Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 1936 | | Number of Logic Elements/Cells | 4598 | | Total RAM Bits | 61952 | | Number of I/O | 193 | | Number of Gates | 52000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 240-BFQFP Exposed Pad | | Supplier Device Package | 240-PQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xc4052xl-3hq240i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # XC4000E and XC4000X Series Compared to the XC4000 For readers already familiar with the XC4000 family of Xilinx Field Programmable Gate Arrays, the major new features in the XC4000 Series devices are listed in this section. The biggest advantages of XC4000E and XC4000X devices are significantly increased system speed, greater capacity, and new architectural features, particularly Select-RAM memory. The XC4000X devices also offer many new routing features, including special high-speed clock buffers that can be used to capture input data with minimal delay. Any XC4000E device is pinout- and bitstream-compatible with the corresponding XC4000 device. An existing XC4000 bitstream can be used to program an XC4000E device. However, since the XC4000E includes many new features, an XC4000E bitstream cannot be loaded into an XC4000 device. XC4000X Series devices are not bitstream-compatible with equivalent array size devices in the XC4000 or XC4000E families. However, equivalent array size devices, such as the XC4025, XC4025E, XC4028EX, and XC4028XL, are pinout-compatible. ## Improvements in XC4000E and XC4000X #### Increased System Speed XC4000E and XC4000X devices can run at synchronous system clock rates of up to 80 MHz, and internal performance can exceed 150 MHz. This increase in performance over the previous families stems from improvements in both device processing and system architecture. XC4000 Series devices use a sub-micron multi-layer metal process. In addition, many architectural improvements have been made, as described below. The XC4000XL family is a high performance 3.3V family based on 0.35μ SRAM technology and supports system speeds to 80 MHz. #### **PCI Compliance** XC4000 Series -2 and faster speed grades are fully PCI compliant. XC4000E and XC4000X devices can be used to implement a one-chip PCI solution. #### Carry Logic The speed of the carry logic chain has increased dramatically. Some parameters, such as the delay on the carry chain through a single CLB (TBYP), have improved by as much as 50% from XC4000 values. See "Fast Carry Logic" on page 18 for more information. # Select-RAM Memory: Edge-Triggered, Synchronous RAM Modes The RAM in any CLB can be configured for synchronous, edge-triggered, write operation. The read operation is not affected by this change to an edge-triggered write. #### **Dual-Port RAM** A separate option converts the 16x2 RAM in any CLB into a 16x1 dual-port RAM with simultaneous Read/Write. The function generators in each CLB can be configured as either level-sensitive (asynchronous) single-port RAM, edge-triggered (synchronous) single-port RAM, edge-triggered (synchronous) dual-port RAM, or as combinatorial logic. ### Configurable RAM Content The RAM content can now be loaded at configuration time, so that the RAM starts up with user-defined data. #### H Function Generator In current XC4000 Series devices, the H function generator is more versatile than in the original XC4000. Its inputs can come not only from the F and G function generators but also from up to three of the four control input lines. The H function generator can thus be totally or partially independent of the other two function generators, increasing the maximum capacity of the device. #### IOB Clock Enable The two flip-flops in each IOB have a common clock enable input, which through configuration can be activated individually for the input or output flip-flop or both. This clock enable operates exactly like the EC pin on the XC4000 CLB. This new feature makes the IOBs more versatile, and avoids the need for clock gating. #### **Output Drivers** The output pull-up structure defaults to a TTL-like totem-pole. This driver is an n-channel pull-up transistor, pulling to a voltage one transistor threshold below Vcc, just like the XC4000 family outputs. Alternatively, XC4000 Series devices can be globally configured with CMOS outputs, with p-channel pull-up transistors pulling to Vcc. Also, the configurable pull-up resistor in the XC4000 Series is a p-channel transistor that pulls to Vcc, whereas in the original XC4000 family it is an n-channel transistor that pulls to a voltage one transistor threshold below Vcc. # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays #### Input Thresholds The input thresholds of 5V devices can be globally configured for either TTL (1.2 V threshold) or CMOS (2.5 V threshold), just like XC2000 and XC3000 inputs. The two global adjustments of input threshold and output level are independent of each other. The XC4000XL family has an input threshold of 1.6V, compatible with both 3.3V CMOS and TTL levels. #### Global Signal Access to Logic There is additional access from global clocks to the F and G function generator inputs. #### Configuration Pin Pull-Up Resistors During configuration, these pins have weak pull-up resistors. For the most popular configuration mode, Slave Serial, the mode pins can thus be left unconnected. The three mode inputs can be individually configured with or without weak pull-up or pull-down resistors. A pull-down resistor value of $4.7~\mathrm{k}\Omega$ is recommended. The three mode inputs can be individually configured with or without weak pull-up or pull-down resistors after configuration. The PROGRAM input pin has a permanent weak pull-up. #### Soft Start-up Like the XC3000A, XC4000 Series devices have "Soft Start-up." When the configuration process is finished and the device starts up, the first activation of the outputs is automatically slew-rate limited. This feature avoids potential ground bounce when all outputs are turned on simultaneously. Immediately after start-up, the slew rate of the individual outputs is, as in the XC4000 family, determined by the individual configuration option. #### XC4000 and XC4000A Compatibility Existing XC4000 bitstreams can be used to configure an XC4000E device. XC4000A bitstreams must be recompiled for use with the XC4000E due to improved routing resources, although the devices are pin-for-pin compatible. ## Additional Improvements in XC4000X Only ### Increased Routing New interconnect in the XC4000X includes twenty-two additional vertical lines in each column of CLBs and twelve new horizontal lines in each row of CLBs. The twelve "Quad Lines" in each CLB row and column include optional repowering buffers for maximum speed. Additional high-performance routing near the IOBs enhances pin flexibility. #### Faster Input and Output A fast, dedicated early clock sourced by global clock buffers is available for the IOBs. To ensure synchronization with the regular global clocks, a Fast Capture latch driven by the early clock is available. The input data can be initially loaded into the Fast Capture latch with the early clock, then transferred to the input flip-flop or latch with the low-skew global clock. A programmable delay on the input can be used to avoid hold-time requirements. See "IOB Input Signals" on page 20 for more information. #### Latch Capability in CLBs Storage elements in the XC4000X CLB can be configured as either flip-flops or latches. This capability makes the FPGA highly synthesis-compatible. #### IOB Output MUX From Output Clock A multiplexer in the IOB allows the output clock to select either the output data or the IOB clock enable as the output to the pad. Thus, two different data signals can share a single output pad, effectively doubling the number of device outputs without requiring a larger, more expensive package. This multiplexer can also be configured as an AND-gate to implement a very fast pin-to-pin path. See "IOB Output Signals" on page 23 for more information. #### Additional Address Bits Larger devices require more bits of configuration data. A daisy chain of several large XC4000X devices may require a PROM that cannot be addressed by the eighteen address bits supported in the XC4000E. The XC4000X Series therefore extends the addressing in Master Parallel configuration mode to 22 bits. # **Detailed Functional Description** XC4000 Series devices achieve high speed through advanced semiconductor technology and improved architecture. The XC4000E and XC4000X support system clock rates of up to 80 MHz and internal performance in excess of 150 MHz. Compared to older Xilinx FPGA families, XC4000 Series devices are more powerful. They offer on-chip edge-triggered and dual-port RAM, clock enables on I/O flip-flops, and wide-input decoders. They are more versatile in many applications, especially those involving RAM. Design cycles are faster
due to a combination of increased routing resources and more sophisticated software. ## **Basic Building Blocks** Xilinx user-programmable gate arrays include two major configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs). - CLBs provide the functional elements for constructing the user's logic. - IOBs provide the interface between the package pins and internal signal lines. Three other types of circuits are also available: - 3-State buffers (TBUFs) driving horizontal longlines are associated with each CLB. - Wide edge decoders are available around the periphery of each device. - An on-chip oscillator is provided. Programmable interconnect resources provide routing paths to connect the inputs and outputs of these configurable elements to the appropriate networks. The functionality of each circuit block is customized during configuration by programming internal static memory cells. The values stored in these memory cells determine the logic functions and interconnections implemented in the FPGA. Each of these available circuits is described in this section. # **Configurable Logic Blocks (CLBs)** Configurable Logic Blocks implement most of the logic in an FPGA. The principal CLB elements are shown in Figure 1. Two 4-input function generators (F and G) offer unrestricted versatility. Most combinatorial logic functions need four or fewer inputs. However, a third function generator (H) is provided. The H function generator has three inputs. Either zero, one, or two of these inputs can be the outputs of F and G; the other input(s) are from outside the CLB. The CLB can, therefore, implement certain functions of up to nine variables, like parity check or expandable-identity comparison of two sets of four inputs. Each CLB contains two storage elements that can be used to store the function generator outputs. However, the storage elements and function generators can also be used independently. These storage elements can be configured as flip-flops in both XC4000E and XC4000X devices; in the XC4000X they can optionally be configured as latches. DIN can be used as a direct input to either of the two storage elements. H1 can drive the other through the H function generator. Function generator outputs can also drive two outputs independent of the storage element outputs. This versatility increases logic capacity and simplifies routing. Thirteen CLB inputs and four CLB outputs provide access to the function generators and storage elements. These inputs and outputs connect to the programmable interconnect resources outside the block. #### **Function Generators** Four independent inputs are provided to each of two function generators (F1 - F4 and G1 - G4). These function generators, with outputs labeled F' and G', are each capable of implementing any arbitrarily defined Boolean function of four inputs. The function generators are implemented as memory look-up tables. The propagation delay is therefore independent of the function implemented. A third function generator, labeled H', can implement any Boolean function of its three inputs. Two of these inputs can optionally be the F' and G' functional generator outputs. Alternatively, one or both of these inputs can come from outside the CLB (H2, H0). The third input must come from outside the block (H1). Signals from the function generators can exit the CLB on two outputs. F' or H' can be connected to the X output. G' or H' can be connected to the Y output. A CLB can be used to implement any of the following functions: - any function of up to four variables, plus any second function of up to four unrelated variables, plus any third function of up to three unrelated variables¹ - any single function of five variables - any function of four variables together with some functions of six variables - · some functions of up to nine variables. Implementing wide functions in a single block reduces both the number of blocks required and the delay in the signal path, achieving both increased capacity and speed. The versatility of the CLB function generators significantly improves system speed. In addition, the design-software tools can deal with each function generator independently. This flexibility improves cell usage. ^{1.} When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two unregistered function generator outputs are available from the CLB. Figure 1: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown) #### Flip-Flops The CLB can pass the combinatorial output(s) to the interconnect network, but can also store the combinatorial results or other incoming data in one or two flip-flops, and connect their outputs to the interconnect network as well. The two edge-triggered D-type flip-flops have common clock (K) and clock enable (EC) inputs. Either or both clock inputs can also be permanently enabled. Storage element functionality is described in Table 2. #### Latches (XC4000X only) The CLB storage elements can also be configured as latches. The two latches have common clock (K) and clock enable (EC) inputs. Storage element functionality is described in Table 2. #### Clock Input Each flip-flop can be triggered on either the rising or falling clock edge. The clock pin is shared by both storage elements. However, the clock is individually invertible for each storage element. Any inverter placed on the clock input is automatically absorbed into the CLB. #### Clock Enable The clock enable signal (EC) is active High. The EC pin is shared by both storage elements. If left unconnected for either, the clock enable for that storage element defaults to the active state. EC is not invertible within the CLB. Table 2: CLB Storage Element Functionality (active rising edge is shown) | Mode | K | EC | SR | D | Q | |--------------------|---|----|----|---|----| | Power-Up or
GSR | Х | Х | Х | Х | SR | | | Х | Х | 1 | Х | SR | | Flip-Flop | | 1* | 0* | D | D | | | 0 | Х | 0* | Х | Q | | Latch | 1 | 1* | 0* | Х | Q | | Lateri | 0 | 1* | 0* | D | D | | Both | Х | 0 | 0* | Х | Ø | Legend: X Don't care Rising edge SR Set or Reset value. Reset is default. 0* Input is Low or unconnected (default value) 1* Input is High or unconnected (default value) Figure 9: 16x2 (or 16x1) Level-Sensitive Single-Port RAM Figure 10: 32x1 Level-Sensitive Single-Port RAM (F and G addresses are identical) Figure 13: Fast Carry Logic in XC4000E CLB (shaded area not present in XC4000X) Figure 14: Detail of XC4000E Dedicated Carry Logic ## Input/Output Blocks (IOBs) User-configurable input/output blocks (IOBs) provide the interface between external package pins and the internal logic. Each IOB controls one package pin and can be configured for input, output, or bidirectional signals. Figure 15 shows a simplified block diagram of the XC4000E IOB. A more complete diagram which includes the boundary scan logic of the XC4000E IOB can be found in Figure 40 on page 43, in the "Boundary Scan" section. The XC4000X IOB contains some special features not included in the XC4000E IOB. These features are highlighted in a simplified block diagram found in Figure 16, and discussed throughout this section. When XC4000X special features are discussed, they are clearly identified in the text. Any feature not so identified is present in both XC4000E and XC4000X devices. #### IOB Input Signals Two paths, labeled I1 and I2 in Figure 15 and Figure 16, bring input signals into the array. Inputs also connect to an input register that can be programmed as either an edge-triggered flip-flop or a level-sensitive latch. The choice is made by placing the appropriate library symbol. For example, IFD is the basic input flip-flop (rising edge triggered), and ILD is the basic input latch (transparent-High). Variations with inverted clocks are available, and some combinations of latches and flip-flops can be implemented in a single IOB, as described in the *XACT Libraries Guide*. The XC4000E inputs can be globally configured for either TTL (1.2V) or 5.0 volt CMOS thresholds, using an option in the bitstream generation software. There is a slight input hysteresis of about 300mV. The XC4000E output levels are also configurable; the two global adjustments of input threshold and output level are independent. Inputs on the XC4000XL are TTL compatible and 3.3V CMOS compatible. Outputs on the XC4000XL are pulled to the 3.3V positive supply. The inputs of XC4000 Series 5-Volt devices can be driven by the outputs of any 3.3-Volt device, if the 5-Volt inputs are in TTL mode. Supported sources for XC4000 Series device inputs are shown in Table 8. # Output Multiplexer/2-Input Function Generator (XC4000X only) As shown in Figure 16 on page 21, the output path in the XC4000X IOB contains an additional multiplexer not available in the XC4000E IOB. The multiplexer can also be configured as a 2-input function generator, implementing a pass-gate, AND-gate, OR-gate, or XOR-gate, with 0, 1, or 2 inverted inputs. The logic used to implement these functions is shown in the upper gray area of Figure 16. When configured as a multiplexer, this feature allows two output signals to time-share the same output pad; effectively doubling the number of device outputs without requiring a larger, more expensive package. When the MUX is configured as a 2-input function generator, logic can be implemented within the IOB itself. Combined with a Global Early buffer, this arrangement allows very high-speed gating of a single signal. For example, a wide decoder can be implemented in CLBs, and its output gated with a Read or Write Strobe Driven by a BUFGE buffer, as shown in Figure 19. The critical-path pin-to-pin delay of this circuit is less than 6 nanoseconds. As shown in Figure 16, the IOB input pins Out, Output Clock, and Clock Enable have different delays and different flexibilities regarding polarity. Additionally, Output Clock sources are more limited
than the other inputs. Therefore, the Xilinx software does not move logic into the IOB function generators unless explicitly directed to do so. The user can specify that the IOB function generator be used, by placing special library symbols beginning with the letter "O." For example, a 2-input AND-gate in the IOB function generator is called OAND2. Use the symbol input pin labelled "F" for the signal on the critical path. This signal is placed on the OK pin — the IOB input with the shortest delay to the function generator. Two examples are shown in Figure 20. Figure 19: Fast Pin-to-Pin Path in XC4000X Figure 20: AND & MUX Symbols in XC4000X IOB #### Other IOB Options There are a number of other programmable options in the XC4000 Series IOB. #### Pull-up and Pull-down Resistors Programmable pull-up and pull-down resistors are useful for tying unused pins to Vcc or Ground to minimize power consumption and reduce noise sensitivity. The configurable pull-up resistor is a p-channel transistor that pulls to Vcc. The configurable pull-down resistor is an n-channel transistor that pulls to Ground. The value of these resistors is 50 k Ω – 100 k Ω . This high value makes them unsuitable as wired-AND pull-up resistors. The pull-up resistors for most user-programmable IOBs are active during the configuration process. See Table 22 on page 58 for a list of pins with pull-ups active before and during configuration. After configuration, voltage levels of unused pads, bonded or un-bonded, must be valid logic levels, to reduce noise sensitivity and avoid excess current. Therefore, by default, unused pads are configured with the internal pull-up resistor active. Alternatively, they can be individually configured with the pull-down resistor, or as a driven output, or to be driven by an external source. To activate the internal pull-up, attach the PULLUP library component to the net attached to the pad. To activate the internal pull-down, attach the PULLDOWN library component to the net attached to the pad. #### Independent Clocks Separate clock signals are provided for the input and output flip-flops. The clock can be independently inverted for each flip-flop within the IOB, generating either falling-edge or rising-edge triggered flip-flops. The clock inputs for each IOB are independent, except that in the XC4000X, the Fast Capture latch shares an IOB input with the output clock pin. #### Early Clock for IOBs (XC4000X only) Special early clocks are available for IOBs. These clocks are sourced by the same sources as the Global Low-Skew buffers, but are separately buffered. They have fewer loads and therefore less delay. The early clock can drive either the IOB output clock or the IOB input clock, or both. The early clock allows fast capture of input data, and fast clock-to-output on output data. The Global Early buffers that drive these clocks are described in "Global Nets and Buffers (XC4000X only)" on page 37. #### **Global Set/Reset** As with the CLB registers, the Global Set/Reset signal (GSR) can be used to set or clear the input and output registers, depending on the value of the INIT attribute or property. The two flip-flops can be individually configured to set Figure 25: High-Level Routing Diagram of XC4000 Series CLB (shaded arrows indicate XC4000X only) Table 14: Routing per CLB in XC4000 Series Devices | | XC4 | 1000E | XC | 4000X | | | |-------------|----------|------------|----------|------------|--|--| | | Vertical | Horizontal | Vertical | Horizontal | | | | Singles | 8 | 8 | 8 | 8 | | | | Doubles | 4 | 4 | 4 | 4 | | | | Quads | 0 | 0 | 12 | 12 | | | | Longlines | 6 | 6 | 10 | 6 | | | | Direct | 0 | 0 | 2 | 2 | | | | Connects | | | | | | | | Globals | 4 | 0 | 8 | 0 | | | | Carry Logic | 2 | 0 | 1 | 0 | | | | Total | 24 | 18 | 45 | 32 | | | ## **Programmable Switch Matrices** The horizontal and vertical single- and double-length lines intersect at a box called a programmable switch matrix (PSM). Each switch matrix consists of programmable pass transistors used to establish connections between the lines (see Figure 26). For example, a single-length signal entering on the right side of the switch matrix can be routed to a single-length line on the top, left, or bottom sides, or any combination thereof, if multiple branches are required. Similarly, a double-length signal can be routed to a double-length line on any or all of the other three edges of the programmable switch matrix. Figure 26: Programmable Switch Matrix (PSM) #### Single-Length Lines Single-length lines provide the greatest interconnect flexibility and offer fast routing between adjacent blocks. There are eight vertical and eight horizontal single-length lines associated with each CLB. These lines connect the switching matrices that are located in every row and a column of CLBs. Single-length lines are connected by way of the programmable switch matrices, as shown in Figure 28. Routing connectivity is shown in Figure 27. Single-length lines incur a delay whenever they go through a switching matrix. Therefore, they are not suitable for routing signals for long distances. They are normally used to conduct signals within a localized area and to provide the branching for nets with fanout greater than one. Figure 33: Detail of Programmable Interconnect Associated with XC4000 Series IOB (Left Edge) #### Global Nets and Buffers (XC4000X only) Eight vertical longlines in each CLB column are driven by special global buffers. These longlines are in addition to the vertical longlines used for standard interconnect. The global lines are broken in the center of the array, to allow faster distribution and to minimize skew across the whole array. Each half-column global line has its own buffered multiplexer, as shown in Figure 35. The top and bottom global lines cannot be connected across the center of the device, as this connection might introduce unacceptable skew. The top and bottom halves of the global lines must be separately driven — although they can be driven by the same global buffer. The eight global lines in each CLB column can be driven by either of two types of global buffers. They can also be driven by internal logic, because they can be accessed by single, double, and quad lines at the top, bottom, half, and quarter points. Consequently, the number of different clocks that can be used simultaneously in an XC4000X device is very large. There are four global lines feeding the IOBs at the left edge of the device. IOBs along the right edge have eight global lines. There is a single global line along the top and bottom edges with access to the IOBs. All IOB global lines are broken at the center. They cannot be connected across the center of the device, as this connection might introduce unacceptable skew. IOB global lines can be driven from two types of global buffers, or from local interconnect. Alternatively, top and bottom IOBs can be clocked from the global lines in the adjacent CLB column. Two different types of clock buffers are available in the XC4000X: - Global Low-Skew Buffers (BUFGLS) - Global Early Buffers (BUFGE) Global Low-Skew Buffers are the standard clock buffers. They should be used for most internal clocking, whenever a large portion of the device must be driven. Global Early Buffers are designed to provide a faster clock access, but CLB access is limited to one-fourth of the device. They also facilitate a faster I/O interface. Figure 35 is a conceptual diagram of the global net structure in the XC4000X. Global Early buffers and Global Low-Skew buffers share a single pad. Therefore, the same IPAD symbol can drive one buffer of each type, in parallel. This configuration is particularly useful when using the Fast Capture latches, as described in "IOB Input Signals" on page 20. Paired Global Early and Global Low-Skew buffers share a common input; they cannot be driven by two different signals. #### Choosing an XC4000X Clock Buffer The clocking structure of the XC4000X provides a large variety of features. However, it can be simple to use, without understanding all the details. The software automatically handles clocks, along with all other routing, when the appropriate clock buffer is placed in the design. In fact, if a buffer symbol called BUFG is placed, rather than a specific type of buffer, the software even chooses the buffer most appropriate for the design. The detailed information in this section is provided for those users who want a finer level of control over their designs. If fine control is desired, use the following summary and Table 15 on page 35 to choose an appropriate clock buffer. - The simplest thing to do is to use a Global Low-Skew buffer. - If a faster clock path is needed, try a BUFG. The software will first try to use a Global Low-Skew Buffer. If timing requirements are not met, a faster buffer will automatically be used. - If a single quadrant of the chip is sufficient for the clocked logic, and the timing requires a faster clock than the Global Low-Skew buffer, use a Global Early buffer. #### **Global Low-Skew Buffers** Each corner of the XC4000X device has two Global Low-Skew buffers. Any of the eight Global Low-Skew buffers can drive any of the eight vertical Global lines in a column of CLBs. In addition, any of the buffers can drive any of the four vertical lines accessing the IOBs on the left edge of the device, and any of the eight vertical lines accessing the IOBs on the right edge of the device. (See Figure 36 on page 38.) IOBs at the top and bottom edges of the device are accessed through the vertical Global lines in the CLB array, as in the XC4000E. Any Global Low-Skew buffer can, therefore, access every IOB and CLB in the device. The Global Low-Skew buffers can be driven by either semi-dedicated pads or internal logic. To use a Global Low-Skew buffer, instantiate a BUFGLS element in a schematic or in HDL code. If desired, attach a LOC attribute or property to direct placement to the designated
location. For example, attach a LOC=T attribute or property to direct that a BUFGLS be placed in one of the two Global Low-Skew buffers on the top edge of the device, or a LOC=TR to indicate the Global Low-Skew buffer on the top edge of the device, on the right. Figure 36: Any BUFGLS (GCK1 - GCK8) Can Drive Any or All Clock Inputs on the Device #### **Global Early Buffers** Each corner of the XC4000X device has two Global Early buffers. The primary purpose of the Global Early buffers is to provide an earlier clock access than the potentially heavily-loaded Global Low-Skew buffers. A clock source applied to both buffers will result in the Global Early clock edge occurring several nanoseconds earlier than the Global Low-Skew buffer clock edge, due to the lighter loading. Global Early buffers also facilitate the fast capture of device inputs, using the Fast Capture latches described in "IOB Input Signals" on page 20. For Fast Capture, take a single clock signal, and route it through both a Global Early buffer and a Global Low-Skew buffer. (The two buffers share an input pad.) Use the Global Early buffer to clock the Fast Capture latch, and the Global Low-Skew buffer to clock the normal input flip-flop or latch, as shown in Figure 17 on page 23. The Global Early buffers can also be used to provide a fast Clock-to-Out on device output pins. However, an early clock in the output flip-flop IOB must be taken into consideration when calculating the internal clock speed for the design. The Global Early buffers at the left and right edges of the chip have slightly different capabilities than the ones at the top and bottom. Refer to Figure 37, Figure 38, and Figure 35 on page 36 while reading the following explanation. Each Global Early buffer can access the eight vertical Global lines for all CLBs in the quadrant. Therefore, only one-fourth of the CLB clock pins can be accessed. This restriction is in large part responsible for the faster speed of the buffers, relative to the Global Low-Skew buffers. Figure 37: Left and Right BUFGEs Can Drive Any or All Clock Inputs in Same Quadrant or Edge (GCK1 is shown. GCK2, GCK5 and GCK6 are similar.) The left-side Global Early buffers can each drive two of the four vertical lines accessing the IOBs on the entire left edge of the device. The right-side Global Early buffers can each drive two of the eight vertical lines accessing the IOBs on the entire right edge of the device. (See Figure 37.) Each left and right Global Early buffer can also drive half of the IOBs along either the top or bottom edge of the device, using a dedicated line that can only be accessed through the Global Early buffers. The top and bottom Global Early buffers can drive half of the IOBs along either the left or right edge of the device, as shown in Figure 38. They can only access the top and bottom IOBs via the CLB global lines. Figure 38: Top and Bottom BUFGEs Can Drive Any or All Clock Inputs in Same Quadrant (GCK8 is shown. GCK3, GCK4 and GCK7 are similar.) # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays **Table 16: Pin Descriptions** | | I/O
During | I/O
After | | |---------------|---------------|------------------------------|---| | Pin Name | Config. | Config. | Pin Description | | Permanently D | Jealcated | Pins | | | VCC | I | I | Eight or more (depending on package) connections to the nominal +5 V supply voltage (+3.3 V for low-voltage devices). All must be connected, and each must be decoupled with a 0.01 - 0.1 μ F capacitor to Ground. | | GND | I | I | Eight or more (depending on package type) connections to Ground. All must be connected. | | CCLK | I or O | I | During configuration, Configuration Clock (CCLK) is an output in Master modes or Asynchronous Peripheral mode, but is an input in Slave mode and Synchronous Peripheral mode. After configuration, CCLK has a weak pull-up resistor and can be selected as the Readback Clock. There is no CCLK High or Low time restriction on XC4000 Series devices, except during Readback. See "Violating the Maximum High and Low Time Specification for the Readback Clock" on page 56 for an explanation of this exception. | | DONE | I/O | 0 | DONE is a bidirectional signal with an optional internal pull-up resistor. As an output, it indicates the completion of the configuration process. As an input, a Low level on DONE can be configured to delay the global logic initialization and the enabling of outputs. The optional pull-up resistor is selected as an option in the XACT step program that creates the configuration bitstream. The resistor is included by default. | | PROGRAM | I | I | PROGRAM is an active Low input that forces the FPGA to clear its configuration memory. It is used to initiate a configuration cycle. When PROGRAM goes High, the FPGA finishes the current clear cycle and executes another complete clear cycle, before it goes into a WAIT state and releases INIT. The PROGRAM pin has a permanent weak pull-up, so it need not be externally pulled up to Vcc. | | User I/O Pins | That Can | Have Spe | ecial Functions | | RDY/BUSY | 0 | I/O | During Peripheral mode configuration, this pin indicates when it is appropriate to write another byte of data into the FPGA. The same status is also available on D7 in Asynchronous Peripheral mode, if a read operation is performed when the device is selected. After configuration, RDY/BUSY is a user-programmable I/O pin. RDY/BUSY is pulled High with a high-impedance pull-up prior to INIT going High. | | RCLK | 0 | I/O | During Master Parallel configuration, each change on the A0-A17 outputs (A0 - A21 for XC4000X) is preceded by a rising edge on \overline{RCLK} , a redundant output signal. \overline{RCLK} is useful for clocked PROMs. It is rarely used during configuration. After configuration, \overline{RCLK} is a user-programmable I/O pin. | | M0, M1, M2 | I | I (M0),
O (M1),
I (M2) | As Mode inputs, these pins are sampled after $\overline{\text{INIT}}$ goes High to determine the configuration mode to be used. After configuration, M0 and M2 can be used as inputs, and M1 can be used as a 3-state output. These three pins have no associated input or output registers. During configuration, these pins have weak pull-up resistors. For the most popular configuration mode, Slave Serial, the mode pins can thus be left unconnected. The three mode inputs can be individually configured with or without weak pull-up or pull-down resistors. A pull-down resistor value of 4.7 k Ω is recommended. These pins can only be used as inputs or outputs when called out by special schematic definitions. To use these pins, place the library components MD0, MD1, and MD2 instead of the usual pad symbols. Input or output buffers must still be used. | | TDO | 0 | 0 | If boundary scan is used, this pin is the Test Data Output. If boundary scan is not used, this pin is a 3-state output without a register, after configuration is completed. This pin can be user output only when called out by special schematic definitions. To use this pin, place the library component TDO instead of the usual pad symbol. An output buffer must still be used. | ## **Table 16: Pin Descriptions (Continued)** | | I/O
During | I/O
After | | |--|-----------------|-----------------------|--| | Pin Name | Config. | Config. | Pin Description | | TDI, TCK,
TMS | I | I/O
or I
(JTAG) | If boundary scan is used, these pins are Test Data In, Test Clock, and Test Mode Select inputs respectively. They come directly from the pads, bypassing the IOBs. These pins can also be used as inputs to the CLB logic after configuration is completed. If the BSCAN symbol is not placed in the design, all boundary scan functions are inhibited once configuration is completed, and these pins become user-programmable I/O. The pins can be used automatically or user-constrained. To use them, use "LOC=" or place the library components TDI, TCK, and TMS instead of the usual pad symbols. Input or output buffers must still be used. | | HDC | 0 | I/O | High During Configuration (HDC) is driven High until the I/O go active. It is available as a control output indicating that configuration is not yet completed. After configuration, HDC is a user-programmable I/O pin. | | LDC | 0 | I/O | Low During Configuration (
$\overline{\text{LDC}}$) is driven Low until the I/O go active. It is available as a control output indicating that configuration is not yet completed. After configuration, $\overline{\text{LDC}}$ is a user-programmable I/O pin. | | ĪNĪT | I/O | I/O | Before and during configuration, $\overline{\text{INIT}}$ is a bidirectional signal. A 1 k Ω - 10 k Ω external pull-up resistor is recommended. As an active-Low open-drain output, $\overline{\text{INIT}}$ is held Low during the power stabilization and internal clearing of the configuration memory. As an active-Low input, it can be used to hold the FPGA in the internal WAIT state before the start of configuration. Master mode devices stay in a WAIT state an additional 30 to 300 μ s after $\overline{\text{INIT}}$ has gone High. During configuration, a Low on this output indicates that a configuration data error has occurred. After the I/O go active, $\overline{\text{INIT}}$ is a user-programmable I/O pin. | | PGCK1 -
PGCK4
(XC4000E
only) | Weak
Pull-up | I or I/O | Four Primary Global inputs each drive a dedicated internal global net with short delay and minimal skew. If not used to drive a global buffer, any of these pins is a user-programmable I/O. The PGCK1-PGCK4 pins drive the four Primary Global Buffers. Any input pad symbol connected directly to the input of a BUFGP symbol is automatically placed on one of these pins. | | SGCK1 -
SGCK4
(XC4000E
only) | Weak
Pull-up | I or I/O | Four Secondary Global inputs each drive a dedicated internal global net with short delay and minimal skew. These internal global nets can also be driven from internal logic. If not used to drive a global net, any of these pins is a user-programmable I/O pin. The SGCK1-SGCK4 pins provide the shortest path to the four Secondary Global Buffers. Any input pad symbol connected directly to the input of a BUFGS symbol is automatically placed on one of these pins. | | GCK1 -
GCK8
(XC4000X
only) | Weak
Pull-up | I or I/O | Eight inputs can each drive a Global Low-Skew buffer. In addition, each can drive a Global Early buffer. Each pair of global buffers can also be driven from internal logic, but must share an input signal. If not used to drive a global buffer, any of these pins is a user-programmable I/O. Any input pad symbol connected directly to the input of a BUFGLS or BUFGE symbol is automatically placed on one of these pins. | | FCLK1 -
FCLK4
(XC4000XLA
and
XC4000XV
only) | Weak
Pull-up | I or I/O | Four inputs can each drive a Fast Clock (FCLK) buffer which can deliver a clock signal to any IOB clock input in the octant of the die served by the Fast Clock buffer. Two Fast Clock buffers serve the two IOB octants on the left side of the die and the other two Fast Clock buffers serve the two IOB octants on the right side of the die. On each side of the die, one Fast Clock buffer serves the upper octant and the other serves the lower octant. If not used to drive a Fast Clock buffer, any of these pins is a user-programmable I/O. | **Table 17: Boundary Scan Instructions** | | uction | | Test
Selected | TDO Source | I/O Data
Source | |---|--------|----------|--------------------|--------------------|--------------------| | 0 | 0 | 0 EXTEST | | DR | DR | | 0 | 0 | 1 | SAMPLE/PR
ELOAD | DR | Pin/Logic | | 0 | 1 | 0 | USER 1 | BSCAN.
TDO1 | User Logic | | 0 | 1 | 1 | USER 2 | BSCAN.
TDO2 | User Logic | | 1 | 0 | 0 | READBACK | Readback
Data | Pin/Logic | | 1 | 0 | 1 | CONFIGURE | DOUT | Disabled | | 1 | 1 | 0 | Reserved | | | | 1 | 1 | 1 | BYPASS | Bypass
Register | _ | X6075 Figure 42: Boundary Scan Bit Sequence # **Avoiding Inadvertent Boundary Scan** If TMS or TCK is used as user I/O, care must be taken to ensure that at least one of these pins is held constant during configuration. In some applications, a situation may occur where TMS or TCK is driven during configuration. This may cause the device to go into boundary scan mode and disrupt the configuration process. To prevent activation of boundary scan during configuration, do either of the following: - TMS: Tie High to put the Test Access Port controller in a benign RESET state - TCK: Tie High or Low—don't toggle this clock input. For more information regarding boundary scan, refer to the Xilinx Application Note XAPP 017.001, "Boundary Scan in XC4000E Devices." Figure 43: Boundary Scan Schematic Example # Configuration Configuration is the process of loading design-specific programming data into one or more FPGAs to define the functional operation of the internal blocks and their interconnections. This is somewhat like loading the command registers of a programmable peripheral chip. XC4000 Series devices use several hundred bits of configuration data per CLB and its associated interconnects. Each configuration bit defines the state of a static memory cell that controls either a function look-up table bit, a multiplexer input, or an interconnect pass transistor. The XACT step development system translates the design into a netlist file. It automatically partitions, places and routes the logic and generates the configuration data in PROM format. # **Special Purpose Pins** Three configuration mode pins (M2, M1, M0) are sampled prior to configuration to determine the configuration mode. After configuration, these pins can be used as auxiliary connections. M2 and M0 can be used as inputs, and M1 can be used as an output. The XACT step development system does not use these resources unless they are explicitly specified in the design entry. This is done by placing a special pad symbol called MD2, MD1, or MD0 instead of the input or output pad symbol. In XC4000 Series devices, the mode pins have weak pull-up resistors during configuration. With all three mode pins High, Slave Serial mode is selected, which is the most popular configuration mode. Therefore, for the most common configuration mode, the mode pins can be left unconnected. (Note, however, that the internal pull-up resistor value can be as high as 100 k Ω .) After configuration, these pins can individually have weak pull-up or pull-down resistors, as specified in the design. A pull-down resistor value of 4.7 k Ω is recommended. These pins are located in the lower left chip corner and are near the readback nets. This location allows convenient routing if compatibility with the XC2000 and XC3000 family conventions of M0/RT, M1/RD is desired. Table 20: XC4000E Program Data | Device | XC4003E | XC4005E | XC4006E | XC4008E | XC4010E | XC4013E | XC4020E | XC4025E | | |---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--| | Max Logic Gates | 3,000 | 5,000 | 6,000 | 8,000 | 10,000 | 13,000 | 20,000 | 25,000 | | | CLBs | 100 | 196 | 256 | 324 | 400 | 576 | 784 | 1,024 | | | (Row x Col.) | (10 x 10) | (14 x 14) | (16 x 16) | (18 x 18) | (20 x 20) | (24 x 24) | (28 x 28) | (32 x 32) | | | IOBs | 80 | 112 | 128 | 144 | 160 | 192 | 224 | 256 | | | Flip-Flops | 360 | 616 | 768 | 936 | 1,120 | 1,536 | 2,016 | 2,560 | | | Bits per Frame | 126 | 166 | 186 | 206 | 226 | 266 | 306 | 346 | | | Frames | 428 | 572 | 644 | 716 | 788 | 932 | 1,076 | 1,220 | | | Program Data | 53,936 | 94,960 | 119,792 | 147,504 | 178,096 | 247,920 | 329,264 | 422,128 | | | PROM Size
(bits) | 53,984 | 95,008 | 119,840 | 147,552 | 178,144 | 247,968 | 329,312 | 422,176 | | Notes: 1. Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1 Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits PROM Size = Program Data + 40 (header) + 8 2. The user can add more "one" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra "one" bits, even for extra leading ones at the beginning of the header. Table 21: XC4000EX/XL Program Data | Device | XC4002XL | XC4005 | XC4010 | XC4013 | XC4020 | XC4028 | XC4036 | XC4044 | XC4052 | XC4062 | XC4085 | |---------------------------|---------------|------------------|------------------|------------------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | Max Logic
Gates | 2,000 | 5,000 | 10,000 | 13,000 | 20,000 | 28,000 | 36,000 | 44,000 | 52,000 | 62,000 | 85,000 | | CLBs
(Row x
Column) | 64
(8 x 8) | 196
(14 x 14) | 400
(20 x 20) | 576
(24 x 24) | 784
(28 x 28) | 1,024
(32 x 32) | 1,296
(36 x 36) | 1,600
(40 x 40) | 1,936
(44 x 44) | 2,304
(48 x 48) | 3,136
(56 x 56) | | IOBs | 64 | 112 | 160 | 192 | 224 | 256 | 288 | 320 | 352 | 384 | 448 | | Flip-Flops | 256 | 616 | 1,120 | 1,536 | 2,016 | 2,560 | 3,168 | 3,840 | 4,576 | 5,376 | 7,168 | | Bits per
Frame | 133 | 205 | 277 | 325 | 373 | 421 | 469 | 517 | 565 | 613 | 709 | | Frames | 459 | 741 | 1,023 | 1,211 | 1,399 | 1,587 | 1,775 | 1,963 | 2,151 | 2,339 | 2,715 | | Program Data | 61,052 | 151,910 | 283,376 | 393,580 | 521,832 | 668,124 | 832,480 | 1,014,876 | 1,215,320 | 1,433,804 | 1,924,940 | | PROM Size
(bits) | 61,104 | 151,960 | 283,424 | 393,632 | 521,880 | 668,172 | 832,528 | 1,014,924 | 1,215,368 | 1,433,852 | 1,924,992 | Notes: 1. Bits per frame = (13 x number of rows) + 9 for the top + 17 for the bottom + 8 + 1 start bit + 4 error check bits. Frames = (47 x number of columns) + 27 for the left edge + 52 for the right edge + 4. Program data = (bits per frame x number of frames) + 5 postamble bits. PROM size = (program data + 40 header bits + 8 start bits) rounded up to the nearest byte. 2. The user can add more "one" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits
at the end of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra "one" bits, even for extra leading "ones" at the beginning of the header. # Cyclic Redundancy Check (CRC) for Configuration and Readback The Cyclic Redundancy Check is a method of error detection in data transmission applications. Generally, the transmitting system performs a calculation on the serial bitstream. The result of this calculation is tagged onto the data stream as additional check bits. The receiving system performs an identical calculation on the bitstream and compares the result with the received checksum. Each data frame of the configuration bitstream has four error bits at the end, as shown in Table 19. If a frame data error is detected during the loading of the FPGA, the con- figuration process with a potentially corrupted bitstream is terminated. The FPGA pulls the $\overline{\text{INIT}}$ pin Low and goes into a Wait state. During Readback, 11 bits of the 16-bit checksum are added to the end of the Readback data stream. The checksum is computed using the CRC-16 CCITT polynomial, as shown in Figure 45. The checksum consists of the 11 most significant bits of the 16-bit code. A change in the checksum indicates a change in the Readback bitstream. A comparison to a previous checksum is meaningful only if the readback data is independent of the current device state. CLB outputs should not be included (Read Capture option not # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays The default option, and the most practical one, is for DONE to go High first, disconnecting the configuration data source and avoiding any contention when the I/Os become active one clock later. Reset/Set is then released another clock period later to make sure that user-operation starts from stable internal conditions. This is the most common sequence, shown with heavy lines in Figure 47, but the designer can modify it to meet particular requirements. Normally, the start-up sequence is controlled by the internal device oscillator output (CCLK), which is asynchronous to the system clock. XC4000 Series offers another start-up clocking option, UCLK_NOSYNC. The three events described above need not be triggered by CCLK. They can, as a configuration option, be triggered by a user clock. This means that the device can wake up in synchronism with the user system. When the UCLK_SYNC option is enabled, the user can externally hold the open-drain DONE output Low, and thus stall all further progress in the start-up sequence until DONE is released and has gone High. This option can be used to force synchronization of several FPGAs to a common user clock, or to guarantee that all devices are successfully configured before any I/Os go active. If either of these two options is selected, and no user clock is specified in the design or attached to the device, the chip could reach a point where the configuration of the device is complete and the Done pin is asserted, but the outputs do not become active. The solution is either to recreate the bitstream specifying the start-up clock as CCLK, or to supply the appropriate user clock. #### Start-up Sequence The Start-up sequence begins when the configuration memory is full, and the total number of configuration clocks received since $\overline{\text{INIT}}$ went High equals the loaded value of the length count. The next rising clock edge sets a flip-flop Q0, shown in Figure 48. Q0 is the leading bit of a 5-bit shift register. The outputs of this register can be programmed to control three events. - The release of the open-drain DONE output - The change of configuration-related pins to the user function, activating all IOBs. - The termination of the global Set/Reset initialization of all CLB and IOB storage elements. The DONE pin can also be wire-ANDed with DONE pins of other FPGAs or with other external signals, and can then be used as input to bit Q3 of the start-up register. This is called "Start-up Timing Synchronous to Done In" and is selected by either CCLK SYNC or UCLK SYNC. When DONE is not used as an input, the operation is called "Start-up Timing Not Synchronous to DONE In," and is selected by either CCLK_NOSYNC or UCLK_NOSYNC. As a configuration option, the start-up control register beyond Q0 can be clocked either by subsequent CCLK pulses or from an on-chip user net called STARTUP.CLK. These signals can be accessed by placing the STARTUP library symbol. #### **Start-up from CCLK** If CCLK is used to drive the start-up, Q0 through Q3 provide the timing. Heavy lines in Figure 47 show the default timing, which is compatible with XC2000 and XC3000 devices using early DONE and late Reset. The thin lines indicate all other possible timing options. **Table 23: Pin Functions During Configuration** | CONFIGURATION MODE <m2:m1:m0></m2:m1:m0> | | | | | | | | | | | | | |--|-----------------------------|---------------------------------|----------------------------|------------------------------------|----------------------------------|-------------------|--|--|--|--|--|--| | SLAVE
SERIAL
<1:1:1> | MASTER
SERIAL
<0:0:0> | SYNCH.
PERIPHERAL
<0:1:1> | ASYNCH. PERIPHERAL <1:0:1> | MASTER
PARALLEL DOWN
<1:1:0> | MASTER
PARALLEL UP
<1:0:0> | USER
OPERATION | | | | | | | | M2(HIGH) (I) | M2(LOW) (I) | M2(LOW) (I) | M2(HIGH) (I) | M2(HIGH) (I) | M2(HIGH) (I) | (I) | | | | | | | | M1(HIGH) (I) | M1(LOW) (I) | M1(HIGH) (I) | M1(LOW) (I) | M1(HIGH) (I) | M1(LOW) (I) | (O) | | | | | | | | M0(HIGH) (I) | M0(LOW) (I) | M0(HIGH) (I) | M0(HIGH) (I) | M0(LOW) (I) | M0(LOW) (I) | (I) | | | | | | | | HDC (HIGH) | I/O | | | | | | | | LDC (LOW) | I/O | | | | | | | | ĪNIT | ĪNIT | ĪNĪT | ĪNIT | ĪNIT | ĪNIT | I/O | | | | | | | | DONE | | | | | | | PROGRAM (I) | PROGRAM | | | | | | | | CCLK (I) | CCLK (O) | CCLK (I) | CCLK (O) | CCLK (O) | CCLK (O) | CCLK (I) | | | | | | | | | | RDY/BUSY (O) | RDY/BUSY (O) | RCLK (O) | RCLK (O) | I/O | | | | | | | | | | | RS (I) | | | I/O | | | | | | | | | | | CSO (I) | | | I/O | | | | | | | | | | DATA 7 (I) | DATA 7 (I) | DATA 7 (I) | DATA 7 (I) | I/O | | | | | | | | | | DATA 6 (I) | DATA 6 (I) | DATA 6 (I) | DATA 6 (I) | I/O | | | | | | | | | | DATA 5 (I) | DATA 5 (I) | DATA 5 (I) | DATA 5 (I) | I/O | | | | | | | | | | DATA 4 (I) | DATA 4 (I) | DATA 4 (I) | DATA 4 (I) | I/O | | | | | | | | | | DATA 3 (I) | DATA 3 (I) | DATA 3 (I) | DATA 3 (I) | I/O | | | | | | | | | | DATA 2 (I) | DATA 2 (I) | DATA 2 (I) | DATA 2 (I) | I/O | | | | | | | | | | DATA 1 (I) | DATA 1 (I) | DATA 1 (I) | DATA 1 (I) | I/O | | | | | | | | DIN (I) | DIN (I) DATA 0 (I) | | DATA 0 (I) | DATA 0 (I) | DATA 0 (I) | I/O | | | | | | | | DOUT | DOUT | DOUT | DOUT | DOUT | DOUT | SGCK4-GCK6-I/O | | | | | | | | TDI | TDI | TDI | TDI | TDI | TDI | TDI-I/O | | | | | | | | TCK | TCK | TCK | TCK | TCK | TCK | TCK-I/O | | | | | | | | TMS | TMS | TMS | TMS | TMS | TMS | TMS-I/O | | | | | | | | TDO | TDO | TDO | TDO | TDO | TDO | TDO-(O) | | | | | | | | | | | WS (I) | A0 | A0 | I/O | | | | | | | | | | | | A1 | A1 | PGCK4-GCK7-I/O | | | | | | | | | | | CS1 | A2 | A2 | I/O | | | | | | | | | | | | A3 | A3 | I/O | | | | | | | | | | | | A4 | A4 | I/O | | | | | | | | | | | | A5 | A5 | I/O | | | | | | | | | | | | A6 | A6 | I/O | | | | | | | | | | | | A7 | A7 | I/O | | | | | | | | | | | | A8 | A8 | I/O | | | | | | | | | | | | A9 | A9 | I/O | | | | | | | | | | | | A10 | A10 | I/O | | | | | | | | | | | | A11 | A11 | I/O | | | | | | | | | | | | A12 | A12 | I/O | | | | | | | | | | | | A13 | A13 | I/O | | | | | | | | | | | | A14 | A14 | I/O | | | | | | | | | | | | A15 | A15 | SGCK1-GCK8-I/O | | | | | | | | | | | | A16 | A16 | PGCK1-GCK1-I/O | | | | | | | | | | | | A17 | A17 | I/O | | | | | | | | | | | | A18* | A18* | I/O | | | | | | | | | | | | A19* | A19* | I/O | | | | | | | | | | | | A20* | A20* | I/O | | | | | | | | | | | | A21* | A21* | I/O | | | | | | | | | | | | | | ALL OTHERS | | | | | | | ^{*} XC4000X only Notes 1. A shaded table cell represents a 50 k Ω - 100 k Ω pull-up before and during configuration. ⁽I) represents an input; (O) represents an output. INIT is an open-drain output during configuration. #### **Master Parallel Modes** In the two Master Parallel modes, the lead FPGA directly addresses an industry-standard byte-wide EPROM, and accepts eight data bits just before incrementing or decrementing the address outputs. The eight data bits are serialized in the lead FPGA, which then presents the preamble data—and all data that overflows the lead device—on its DOUT pin. There is an internal delay of 1.5 CCLK periods, after the rising CCLK edge that accepts a byte of data (and also changes the EPROM address) until the falling CCLK edge that makes the LSB (D0) of this byte appear at DOUT. This means that DOUT changes on the falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge. The PROM address pins can be incremented or decremented, depending on the mode pin settings. This option allows the FPGA to share the PROM with a wide variety of microprocessors and micro controllers. Some processors must boot from the bottom of memory (all zeros) while others must boot from the top. The FPGA is flexible and can load its configuration bitstream from either end of the memory. Master Parallel Up mode is selected by a <100> on the mode pins (M2, M1, M0). The EPROM addresses start at 00000 and increment. Master Parallel Down mode is selected by a <110> on the mode pins. The EPROM addresses start at 3FFFF and decrement. #### Additional Address lines in XC4000 devices The XC4000X devices have additional address lines (A18-A21) allowing the additional address space required to daisy-chain several large devices. The extra address lines are programmable in XC4000EX devices. By default these address lines are not activated. In the default
mode, the devices are compatible with existing XC4000 and XC4000E products. If desired, the extra address lines can be used by specifying the address lines option in bitgen as 22 (bitgen -g AddressLines:22). The lines (A18-A21) are driven when a master device detects, via the bitstream, that it should be using all 22 address lines. Because these pins will initially be pulled high by internal pull-ups, designers using Master Parallel Up mode should use external pull down resistors on pins A18-A21. If Master Parallel Down mode is used external resistors are not necessary. All 22 address lines are always active in Master Parallel modes with XC4000XL devices. The additional address lines behave identically to the lower order address lines. If the Address Lines option in bitgen is set to 18, it will be ignored by the XC4000XL device. The additional address lines (A18-A21) are not available in the PC84 package. Figure 54: Master Parallel Mode Circuit Diagram # **Product Availability** Table 24, Table 25, and Table 26 show the planned packages and speed grades for XC4000-Series devices. Call your local sales office for the latest availability information, or see the Xilinx website at http://www.xilinx.com for the latest revision of the specifications. Table 24: Component Availability Chart for XC4000XL FPGAs | | PINS | 84 | 100 | 100 | 144 | 144 | 160 | 160 | 176 | 176 | 208 | 208 | 240 | 240 | 256 | 299 | 304 | 352 | 411 | 432 | 475 | 559 | 560 | |-------------|------------|----------------|----------------|----------------|----------------|--------------------|-------------------|----------------|----------------|--------------------|-------------------|----------------|-------------------|----------------|---------------|---------------|-------------------|---------------|---------------|---------------|---------------|---------------|---------------| Т | YPE | Plast.
PLCC | Plast.
PQFP | Plast.
VQFP | Plast.
TQFP | High-Perf.
TQFP | High-Perf.
QFP | Plast.
PQFP | Plast.
TQFP | High-Perf.
TQFP | High-Perf.
QFP | Plast.
PQFP | High-Perf.
QFP | Plast.
PQFP | Plast.
BGA | Ceram.
PGA | High-Perf.
QFP | Plast.
BGA | Ceram.
PGA | Plast.
BGA | Ceram.
PGA | Ceram.
PGA | Plast.
BGA | | CC | ODE | PC84 | PQ100 | VQ100 | TQ144 | HT144 | HQ160 | PQ160 | TQ176 | HT176 | HQ208 | PQ208 | HQ240 | PQ240 | BG256 | PG299 | HQ304 | BG352 | PG411 | BG432 | PG475 | PG559 | BG560 | | | -3 | СІ | СІ | СІ | XC4002XL | -2 | СІ | СІ | СІ | 7C40027L | -1 | СІ | СІ | СІ | -09C | С | С | С | -3 | СІ | СІ | СІ | CI | | | СІ | | | | СІ | | | | | | | | | | | | | XC4005XL | -2 | CI | С | CI | CI | | | CI | | | | CI | | | | | | | | | | | | | | -1
-09C | C I | CI | C I | C I | | | C I | | | | C I | | | | | | | | | | | | | | -3 | CI | CI | | CI | | | CI | СІ | | | CI | | | СІ | | | | | | | | | | XC4010XL | -2 | СІ | СІ | | СІ | | | СІ | CI | | | CI | | | CI | | | | | | | | | | AC40 IUAL | -1 | СІ | СІ | | СІ | | | СІ | СІ | | | СІ | | | CI | | | | | | | | | | | -09C | С | С | | С | | | С | С | | | С | | | С | | | | | | | | | | | -3
-2 | | | | | CI | | CI | | CI | | CI
CI | | CI | CI | | | | | | | | | | XC4013XL | -1 | | | | | CI | CI | | | | | | | | | | AC4013AL | -09C | | | | | C | | C | | C | | C | | C | C | | | | | | | | | | | -08C | | | | | С | | С | | С | | С | | С | С | | | | | | | | | | | -3 | | | | | СІ | | CI | | CI | | СІ | | CI | СІ | | | | | | | | | | XC4020XL | -2 | | | | | СІ | СІ | | | | | | | | | | AC4020AL | -1 | | | | | СІ | | СІ | | СІ | | СІ | | CI | СІ | | | | | | | | | | | -09C | | | | | С | | С | | С | | С | | С | С | | | | | | | | | | | -3 | | | | | | CI | | | | CI | | CI | | CI | CI | CI | CI | | | | | | | XC4028XL | -2
-1 | | | | | | CI | | | | CI | | CI | | CI | CI | CI | CI | | | | | | | | -09C | | | | | | C | | | | C | | С | | С | С | C | C | | | | | | | | -3 | | | | | | CI | | | | CI | | CI | | | | CI | CI | СІ | CI | | | | | | -2 | | | | | | СІ | | | | СІ | | С | | | | CI | CI | CI | СІ | | | | | XC4036XL | -1 | | | | | | СІ | | | | СІ | | СІ | | | | СІ | СІ | СІ | СІ | | | | | | -09C | | | | | | O | | | | С | | С | | | | С | С | С | С | | | | | | -08C | | | | | | С | | | | С | | С | | | | С | С | С | С | | | | | | -3 | | | | | | CI | | | | CI | | CI | | | | CI | CI | CI | CI | | | | | XC4044XL | -2
-1 | | | | | | CI | | | | CI | | CI | | | | CI | CI | CI | CI | | | | | - | -09C | | | | | | С | | | | С | | С | | | | С | C | C | С | | | | | | -3 | | | | | | | | | | | | CI | | | | CI | <u> </u> | CI | CI | | | СІ | | VC4050VI | -2 | | | | | | | | | | | | CI | | | | CI | | CI | CI | | | CI | | XC4052XL | -1 | | | | | | | | | | | | СІ | | | | СІ | | СІ | СІ | | | СІ | | | -09C | | | | | | | | | | | | С | | | | С | | С | С | | | С | | | -3 | | | | | | | | | | | | CI | | | | CI | | | CI | CI | | CI | | VO4000V! | -2 | | | | | | | | | | | | CI | | | | CI | | | CI | CI | | CI | | XC4062XL | -1
-09C | | | | | | | | | | | | C1 | | | | CI | | | C I | C I | | CI
C | | - | -09C | | | | | | | | | | | | С | | - | | С | | | С | С | | С | | | -3 | | | | | | | | | | | | | | | | | | | CI | | CI | CI | | \\ 0 | -2 | | | | | | | | | | | | | | | | | | | CI | | CI | CI | | XC4085XL | -1 | | | | | | | | | | | | | | | | | | | CI | | CI | CI | | | -09C | | | | | | | | | | | | | | | | | | | С | | С | С | | 1/29/99 | 550 | | | | | | | | | | | | | | | | | | | J | | | | 1/29/99 $C = Commercial \ T_J = 0^{\circ} \ to \ +85^{\circ}C$ I= Industrial $T_J = -40^{\circ}C$ to $+100^{\circ}C$