-
amble data (and all data that overflows the lead device) on
its DOUT pin. There is an internal delay of 1.5 CCLK peri-
ods, which means that DOUT changes on the falling CCLK
edge, and the next FPGA in the daisy chain accepts data
on the subsequent rising CCLK edge.

In order to complete the serial shift operation, 10 additional
CCLK rising edges are required after the last data byte has
been loaded, plus one more CCLK cycle for each
daisy-chained device.

Synchronous Peripheral mode is selected by a <011> on
the mode pins (M2, M1, M0).

X9027

CONTROL

SIGNALS

DATA BUS

PROGRAM

DOUT

M0 M1 M2




D0-7

INIT DONE

PROGRAM

4.7 kΩ

4.7 kΩ

4.7 kΩ

RDY/BUSY

VCC

OPTIONAL

DAISY-CHAINED

FPGAs

NOTE:

M2 can be shorted to Ground

if not used as I/O

CCLKCLOCK

PROGRAM

DOUT

XC4000E/X

SLAVE

XC4000E/X

SYNCHRO-


NOUS

PERIPHERAL

M0 M1

N/C

8

M2




DIN

INIT DONE

CCLK

N/C

Figure 56:   Synchronous Peripheral Mode Circuit Diagram
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Figure 57:   Synchronous Peripheral Mode Programming Switching Characteristics

0DOUT

CCLK

1 2 3 4 5 6 7

BYTE

0

BYTE

1

BYTE 0 OUT BYTE 1 OUT

RDY/BUSY

INIT

10

X6096

Description Symbol Min Max Units

CCLK

INIT (High) setup time TIC 5 µs
D0 - D7 setup time TDC 60 ns
D0 - D7 hold time TCD 0 ns
CCLK High time TCCH 50 ns
CCLK Low time TCCL 60 ns
CCLK Frequency FCC 8 MHz

Notes: 1. Peripheral Synchronous mode can be considered Slave Parallel mode. An external CCLK provides timing, clocking in the
first data byte on the second rising edge of CCLK after INIT goes High. Subsequent data bytes are clocked in on every
eighth consecutive rising edge of CCLK.

2. The RDY/BUSY line goes High for one CCLK period after data has been clocked in, although synchronous operation does
not require such a response.

3. The pin name RDY/BUSY is a misnomer. In Synchronous Peripheral mode this is really an ACKNOWLEDGE signal.
4. Note that data starts to shift out serially on the DOUT pin 0.5 CCLK periods after it was loaded in parallel. Therefore,

additional CCLK pulses are clearly required after the last byte has been loaded.
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Asynchronous Peripheral Mode

Write to FPGA

Asynchronous Peripheral mode uses the trailing edge of
the logic AND condition of WS and CS0 being Low and RS
and CS1 being High to accept byte-wide data from a micro-
processor bus. In the lead FPGA, this data is loaded into a
double-buffered UART-like parallel-to-serial converter and
is serially shifted into the internal logic.

The lead FPGA presents the preamble data (and all data
that overflows the lead device) on its DOUT pin. The
RDY/BUSY output from the lead FPGA acts as a hand-
shake signal to the microprocessor. RDY/BUSY goes Low
when a byte has been received, and goes High again when
the byte-wide input buffer has transferred its information
into the shift register, and the buffer is ready to receive new
data. A new write may be started immediately, as soon as
the RDY/BUSY output has gone Low, acknowledging
receipt of the previous data. Write may not be terminated
until RDY/BUSY is High again for one CCLK period. Note
that RDY/BUSY is pulled High with a high-impedance
pull-up prior to INIT going High.

The length of the BUSY signal depends on the activity in
the UART. If the shift register was empty when the new byte
was received, the BUSY signal lasts for only two CCLK
periods. If the shift register was still full when the new byte
was received, the BUSY signal can be as long as nine
CCLK periods.

Note that after the last byte has been entered, only seven of
its bits are shifted out. CCLK remains High with DOUT
equal to bit 6 (the next-to-last bit) of the last byte entered.

The READY/BUSY handshake can be ignored if the delay
from any one Write to the end of the next Write is guaran-
teed to be longer than 10 CCLK periods.

Status Read

The logic AND condition of the CS0, CS1and RS inputs
puts the device status on the Data bus.

• D7 High indicates Ready
• D7 Low indicates Busy
• D0 through D6 go unconditionally High

It is mandatory that the whole start-up sequence be started
and completed by one byte-wide input. Otherwise, the pins
used as Write Strobe or Chip Enable might become active
outputs and interfere with the final byte transfer. If this
transfer does not occur, the start-up sequence is not com-
pleted all the way to the finish (point F in Figure 47 on page
53).

In this case, at worst, the internal reset is not released. At
best, Readback and Boundary Scan are inhibited. The
length-count value, as generated by the XACTstep soft-
ware, ensures that these problems never occur.

Although RDY/BUSY is brought out as a separate signal,
microprocessors can more easily read this information on
one of the data lines. For this purpose, D7 represents the
RDY/BUSY status when RS is Low, WS is High, and the
two chip select lines are both active.

Asynchronous Peripheral mode is selected by a <101> on
the mode pins (M2, M1, M0).

ADDRESS

BUS

DATA

BUS

ADDRESS

DECODE


LOGIC

CS0...

RDY/BUSY

WS

PROGRAM

D0–7 CCLK

DOUT DIN

M2M0 M1

N/C N/C
N/C

RS

CS1

CONTROL

SIGNALS

INIT

REPROGRAM

OPTIONAL

DAISY-CHAINED

FPGAs

VCC

DONE

8

X9028

4.7 kΩ

4.7 kΩ 4.7 kΩ

4.7 kΩ

XC4000E/X

 ASYNCHRO-


NOUS

PERIPHERAL

PROGRAM

CCLK

DOUT

M2M0 M1

INIT

DONE

XC4000E/X

 SLAVE

Figure 58:    Asynchronous Peripheral Mode Circuit Diagram
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XC4000E and XC4000X Series Field Programmable Gate Arrays

6

Product Obsolete or Under Obsolescence
User I/O Per Package
Table 27, Table 28, and Table 29 show the number of user I/Os available in each package for XC4000-Series devices. Call
your local sales office for the latest availability information, or see the Xilinx website at http://www.xilinx.com for the latest
revision of the specifications.

Table 27: User I/O Chart for XC4000XL FPGAs

Max
I/O

Maximum User Accessible I/O by Package Type

Device P
C

84

P
Q

10
0

V
Q

10
0

T
Q

14
4

H
T

14
4

H
Q

16
0

P
Q

16
0

T
Q

17
6

H
T

17
6

H
Q

20
8

P
Q

20
8

H
Q

24
0

P
Q

24
0

B
G

25
6

P
G

29
9

H
Q

30
4

B
G

35
2

P
G

41
1

B
G

43
2

P
G

47
5

P
G

55
9

B
G

56
0

XC4002XL 64 61 64 64

XC4005XL 112 61 77 77 112 112 112

XC4010XL 160 61 77 113 129 145 160 160

XC4013XL 192 113 129 145 160 192 192

XC4020XL 224 113 129 145 160 192 205

XC4028XL 256 129 160 193 205 256 256 256

XC4036XL 288 129 160 193 256 288 288 288

XC4044XL 320 129 160 193 256 289 320 320

XC4052XL 352 193 256 352 352 352

XC4062XL 384 193 256 352 384 384

XC4085XL 448 352 448 448

1/29/99

Table 28: User I/O Chart for XC4000E FPGAs

Max
I/O

Maximum User Accessible I/O by Package Type

Device P
C

84

P
Q

10
0

V
Q

10
0

P
G

12
0

T
Q

14
4

P
G

15
6

P
Q

16
0

P
G

19
1

H
Q
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8

P
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8

P
G

22
3

B
G

22
5

H
Q

24
0

P
Q

24
0

P
G

29
9

H
Q

30
4

XC4003E 80 61 77 77 80

XC4005E 112 61 77 112 112 112 112

XC4006E 128 61 113 125 128 128

XC4008E 144 61 129 144 144

XC4010E 160 61 129 160 160 160 160

XC4013E 192 129 160 160 192 192 192 192

XC4020E 224 160 192 193

XC4025E 256 192 193 256 256

1/29/99

Table 29: User I/O Chart for XC4000EX FPGAs

Max
I/O

Maximum User Accessible I/O by Package Type
Device HQ208 HQ240 PG299 HQ304 BG352 PG411 BG432

XC4028EX 256 160 193 256 256 256

XC4036EX 288 193 256 288 288 288

1/29/99
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