Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 1600 | | Number of Logic Elements/Cells | 3800 | | Total RAM Bits | 51200 | | Number of I/O | 160 | | Number of Gates | 44000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 208-BFQFP Exposed Pad | | Supplier Device Package | 208-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xc4044xl-3hq208i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 1: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown) ## Flip-Flops The CLB can pass the combinatorial output(s) to the interconnect network, but can also store the combinatorial results or other incoming data in one or two flip-flops, and connect their outputs to the interconnect network as well. The two edge-triggered D-type flip-flops have common clock (K) and clock enable (EC) inputs. Either or both clock inputs can also be permanently enabled. Storage element functionality is described in Table 2. ### Latches (XC4000X only) The CLB storage elements can also be configured as latches. The two latches have common clock (K) and clock enable (EC) inputs. Storage element functionality is described in Table 2. ### Clock Input Each flip-flop can be triggered on either the rising or falling clock edge. The clock pin is shared by both storage elements. However, the clock is individually invertible for each storage element. Any inverter placed on the clock input is automatically absorbed into the CLB. ### Clock Enable The clock enable signal (EC) is active High. The EC pin is shared by both storage elements. If left unconnected for either, the clock enable for that storage element defaults to the active state. EC is not invertible within the CLB. Table 2: CLB Storage Element Functionality (active rising edge is shown) | Mode | K | EC | SR | D | Q | |--------------------|---|----|----|---|----| | Power-Up or
GSR | Х | Х | Х | Х | SR | | | Х | Х | 1 | Х | SR | | Flip-Flop | | 1* | 0* | D | D | | | 0 | Х | 0* | Х | Q | | Latch | 1 | 1* | 0* | Х | Q | | Lateri | 0 | 1* | 0* | D | D | | Both | Х | 0 | 0* | Х | Ø | Legend: X Don't care Rising edge SR Set or Reset value. Reset is default. 0* Input is Low or unconnected (default value) 1* Input is High or unconnected (default value) tions of the CLB, with the exception of the redefinition of the control signals. In 16x2 and 16x1 modes, the H' function generator can be used to implement Boolean functions of F', G', and D1, and the D flip-flops can latch the F', G', H', or D0 signals. ### Single-Port Edge-Triggered Mode Edge-triggered (synchronous) RAM simplifies timing requirements. XC4000 Series edge-triggered RAM timing operates like writing to a data register. Data and address are presented. The register is enabled for writing by a logic High on the write enable input, WE. Then a rising or falling clock edge loads the data into the register, as shown in Figure 3. Figure 3: Edge-Triggered RAM Write Timing Complex timing relationships between address, data, and write enable signals are not required, and the external write enable pulse becomes a simple clock enable. The active edge of WCLK latches the address, input data, and WE sig- nals. An internal write pulse is generated that performs the write. See Figure 4 and Figure 5 for block diagrams of a CLB configured as 16x2 and 32x1 edge-triggered, single-port RAM. The relationships between CLB pins and RAM inputs and outputs for single-port, edge-triggered mode are shown in Table 5. The Write Clock input (WCLK) can be configured as active on either the rising edge (default) or the falling edge. It uses the same CLB pin (K) used to clock the CLB flip-flops, but it can be independently inverted. Consequently, the RAM output can optionally be registered within the same CLB either by the same clock edge as the RAM, or by the opposite edge of this clock. The sense of WCLK applies to both function generators in the CLB when both are configured as RAM. The WE pin is active-High and is not invertible within the CLB. **Note:** The pulse following the active edge of WCLK (T_{WPS} in Figure 3) must be less than one millisecond wide. For most applications, this requirement is not overly restrictive; however, it must not be forgotten. Stopping WCLK at this point in the write cycle could result in excessive current and even damage to the larger devices if many CLBs are configured as edge-triggered RAM. Table 5: Single-Port Edge-Triggered RAM Signals | RAM Signal | CLB Pin | Function | |------------|------------------|-----------------| | D | D0 or D1 (16x2, | Data In | | | 16x1), D0 (32x1) | | | A[3:0] | F1-F4 or G1-G4 | Address | | A[4] | D1 (32x1) | Address | | WE | WE | Write Enable | | WCLK | K | Clock | | SPO | F' or G' | Single Port Out | | (Data Out) | | (Data Out) | Figure 4: 16x2 (or 16x1) Edge-Triggered Single-Port RAM Figure 5: 32x1 Edge-Triggered Single-Port RAM (F and G addresses are identical) 6-14 May 14, 1999 (Version 1.6) ## Fast Carry Logic Each CLB F and G function generator contains dedicated arithmetic logic for the fast generation of carry and borrow signals. This extra output is passed on to the function generator in the adjacent CLB. The carry chain is independent of normal routing resources. Dedicated fast carry logic greatly increases the efficiency and performance of adders, subtractors, accumulators, comparators and counters. It also opens the door to many new applications involving arithmetic operation, where the previous generations of FPGAs were not fast enough or too inefficient. High-speed address offset calculations in microprocessor or graphics systems, and high-speed addition in digital signal processing are two typical applications. The two 4-input function generators can be configured as a 2-bit adder with built-in hidden carry that can be expanded to any length. This dedicated carry circuitry is so fast and efficient that conventional speed-up methods like carry generate/propagate are meaningless even at the 16-bit level, and of marginal benefit at the 32-bit level. This fast carry logic is one of the more significant features of the XC4000 Series, speeding up arithmetic and counting into the 70 MHz range. The carry chain in XC4000E devices can run either up or down. At the top and bottom of the columns where there are no CLBs above or below, the carry is propagated to the right. (See Figure 11.) In order to improve speed in the high-capacity XC4000X devices, which can potentially have very long carry chains, the carry chain travels upward only, as shown in Figure 12. Additionally, standard interconnect can be used to route a carry signal in the downward direction. Figure 13 on page 19 shows an XC4000E CLB with dedicated fast carry logic. The carry logic in the XC4000X is similar, except that COUT exits at the top only, and the signal CINDOWN does not exist. As shown in Figure 13, the carry logic shares operand and control inputs with the function generators. The carry outputs connect to the function generators, where they are combined with the operands to form the sums. Figure 14 on page 20 shows the details of the carry logic for the XC4000E. This diagram shows the contents of the box labeled "CARRY LOGIC" in Figure 13. The XC4000X carry logic is very similar, but a multiplexer on the pass-through carry chain has been eliminated to reduce delay. Additionally, in the XC4000X the multiplexer on the G4 path has a memory-programmable 0 input, which permits G4 to directly connect to COUT. G4 thus becomes an additional high-speed initialization path for carry-in. The dedicated carry logic is discussed in detail in Xilinx document XAPP 013: "Using the Dedicated Carry Logic in *XC4000.*" This discussion also applies to XC4000E devices, and to XC4000X devices when the minor logic changes are taken into account. The fast carry logic can be accessed by placing special library symbols, or by using Xilinx Relationally Placed Macros (RPMs) that already include these symbols. Figure 11: Available XC4000E Carry Propagation Paths Figure 12: Available XC4000X Carry Propagation Paths (dotted lines use general interconnect) Figure 14: Detail of XC4000E Dedicated Carry Logic ## Input/Output Blocks (IOBs) User-configurable input/output blocks (IOBs) provide the interface between external package pins and the internal logic. Each IOB controls one package pin and can be configured for input, output, or bidirectional signals. Figure 15 shows a simplified block diagram of the XC4000E IOB. A more complete diagram which includes the boundary scan logic of the XC4000E IOB can be found in Figure 40 on page 43, in the "Boundary Scan" section. The XC4000X IOB contains some special features not included in the XC4000E IOB. These features are highlighted in a simplified block diagram found in Figure 16, and discussed throughout this section. When XC4000X special features are discussed, they are clearly identified in the text. Any feature not so identified is present in both XC4000E and XC4000X devices. ### IOB Input Signals Two paths, labeled I1 and I2 in Figure 15 and Figure 16, bring input signals into the array. Inputs also connect to an input register that can be programmed as either an edge-triggered flip-flop or a level-sensitive latch. The choice is made by placing the appropriate library symbol. For example, IFD is the basic input flip-flop (rising edge triggered), and ILD is the basic input latch (transparent-High). Variations with inverted clocks are available, and some combinations of latches and flip-flops can be implemented in a single IOB, as described in the *XACT Libraries Guide*. The XC4000E inputs can be globally configured for either TTL (1.2V) or 5.0 volt CMOS thresholds, using an option in the bitstream generation software. There is a slight input hysteresis of about 300mV. The XC4000E output levels are also configurable; the two global adjustments of input threshold and output level are independent. Inputs on the XC4000XL are TTL compatible and 3.3V CMOS compatible. Outputs on the XC4000XL are pulled to the 3.3V positive supply. The inputs of XC4000 Series 5-Volt devices can be driven by the outputs of any 3.3-Volt device, if the 5-Volt inputs are in TTL mode. Supported sources for XC4000 Series device inputs are shown in Table 8. # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays or clear on reset and after configuration. Other than the global GSR net, no user-controlled set/reset signal is available to the I/O flip-flops. The choice of set or clear applies to both the initial state of the flip-flop and the response to the Global Set/Reset pulse. See "Global Set/Reset" on page 11 for a description of how to use GSR. ### **JTAG Support** Embedded logic attached to the IOBs contains test structures compatible with IEEE Standard 1149.1 for boundary scan testing, permitting easy chip and board-level testing. More information is provided in "Boundary Scan" on page 42. ### **Three-State Buffers** A pair of 3-state buffers is associated with each CLB in the array. (See Figure 27 on page 30.) These 3-state buffers can be used to drive signals onto the nearest horizontal longlines above and below the CLB. They can therefore be used to implement multiplexed or bidirectional buses on the horizontal longlines, saving logic resources. Programmable pull-up resistors attached to these longlines help to implement a wide wired-AND function. The buffer enable is an active-High 3-state (i.e. an active-Low enable), as shown in Table 13. Another 3-state buffer with similar access is located near each I/O block along the right and left edges of the array. (See Figure 33 on page 34.) The horizontal longlines driven by the 3-state buffers have a weak keeper at each end. This circuit prevents undefined floating levels. However, it is overridden by any driver, even a pull-up resistor. Special longlines running along the perimeter of the array can be used to wire-AND signals coming from nearby IOBs or from internal longlines. These longlines form the wide edge decoders discussed in "Wide Edge Decoders" on page 27. ## Three-State Buffer Modes The 3-state buffers can be configured in three modes: - · Standard 3-state buffer - Wired-AND with input on the I pin - Wired OR-AND #### Standard 3-State Buffer All three pins are used. Place the library element BUFT. Connect the input to the I pin and the output to the O pin. The T pin is an active-High 3-state (i.e. an active-Low enable). Tie the T pin to Ground to implement a standard buffer. ### Wired-AND with Input on the I Pin The buffer can be used as a Wired-AND. Use the WAND1 library symbol, which is essentially an open-drain buffer. WAND4, WAND8, and WAND16 are also available. See the *XACT Libraries Guide* for further information. The T pin is internally tied to the I pin. Connect the input to the I pin and the output to the O pin. Connect the outputs of all the WAND1s together and attach a PULLUP symbol. ### **Wired OR-AND** The buffer can be configured as a Wired OR-AND. A High level on either input turns off the output. Use the WOR2AND library symbol, which is essentially an open-drain 2-input OR gate. The two input pins are functionally equivalent. Attach the two inputs to the I0 and I1 pins and tie the output to the O pin. Tie the outputs of all the WOR2ANDs together and attach a PULLUP symbol. ## Three-State Buffer Examples Figure 21 shows how to use the 3-state buffers to implement a wired-AND function. When all the buffer inputs are High, the pull-up resistor(s) provide the High output. Figure 22 shows how to use the 3-state buffers to implement a multiplexer. The selection is accomplished by the buffer 3-state signal. Pay particular attention to the polarity of the T pin when using these buffers in a design. Active-High 3-state (T) is identical to an active-Low output enable, as shown in Table 13. **Table 13: Three-State Buffer Functionality** | IN | Т | OUT | |----|---|-----| | X | 1 | Z | | IN | 0 | IN | Figure 21: Open-Drain Buffers Implement a Wired-AND Function Figure 25: High-Level Routing Diagram of XC4000 Series CLB (shaded arrows indicate XC4000X only) Table 14: Routing per CLB in XC4000 Series Devices | | XC4 | 1000E | XC4000X | | | | |-------------|----------|------------|----------|------------|--|--| | | Vertical | Horizontal | Vertical | Horizontal | | | | Singles | 8 | 8 | 8 | 8 | | | | Doubles | 4 | 4 | 4 | 4 | | | | Quads | 0 | 0 | 12 | 12 | | | | Longlines | 6 | 6 | 10 | 6 | | | | Direct | 0 | 0 | 2 | 2 | | | | Connects | | | | | | | | Globals | 4 | 0 | 8 | 0 | | | | Carry Logic | 2 | 0 | 1 | 0 | | | | Total | 24 | 18 | 45 | 32 | | | ## **Programmable Switch Matrices** The horizontal and vertical single- and double-length lines intersect at a box called a programmable switch matrix (PSM). Each switch matrix consists of programmable pass transistors used to establish connections between the lines (see Figure 26). For example, a single-length signal entering on the right side of the switch matrix can be routed to a single-length line on the top, left, or bottom sides, or any combination thereof, if multiple branches are required. Similarly, a double-length signal can be routed to a double-length line on any or all of the other three edges of the programmable switch matrix. Figure 26: Programmable Switch Matrix (PSM) ### Single-Length Lines Single-length lines provide the greatest interconnect flexibility and offer fast routing between adjacent blocks. There are eight vertical and eight horizontal single-length lines associated with each CLB. These lines connect the switching matrices that are located in every row and a column of CLBs. Single-length lines are connected by way of the programmable switch matrices, as shown in Figure 28. Routing connectivity is shown in Figure 27. Single-length lines incur a delay whenever they go through a switching matrix. Therefore, they are not suitable for routing signals for long distances. They are normally used to conduct signals within a localized area and to provide the branching for nets with fanout greater than one. Figure 28: Single- and Double-Length Lines, with Programmable Switch Matrices (PSMs) ## **Double-Length Lines** The double-length lines consist of a grid of metal segments, each twice as long as the single-length lines: they run past two CLBs before entering a switch matrix. Double-length lines are grouped in pairs with the switch matrices staggered, so that each line goes through a switch matrix at every other row or column of CLBs (see Figure 28). There are four vertical and four horizontal double-length lines associated with each CLB. These lines provide faster signal routing over intermediate distances, while retaining routing flexibility. Double-length lines are connected by way of the programmable switch matrices. Routing connectivity is shown in Figure 27. ## Quad Lines (XC4000X only) XC4000X devices also include twelve vertical and twelve horizontal quad lines per CLB row and column. Quad lines are four times as long as the single-length lines. They are interconnected via buffered switch matrices (shown as diamonds in Figure 27 on page 30). Quad lines run past four CLBs before entering a buffered switch matrix. They are grouped in fours, with the buffered switch matrices staggered, so that each line goes through a buffered switch matrix at every fourth CLB location in that row or column. (See Figure 29.) The buffered switch matrixes have four pins, one on each edge. All of the pins are bidirectional. Any pin can drive any or all of the other pins. Each buffered switch matrix contains one buffer and six pass transistors. It resembles the programmable switch matrix shown in Figure 26, with the addition of a programmable buffer. There can be up to two independent inputs Figure 29: Quad Lines (XC4000X only) and up to two independent outputs. Only one of the independent inputs can be buffered. The place and route software automatically uses the timing requirements of the design to determine whether or not a quad line signal should be buffered. A heavily loaded signal is typically buffered, while a lightly loaded one is not. One scenario is to alternate buffers and pass transistors. This allows both vertical and horizontal quad lines to be buffered at alternating buffered switch matrices. Due to the buffered switch matrices, quad lines are very fast. They provide the fastest available method of routing heavily loaded signals for long distances across the device. ### Longlines Longlines form a grid of metal interconnect segments that run the entire length or width of the array. Longlines are intended for high fan-out, time-critical signal nets, or nets that are distributed over long distances. In XC4000X devices, quad lines are preferred for critical nets, because the buffered switch matrices make them faster for high fan-out nets. Two horizontal longlines per CLB can be driven by 3-state or open-drain drivers (TBUFs). They can therefore implement unidirectional or bidirectional buses, wide multiplexers, or wired-AND functions. (See "Three-State Buffers" on page 26 for more details.) Each horizontal longline driven by TBUFs has either two (XC4000E) or eight (XC4000X) pull-up resistors. To activate these resistors, attach a PULLUP symbol to the long-line net. The software automatically activates the appropriate number of pull-ups. There is also a weak keeper at each end of these two horizontal longlines. This Figure 31: High-Level Routing Diagram of XC4000 Series VersaRing (Left Edge) WED = Wide Edge Decoder, IOB = I/O Block (shaded arrows indicate XC4000X only) Figure 32: XC4000X Octal I/O Routing Figure 34: XC4000E Global Net Distribution Figure 35: XC4000X Global Net Distribution 6-36 May 14, 1999 (Version 1.6) ## Global Nets and Buffers (XC4000X only) Eight vertical longlines in each CLB column are driven by special global buffers. These longlines are in addition to the vertical longlines used for standard interconnect. The global lines are broken in the center of the array, to allow faster distribution and to minimize skew across the whole array. Each half-column global line has its own buffered multiplexer, as shown in Figure 35. The top and bottom global lines cannot be connected across the center of the device, as this connection might introduce unacceptable skew. The top and bottom halves of the global lines must be separately driven — although they can be driven by the same global buffer. The eight global lines in each CLB column can be driven by either of two types of global buffers. They can also be driven by internal logic, because they can be accessed by single, double, and quad lines at the top, bottom, half, and quarter points. Consequently, the number of different clocks that can be used simultaneously in an XC4000X device is very large. There are four global lines feeding the IOBs at the left edge of the device. IOBs along the right edge have eight global lines. There is a single global line along the top and bottom edges with access to the IOBs. All IOB global lines are broken at the center. They cannot be connected across the center of the device, as this connection might introduce unacceptable skew. IOB global lines can be driven from two types of global buffers, or from local interconnect. Alternatively, top and bottom IOBs can be clocked from the global lines in the adjacent CLB column. Two different types of clock buffers are available in the XC4000X: - Global Low-Skew Buffers (BUFGLS) - Global Early Buffers (BUFGE) Global Low-Skew Buffers are the standard clock buffers. They should be used for most internal clocking, whenever a large portion of the device must be driven. Global Early Buffers are designed to provide a faster clock access, but CLB access is limited to one-fourth of the device. They also facilitate a faster I/O interface. Figure 35 is a conceptual diagram of the global net structure in the XC4000X. Global Early buffers and Global Low-Skew buffers share a single pad. Therefore, the same IPAD symbol can drive one buffer of each type, in parallel. This configuration is particularly useful when using the Fast Capture latches, as described in "IOB Input Signals" on page 20. Paired Global Early and Global Low-Skew buffers share a common input; they cannot be driven by two different signals. ### Choosing an XC4000X Clock Buffer The clocking structure of the XC4000X provides a large variety of features. However, it can be simple to use, without understanding all the details. The software automatically handles clocks, along with all other routing, when the appropriate clock buffer is placed in the design. In fact, if a buffer symbol called BUFG is placed, rather than a specific type of buffer, the software even chooses the buffer most appropriate for the design. The detailed information in this section is provided for those users who want a finer level of control over their designs. If fine control is desired, use the following summary and Table 15 on page 35 to choose an appropriate clock buffer. - The simplest thing to do is to use a Global Low-Skew buffer. - If a faster clock path is needed, try a BUFG. The software will first try to use a Global Low-Skew Buffer. If timing requirements are not met, a faster buffer will automatically be used. - If a single quadrant of the chip is sufficient for the clocked logic, and the timing requires a faster clock than the Global Low-Skew buffer, use a Global Early buffer. #### **Global Low-Skew Buffers** Each corner of the XC4000X device has two Global Low-Skew buffers. Any of the eight Global Low-Skew buffers can drive any of the eight vertical Global lines in a column of CLBs. In addition, any of the buffers can drive any of the four vertical lines accessing the IOBs on the left edge of the device, and any of the eight vertical lines accessing the IOBs on the right edge of the device. (See Figure 36 on page 38.) IOBs at the top and bottom edges of the device are accessed through the vertical Global lines in the CLB array, as in the XC4000E. Any Global Low-Skew buffer can, therefore, access every IOB and CLB in the device. The Global Low-Skew buffers can be driven by either semi-dedicated pads or internal logic. To use a Global Low-Skew buffer, instantiate a BUFGLS element in a schematic or in HDL code. If desired, attach a LOC attribute or property to direct placement to the designated location. For example, attach a LOC=T attribute or property to direct that a BUFGLS be placed in one of the two Global Low-Skew buffers on the top edge of the device, or a LOC=TR to indicate the Global Low-Skew buffer on the top edge of the device, on the right. # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays ### Start-up from a User Clock (STARTUP.CLK) When, instead of CCLK, a user-supplied start-up clock is selected, Q1 is used to bridge the unknown phase relationship between CCLK and the user clock. This arbitration causes an unavoidable one-cycle uncertainty in the timing of the rest of the start-up sequence. ## DONE Goes High to Signal End of Configuration XC4000 Series devices read the expected length count from the bitstream and store it in an internal register. The length count varies according to the number of devices and the composition of the daisy chain. Each device also counts the number of CCLKs during configuration. Two conditions have to be met in order for the DONE pin to go high: - the chip's internal memory must be full, and - the configuration length count must be met, exactly. This is important because the counter that determines when the length count is met begins with the very first CCLK, not the first one after the preamble. Therefore, if a stray bit is inserted before the preamble, or the data source is not ready at the time of the first CCLK, the internal counter that holds the number of CCLKs will be one ahead of the actual number of data bits read. At the end of configuration, the configuration memory will be full, but the number of bits in the internal counter will not match the expected length count. As a consequence, a Master mode device will continue to send out CCLKs until the internal counter turns over to zero, and then reaches the correct length count a second time. This will take several seconds [2²⁴ * CCLK period] — which is sometimes interpreted as the device not configuring at all. If it is not possible to have the data ready at the time of the first CCLK, the problem can be avoided by increasing the number in the length count by the appropriate value. The *XACT User Guide* includes detailed information about manually altering the length count. Note that DONE is an open-drain output and does not go High unless an internal pull-up is activated or an external pull-up is attached. The internal pull-up is activated as the default by the bitstream generation software. ## Release of User I/O After DONE Goes High By default, the user I/O are released one CCLK cycle after the DONE pin goes High. If CCLK is not clocked after DONE goes High, the outputs remain in their initial state — 3-stated, with a 50 k Ω - 100 k Ω pull-up. The delay from DONE High to active user I/O is controlled by an option to the bitstream generation software. ## Release of Global Set/Reset After DONE Goes High By default, Global Set/Reset (GSR) is released two CCLK cycles after the DONE pin goes High. If CCLK is not clocked twice after DONE goes High, all flip-flops are held in their initial set or reset state. The delay from DONE High to GSR inactive is controlled by an option to the bitstream generation software. ## Configuration Complete After DONE Goes High Three full CCLK cycles are required after the DONE pin goes High, as shown in Figure 47 on page 53. If CCLK is not clocked three times after DONE goes High, readback cannot be initiated and most boundary scan instructions cannot be used. ## **Configuration Through the Boundary Scan Pins** XC4000 Series devices can be configured through the boundary scan pins. The basic procedure is as follows: - Power up the FPGA with INIT held Low (or drive the PROGRAM pin Low for more than 300 ns followed by a High while holding INIT Low). Holding INIT Low allows enough time to issue the CONFIG command to the FPGA. The pin can be used as I/O after configuration if a resistor is used to hold INIT Low. - Issue the CONFIG command to the TMS input - Wait for INIT to go High - Sequence the boundary scan Test Access Port to the SHIFT-DR state - Toggle TCK to clock data into TDI pin. The user must account for all TCK clock cycles after INIT goes High, as all of these cycles affect the Length Count compare. For more detailed information, refer to the Xilinx application note XAPP017, "Boundary Scan in XC4000 Devices." This application note also applies to XC4000E and XC4000X devices. Figure 48: Start-up Logic ## Readback The user can read back the content of configuration memory and the level of certain internal nodes without interfering with the normal operation of the device. Readback not only reports the downloaded configuration bits, but can also include the present state of the device, represented by the content of all flip-flops and latches in CLBs and IOBs, as well as the content of function generators used as RAMs. Note that in XC4000 Series devices, configuration data is *not* inverted with respect to configuration as it is in XC2000 and XC3000 families. XC4000 Series Readback does not use any dedicated pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA, RDBK.RIP and RDBK.CLK) that can be routed to any IOB. To access the internal Readback signals, place the READ- BACK library symbol and attach the appropriate pad symbols, as shown in Figure 49. After Readback has been initiated by a High level on RDBK.TRIG after configuration, the RDBK.RIP (Read In Progress) output goes High on the next rising edge of RDBK.CLK. Subsequent rising edges of this clock shift out Readback data on the RDBK.DATA net. Readback data does not include the preamble, but starts with five dummy bits (all High) followed by the Start bit (Low) of the first frame. The first two data bits of the first frame are always High. Each frame ends with four error check bits. They are read back as High. The last seven bits of the last frame are also read back as High. An additional Start bit (Low) and an 11-bit Cyclic Redundancy Check (CRC) signature follow, before RDBK.RIP returns Low. Figure 49: Readback Schematic Example ## **Readback Options** Readback options are: Read Capture, Read Abort, and Clock Select. They are set with the bitstream generation software. ## Read Capture When the Read Capture option is selected, the readback data stream includes sampled values of CLB and IOB signals. The rising edge of RDBK.TRIG latches the inverted values of the four CLB outputs, the IOB output flip-flops and the input signals I1 and I2. Note that while the bits describing configuration (interconnect, function generators, and RAM content) are *not* inverted, the CLB and IOB output signals *are* inverted. When the Read Capture option is not selected, the values of the capture bits reflect the configuration data originally written to those memory locations. If the RAM capability of the CLBs is used, RAM data are available in readback, since they directly overwrite the F and G function-table configuration of the CLB. RDBK.TRIG is located in the lower-left corner of the device, as shown in Figure 50. #### Read Abort When the Read Abort option is selected, a High-to-Low transition on RDBK.TRIG terminates the readback operation and prepares the logic to accept another trigger. After an aborted readback, additional clocks (up to one readback clock per configuration frame) may be required to re-initialize the control logic. The status of readback is indicated by the output control net RDBK.RIP. RDBK.RIP is High whenever a readback is in progress. ### Clock Select CCLK is the default clock. However, the user can insert another clock on RDBK.CLK. Readback control and data are clocked on rising edges of RDBK.CLK. If readback must be inhibited for security reasons, the readback control nets are simply not connected. RDBK.CLK is located in the lower right chip corner, as shown in Figure 50. Figure 50: READBACK Symbol in Graphical Editor ## Violating the Maximum High and Low Time Specification for the Readback Clock The readback clock has a maximum High and Low time specification. In some cases, this specification cannot be met. For example, if a processor is controlling readback, an interrupt may force it to stop in the middle of a readback. This necessitates stopping the clock, and thus violating the specification. The specification is mandatory only on clocking data at the end of a frame prior to the next start bit. The transfer mechanism will load the data to a shift register during the last six clock cycles of the frame, prior to the start bit of the following frame. This loading process is dynamic, and is the source of the maximum High and Low time requirements. Therefore, the specification only applies to the six clock cycles prior to and including any start bit, including the clocks before the first start bit in the readback data stream. At other times, the frame data is already in the register and the register is not dynamic. Thus, it can be shifted out just like a regular shift register. The user must precisely calculate the location of the readback data relative to the frame. The system must keep track of the position within a data frame, and disable interrupts before frame boundaries. Frame lengths and data formats are listed in Table 19, Table 20 and Table 21. ### Readback with the XChecker Cable The XChecker Universal Download/Readback Cable and Logic Probe uses the readback feature for bitstream verification. It can also display selected internal signals on the PC or workstation screen, functioning as a low-cost in-circuit emulator. **Table 22: Pin Functions During Configuration** | | CONFIGURATION MODE <m2:m1:m0></m2:m1:m0> | | | | | | | | |----------------------------|------------------------------------------|---------------------------------|----------------------------|------------------------------------|----------------------------------|-------------------|--|--| | SLAVE
SERIAL
<1:1:1> | MASTER
SERIAL
<0:0:0> | SYNCH.
PERIPHERAL
<0:1:1> | ASYNCH. PERIPHERAL <1:0:1> | MASTER
PARALLEL DOWN
<1:1:0> | MASTER
PARALLEL UP
<1:0:0> | USER
OPERATION | | | | M2(HIGH) (I) | M2(LOW) (I) | M2(LOW) (I) | M2(HIGH) (I) | M2(HIGH) (I) | M2(HIGH) (I) | (I) | | | | M1(HIGH) (I) | M1(LOW) (I) | M1(HIGH) (I) | M1(LOW) (I) | M1(HIGH) (I) | M1(LOW) (I) | (O) | | | | M0(HIGH) (I) | M0(LOW) (I) | M0(HIGH) (I) | M0(HIGH) (I) | M0(LOW) (I) | M0(LOW) (I) | (I) | | | | HDC (HIGH) | I/O | | | | LDC (LOW) | I/O | | | | ĪNIT | ĪNIT | ĪNĪT | ĪNIT | ĪNIT | ĪNIT | I/O | | | | DONE | | | PROGRAM (I) | PROGRAM | | | | CCLK (I) | CCLK (O) | CCLK (I) | CCLK (O) | CCLK (O) | CCLK (O) | CCLK (I) | | | | | | RDY/BUSY (O) | RDY/BUSY (O) | RCLK (O) | RCLK (O) | I/O | | | | | | | RS (I) | | | I/O | | | | | | | CS0 (I) | | | I/O | | | | | | DATA 7 (I) | DATA 7 (I) | DATA 7 (I) | DATA 7 (I) | I/O | | | | | | DATA 6 (I) | DATA 6 (I) | DATA 6 (I) | DATA 6 (I) | I/O | | | | | | DATA 5 (I) | DATA 5 (I) | DATA 5 (I) | DATA 5 (I) | I/O | | | | | | DATA 4 (I) | DATA 4 (I) | DATA 4 (I) | DATA 4 (I) | I/O | | | | | | DATA 3 (I) | DATA 3 (I) | DATA 3 (I) | DATA 3 (I) | I/O | | | | | | DATA 2 (I) | DATA 2 (I) | DATA 2 (I) | DATA 2 (I) | I/O | | | | | | DATA 1 (I) | DATA 1 (I) | DATA 1 (I) | DATA 1 (I) | I/O | | | | DIN (I) | DIN (I) | DATA 0 (I) | DATA 0 (I) | DATA 0 (I) | DATA 0 (I) | I/O | | | | DOUT | DOUT | DOUT | DOUT | DOUT | DOUT | SGCK4-GCK6-I/O | | | | TDI | TDI | TDI | TDI | TDI | TDI | TDI-I/O | | | | TCK | TCK | TCK | TCK | TCK | TCK | TCK-I/O | | | | TMS | TMS | TMS | TMS | TMS | TMS | TMS-I/O | | | | TDO | TDO | TDO | TDO | TDO | TDO | TDO-(O) | | | | | | | WS (I) | A0 | A0 | I/O | | | | | | | | A1 | A1 | PGCK4-GCK7-I/O | | | | | | | CS1 | A2 | A2 | I/O | | | | | | | • | A3 | A3 | I/O | | | | | | | | A4 | A4 | I/O | | | | | | | | A5 | A5 | I/O | | | | | | | | A6 | A6 | I/O | | | | | | | | A7 | A7 | I/O | | | | | | | | A8 | A8 | I/O | | | | | | | | A9 | A9 | I/O | | | | | | | | A10 | A10 | I/O | | | | | | | | A11 | A11 | I/O | | | | | | | | A12 | A12 | I/O | | | | | | | | A13 | A13 | I/O | | | | | | | | A14 | A14 | I/O | | | | | | | | A15 | A15 | SGCK1-GCK8-I/O | | | | | | | | A16 | A16 | PGCK1-GCK1-I/O | | | | | | | | A17 | A17 | I/O | | | | | | | | A18* | A18* | I/O | | | | | | | | A19* | A19* | I/O | | | | | | | | A20* | A20* | I/O | | | | | | | | A21* | A21* | I/O | | | | | | | | | | ALL OTHERS | | | **Table 23: Pin Functions During Configuration** | SERIAL SERIAL PER <1:1:1> <0:0:0> < | | SYNCH.
PERIPHERAL
<0:1:1> | ASYNCH. PERIPHERAL <1:0:1> | MASTER
PARALLEL DOWN
<1:1:0> | MASTER
PARALLEL UP
<1:0:0> | USER
OPERATION | |-------------------------------------|-------------|---------------------------------|----------------------------|------------------------------------|----------------------------------|-------------------| | M2(HIGH) (I) | M2(LOW) (I) | M2(LOW) (I) | M2(HIGH) (I) | M2(HIGH) (I) | M2(HIGH) (I) | (I) | | M1(HIGH) (I) | M1(LOW) (I) | M1(HIGH) (I) | M1(LOW) (I) | M1(HIGH) (I) | M1(LOW) (I) | (O) | | M0(HIGH) (I) | M0(LOW) (I) | M0(HIGH) (I) | M0(HIGH) (I) | M0(LOW) (I) | M0(LOW) (I) | (I) | | HDC (HIGH) | I/O | | LDC (LOW) | I/O | | ĪNIT | ĪNIT | ĪNĪT | ĪNIT | ĪNIT | ĪNIT | I/O | | DONE | PROGRAM (I) | PROGRAM | | CCLK (I) | CCLK (O) | CCLK (I) | CCLK (O) | CCLK (O) | CCLK (O) | CCLK (I) | | | | RDY/BUSY (O) | RDY/BUSY (O) | RCLK (O) | RCLK (O) | I/O | | | | | RS (I) | | | I/O | | | | | CSO (I) | | | I/O | | | | DATA 7 (I) | DATA 7 (I) | DATA 7 (I) | DATA 7 (I) | I/O | | | | DATA 6 (I) | DATA 6 (I) | DATA 6 (I) | DATA 6 (I) | I/O | | | | DATA 5 (I) | DATA 5 (I) | DATA 5 (I) | DATA 5 (I) | I/O | | | | DATA 4 (I) | DATA 4 (I) | DATA 4 (I) | DATA 4 (I) | I/O | | | | DATA 3 (I) | DATA 3 (I) | DATA 3 (I) | DATA 3 (I) | I/O | | | | DATA 2 (I) | DATA 2 (I) | DATA 2 (I) | DATA 2 (I) | I/O | | | | DATA 1 (I) | DATA 1 (I) | DATA 1 (I) | DATA 1 (I) | I/O | | DIN (I) | DIN (I) | DATA 0 (I) | DATA 0 (I) | DATA 0 (I) | DATA 0 (I) | I/O | | DOUT | DOUT | DOUT | DOUT | DOUT | DOUT | SGCK4-GCK6-I/O | | TDI | TDI | TDI | TDI | TDI | TDI | TDI-I/O | | TCK | TCK | TCK | TCK | TCK | TCK | TCK-I/O | | TMS | TMS | TMS | TMS | TMS | TMS | TMS-I/O | | TDO | TDO | TDO | TDO | TDO | TDO | TDO-(O) | | | | | WS (I) | A0 | A0 | I/O | | | | | | A1 | A1 | PGCK4-GCK7-I/O | | | | | CS1 | A2 | A2 | I/O | | | | | | A3 | A3 | I/O | | | | | | A4 | A4 | I/O | | | | | | A5 | A5 | I/O | | | | | | A6 | A6 | I/O | | | | | | A7 | A7 | I/O | | | | | | A8 | A8 | I/O | | | | | | A9 | A9 | I/O | | | | | | A10 | A10 | I/O | | | | | | A11 | A11 | I/O | | | | | | A12 | A12 | I/O | | | | | | A13 | A13 | I/O | | | | | | A14 | A14 | I/O | | | | | | A15 | A15 | SGCK1-GCK8-I/O | | | | | | A16 | A16 | PGCK1-GCK1-I/O | | | | | | A17 | A17 | I/O | | | | | | A18* | A18* | I/O | | | | | | A19* | A19* | I/O | | | | | | A20* | A20* | I/O | | | | | | A21* | A21* | I/O | | | | | | | | ALL OTHERS | ^{*} XC4000X only Notes 1. A shaded table cell represents a 50 k Ω - 100 k Ω pull-up before and during configuration. ⁽I) represents an input; (O) represents an output. INIT is an open-drain output during configuration. ## Synchronous Peripheral Mode Synchronous Peripheral mode can also be considered Slave Parallel mode. An external signal drives the CCLK input(s) of the FPGA(s). The first byte of parallel configuration data must be available at the Data inputs of the lead FPGA a short setup time before the rising CCLK edge. Subsequent data bytes are clocked in on every eighth consecutive rising CCLK edge. The same CCLK edge that accepts data, also causes the RDY/BUSY output to go High for one CCLK period. The pin name is a misnomer. In Synchronous Peripheral mode it is really an ACKNOWLEDGE signal. Synchronous operation does not require this response, but it is a meaningful signal for test purposes. Note that RDY/BUSY is pulled High with a high-impedance pullup prior to $\overline{\text{INIT}}$ going High. The lead FPGA serializes the data and presents the preamble data (and all data that overflows the lead device) on its DOUT pin. There is an internal delay of 1.5 CCLK periods, which means that DOUT changes on the falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge. In order to complete the serial shift operation, 10 additional CCLK rising edges are required after the last data byte has been loaded, plus one more CCLK cycle for each daisy-chained device. Synchronous Peripheral mode is selected by a <011> on the mode pins (M2, M1, M0). Figure 56: Synchronous Peripheral Mode Circuit Diagram 6-64 ## **Asynchronous Peripheral Mode** ### Write to FPGA Asynchronous Peripheral mode uses the trailing edge of the logic AND condition of \overline{WS} and $\overline{CS0}$ being Low and \overline{RS} and CS1 being High to accept byte-wide data from a microprocessor bus. In the lead FPGA, this data is loaded into a double-buffered UART-like parallel-to-serial converter and is serially shifted into the internal logic. The lead FPGA presents the preamble data (and all data that overflows the lead device) on its DOUT pin. The RDY/BUSY output from the lead FPGA acts as a handshake signal to the microprocessor. RDY/BUSY goes Low when a byte has been received, and goes High again when the byte-wide input buffer has transferred its information into the shift register, and the buffer is ready to receive new data. A new write may be started immediately, as soon as the RDY/BUSY output has gone Low, acknowledging receipt of the previous data. Write may not be terminated until RDY/BUSY is High again for one CCLK period. Note that RDY/BUSY is pulled High with a high-impedance pull-up prior to INIT going High. The length of the $\overline{\text{BUSY}}$ signal depends on the activity in the UART. If the shift register was empty when the new byte was received, the $\overline{\text{BUSY}}$ signal lasts for only two CCLK periods. If the shift register was still full when the new byte was received, the $\overline{\text{BUSY}}$ signal can be as long as nine CCLK periods. Note that after the last byte has been entered, only seven of its bits are shifted out. CCLK remains High with DOUT equal to bit 6 (the next-to-last bit) of the last byte entered. The READY/BUSY handshake can be ignored if the delay from any one Write to the end of the next Write is guaranteed to be longer than 10 CCLK periods. #### Status Read The logic AND condition of the \overline{CSO} , CS1and \overline{RS} inputs puts the device status on the Data bus. - D7 High indicates Ready - D7 Low indicates Busy - D0 through D6 go unconditionally High It is mandatory that the whole start-up sequence be started and completed by one byte-wide input. Otherwise, the pins used as Write Strobe or Chip Enable might become active outputs and interfere with the final byte transfer. If this transfer does not occur, the start-up sequence is not completed all the way to the finish (point F in Figure 47 on page 53). In this case, at worst, the internal reset is not released. At best, Readback and Boundary Scan are inhibited. The length-count value, as generated by the XACT*step* software, ensures that these problems never occur. Although RDY/ $\overline{\text{BUSY}}$ is brought out as a separate signal, microprocessors can more easily read this information on one of the data lines. For this purpose, D7 represents the RDY/ $\overline{\text{BUSY}}$ status when $\overline{\text{RS}}$ is Low, $\overline{\text{WS}}$ is High, and the two chip select lines are both active. Asynchronous Peripheral mode is selected by a <101> on the mode pins (M2, M1, M0). Figure 58: Asynchronous Peripheral Mode Circuit Diagram # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays Table 25: Component Availability Chart for XC4000E FPGAs | Р | PINS | 84 | 100 | 100 | 120 | 144 | 156 | 160 | 191 | 208 | 208 | 223 | 225 | 240 | 240 | 299 | 304 | |-----------|------|----------------|----------------|----------------|---------------|----------------|---------------|----------------|---------------|-------------------|----------------|---------------|---------------|-------------------|----------------|---------------|------------------| | יד | YPE | Plast.
PLCC | Plast.
PQFP | Plast.
VQFP | Ceram.
PGA | Plast.
TQFP | Ceram.
PGA | Plast.
PQFP | Ceram.
PGA | High-Perf.
QFP | Plast.
PQFP | Ceram.
PGA | Plast.
BGA | High-Perf.
QFP | Plast.
PQFP | Ceram.
PGA | High-Perf.
QF | | CC | DDE | PC84 | PQ100 | VQ100 | PG120 | TQ144 | PG156 | PQ160 | PG191 | HQ208 | PQ208 | PG223 | BG225 | HQ240 | PQ240 | PG299 | HQ304 High-Perf. | | | -4 | CI | CI | CI | CI | | | | | | | | | | | | | | XC4003E | -3 | СІ | СІ | СІ | СІ | | | | | | | | | | | | | | AC4003E | -2 | СІ | СІ | СІ | CI | | | | | | | | | | | | | | | -1 | С | С | С | С | | | | | | | | | | | | | | | -4 | СІ | CI | | | СІ | СІ | CI | | | CI | | | | | | | | XC4005E | -3 | СІ | СІ | | | СІ | СІ | СІ | | | СІ | | | | | | | | AC4005E | -2 | CI | СІ | | | CI | СІ | СІ | | | СІ | | | | | | | | | -1 | С | С | | | С | С | С | | | С | | | | | | | | | -4 | CI | | | | CI | CI | СІ | | | CI | | | | | | | | XC4006E | -3 | СІ | | | | CI | СІ | СІ | | | CI | | | | | | | | AC4000E | -2 | CI | | | | CI | CI | CI | | | CI | | | | | | | | | -1 | С | | | | С | С | С | | | С | | | | | | | | | -4 | СІ | | | | | | CI | CI | | CI | | | | | | | | XC4008E | -3 | СІ | | | | | | СІ | CI | | CI | | | | | | | | AC4000L | -2 | CI | | | | | | CI | CI | | CI | | | | | | | | | -1 | С | | | | | | С | С | | С | | | | | | | | | -4 | CI | | | | | | CI | CI | CI | CI | | CI | | | | | | XC4010E | -3 | CI | | | | | | CI | CI | CI | CI | | CI | | | | | | AC4010L | -2 | CI | | | | | | CI | CI | CI | CI | | CI | | | | | | | -1 | С | | | | | | С | С | С | С | | С | | | | | | | -4 | | | | | | | CI | | CI | CI | CI | CI | CI | CI | | | | XC4013E | -3 | | | | | | | CI | | CI | CI | CI | CI | CI | CI | | | | NO-OTOL [| -2 | | | | | | | CI | | CI | CI | CI | CI | CI | CI | | | | | -1 | | | | | | | С | | С | С | С | С | С | С | | | | | -4 | | | | | | | | | CI | | CI | | CI | | | | | XC4020E | -3 | | | | | | | | | CI | | CI | | CI | | | | | 7.0 10202 | -2 | | | | | | | | | CI | | CI | | CI | | | | | | -1 | | | | | | | | | С | | С | | С | | | | | <u>.</u> | -4 | | | | | | | | | | | CI | | CI | | CI | CI | | XC4025E | -3 | | | | | | | | | | | CI | | CI | | CI | CI | | 1/29/99 | -2 | | | | | | | | | | | С | | С | | С | С | C = Commercial $T_J = 0^{\circ}$ to +85°C I= Industrial $T_J = -40^{\circ}$ C to +100°C Table 26: Component Availability Chart for XC4000EX FPGAs | F | PINS | 208 | 240 | 240 299 | | 352 | 411 | 432 | |---------------------|------|-------|-------------------|---------------|-------------------|---------------|---------------|---------------| | TYPE High-Perf. QFP | | | High-Perf.
QFP | Ceram.
PGA | High-Perf.
QFP | Plast.
BGA | Ceram.
PGA | Plast.
BGA | | C | ODE | HQ208 | HQ240 | PG299 | HQ304 | BG352 | PG411 | BG432 | | | -4 | CI | CI | CI | CI | CI | | | | XC4028EX | -3 | CI | CI | CI | CI | CI | | | | | -2 | С | С | С | С | С | | | | | -4 | | CI | | CI | CI | CI | CI | | XC4036EX | -3 | | CI | | CI | CI | CI | CI | | | -2 | | С | | С | С | С | С | 1/29/99 C = Commercial $T_J = 0^{\circ}$ to +85°C I= Industrial $T_J = -40^{\circ}$ C to +100°C ## XC4000 Series Electrical Characteristics and Device-Specific Pinout Table For the latest Electrical Characteristics and package/pinout information for each XC4000 Family, see the Xilinx web site at http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp ## **Ordering Information** X9020 ## **Revision Control** | Version | Description | |---------------|--| | 3/30/98 (1.5) | Updated XC4000XL timing and added XC4002XL | | 1/29/99 (1.5) | Updated pin diagrams | | , , , | Replaced Electrical Specification and pinout pages for E, EX, and XL families with separate updates and added URL link for electrical specifications/pinouts for Web users |