Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 2304 | | Number of Logic Elements/Cells | 5472 | | Total RAM Bits | 73728 | | Number of I/O | 384 | | Number of Gates | 62000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 560-LBGA Exposed Pad, Metal | | Supplier Device Package | 560-MBGA (42.5x42.5) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xc4062xl-2bg560i | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # XC4000E and XC4000X Series Compared to the XC4000 For readers already familiar with the XC4000 family of Xilinx Field Programmable Gate Arrays, the major new features in the XC4000 Series devices are listed in this section. The biggest advantages of XC4000E and XC4000X devices are significantly increased system speed, greater capacity, and new architectural features, particularly Select-RAM memory. The XC4000X devices also offer many new routing features, including special high-speed clock buffers that can be used to capture input data with minimal delay. Any XC4000E device is pinout- and bitstream-compatible with the corresponding XC4000 device. An existing XC4000 bitstream can be used to program an XC4000E device. However, since the XC4000E includes many new features, an XC4000E bitstream cannot be loaded into an XC4000 device. XC4000X Series devices are not bitstream-compatible with equivalent array size devices in the XC4000 or XC4000E families. However, equivalent array size devices, such as the XC4025, XC4025E, XC4028EX, and XC4028XL, are pinout-compatible. # Improvements in XC4000E and XC4000X # Increased System Speed XC4000E and XC4000X devices can run at synchronous system clock rates of up to 80 MHz, and internal performance can exceed 150 MHz. This increase in performance over the previous families stems from improvements in both device processing and system architecture. XC4000 Series devices use a sub-micron multi-layer metal process. In addition, many architectural improvements have been made, as described below. The XC4000XL family is a high performance 3.3V family based on 0.35μ SRAM technology and supports system speeds to 80 MHz. # **PCI Compliance** XC4000 Series -2 and faster speed grades are fully PCI compliant. XC4000E and XC4000X devices can be used to implement a one-chip PCI solution. # Carry Logic The speed of the carry logic chain has increased dramatically. Some parameters, such as the delay on the carry chain through a single CLB (TBYP), have improved by as much as 50% from XC4000 values. See "Fast Carry Logic" on page 18 for more information. # Select-RAM Memory: Edge-Triggered, Synchronous RAM Modes The RAM in any CLB can be configured for synchronous, edge-triggered, write operation. The read operation is not affected by this change to an edge-triggered write. #### **Dual-Port RAM** A separate option converts the 16x2 RAM in any CLB into a 16x1 dual-port RAM with simultaneous Read/Write. The function generators in each CLB can be configured as either level-sensitive (asynchronous) single-port RAM, edge-triggered (synchronous) single-port RAM, edge-triggered (synchronous) dual-port RAM, or as combinatorial logic. # Configurable RAM Content The RAM content can now be loaded at configuration time, so that the RAM starts up with user-defined data. ### H Function Generator In current XC4000 Series devices, the H function generator is more versatile than in the original XC4000. Its inputs can come not only from the F and G function generators but also from up to three of the four control input lines. The H function generator can thus be totally or partially independent of the other two function generators, increasing the maximum capacity of the device. # IOB Clock Enable The two flip-flops in each IOB have a common clock enable input, which through configuration can be activated individually for the input or output flip-flop or both. This clock enable operates exactly like the EC pin on the XC4000 CLB. This new feature makes the IOBs more versatile, and avoids the need for clock gating. ## **Output Drivers** The output pull-up structure defaults to a TTL-like totem-pole. This driver is an n-channel pull-up transistor, pulling to a voltage one transistor threshold below Vcc, just like the XC4000 family outputs. Alternatively, XC4000 Series devices can be globally configured with CMOS outputs, with p-channel pull-up transistors pulling to Vcc. Also, the configurable pull-up resistor in the XC4000 Series is a p-channel transistor that pulls to Vcc, whereas in the original XC4000 family it is an n-channel transistor that pulls to a voltage one transistor threshold below Vcc. #### Set/Reset An asynchronous storage element input (SR) can be configured as either set or reset. This configuration option determines the state in which each flip-flop becomes operational after configuration. It also determines the effect of a Global Set/Reset pulse during normal operation, and the effect of a pulse on the SR pin of the CLB. All three set/reset functions for any single flip-flop are controlled by the same configuration data bit. The set/reset state can be independently specified for each flip-flop. This input can also be independently disabled for either flip-flop. The set/reset state is specified by using the INIT attribute, or by placing the appropriate set or reset flip-flop library symbol. SR is active High. It is not invertible within the CLB. ### Global Set/Reset A separate Global Set/Reset line (not shown in Figure 1) sets or clears each storage element during power-up, re-configuration, or when a dedicated Reset net is driven active. This global net (GSR) does not compete with other routing resources; it uses a dedicated distribution network. Each flip-flop is configured as either globally set or reset in the same way that the local set/reset (SR) is specified. Therefore, if a flip-flop is set by SR, it is also set by GSR. Similarly, a reset flip-flop is reset by both SR and GSR. Figure 2: Schematic Symbols for Global Set/Reset GSR can be driven from any user-programmable pin as a global reset input. To use this global net, place an input pad and input buffer in the schematic or HDL code, driving the GSR pin of the STARTUP symbol. (See Figure 2.) A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the Global Set/Reset signal. Alternatively, GSR can be driven from any internal node. # Data Inputs and Outputs The source of a storage element data input is programmable. It is driven by any of the functions F', G', and H', or by the Direct In (DIN) block input. The flip-flops or latches drive the XQ and YQ CLB outputs. Two fast feed-through paths are available, as shown in Figure 1. A two-to-one multiplexer on each of the XQ and YQ outputs selects between a storage element output and any of the control inputs. This bypass is sometimes used by the automated router to repower internal signals. # **Control Signals** Multiplexers in the CLB map the four control inputs (C1 - C4 in Figure 1) into the four internal control signals (H1, DIN/H2, SR/H0, and EC). Any of these inputs can drive any of the four internal control signals. When the logic function is enabled, the four inputs are: - EC Enable Clock - SR/H0 Asynchronous Set/Reset or H function generator Input 0 - DIN/H2 Direct In or H function generator Input 2 - H1 H function generator Input 1. When the memory function is enabled, the four inputs are: - EC Enable Clock - WE Write Enable - D0 Data Input to F and/or G function generator - D1 Data input to G function generator (16x1 and 16x2 modes) or 5th Address bit (32x1 mode). # Using FPGA Flip-Flops and Latches The abundance of flip-flops in the XC4000 Series invites pipelined designs. This is a powerful way of increasing performance by breaking the function into smaller subfunctions and executing them in parallel, passing on the results through pipeline flip-flops. This method should be seriously considered wherever throughput is more important than latency. To include a CLB flip-flop, place the appropriate library symbol. For example, FDCE is a D-type flip-flop with clock enable and asynchronous clear. The corresponding latch symbol (for the XC4000X only) is called LDCE. In XC4000 Series devices, the flip flops can be used as registers or shift registers without blocking the function generators from performing a different, perhaps unrelated task. This ability increases the functional capacity of the devices. The CLB setup time is specified between the function generator inputs and the clock input K. Therefore, the specified CLB flip-flop setup time includes the delay through the function generator. # Using Function Generators as RAM Optional modes for each CLB make the memory look-up tables in the F' and G' function generators usable as an array of Read/Write memory cells. Available modes are level-sensitive (similar to the XC4000/A/H families), edge-triggered, and dual-port edge-triggered. Depending on the selected mode, a single CLB can be configured as either a 16x2, 32x1, or 16x1 bit array. # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays Supported CLB memory configurations and timing modes for single- and dual-port modes are shown in Table 3. XC4000 Series devices are the first programmable logic devices with edge-triggered (synchronous) and dual-port RAM accessible to the user. Edge-triggered RAM simplifies system timing. Dual-port RAM doubles the effective throughput of FIFO applications. These features can be individually programmed in any XC4000 Series CLB. # Advantages of On-Chip and Edge-Triggered RAM The on-chip RAM is extremely fast. The read access time is the same as the logic delay. The write access time is slightly slower. Both access times are much faster than any off-chip solution, because they avoid I/O delays. Edge-triggered RAM, also called synchronous RAM, is a feature never before available in a Field Programmable Gate Array. The simplicity of designing with edge-triggered RAM, and the markedly higher achievable performance, add up to a significant improvement over existing devices with on-chip RAM. Three application notes are available from Xilinx that discuss edge-triggered RAM: "XC4000E Edge-Triggered and Dual-Port RAM Capability," "Implementing FIFOs in XC4000E RAM," and "Synchronous and Asynchronous FIFO Designs." All three application notes apply to both XC4000E and XC4000X RAM. **Table 3: Supported RAM Modes** | | 16 | 16 | 32 | Edge- | Level- | |-------------|----|----|----|-----------|-----------| | | х | х | x | Triggered | Sensitive | | | 1 | 2 | 1 | Timing | Timing | | Single-Port | V | √ | 1 | 1 | V | | Dual-Port | V | | | V | | #### **RAM Configuration Options** The function generators in any CLB can be configured as RAM arrays in the following sizes: - Two 16x1 RAMs: two data inputs and two data outputs with identical or, if preferred, different addressing for each RAM - One 32x1 RAM: one data input and one data output. One F or G function generator can be configured as a 16x1 RAM while the other function generators are used to implement any function of up to 5 inputs. Additionally, the XC4000 Series RAM may have either of two timing modes: - Edge-Triggered (Synchronous): data written by the designated edge of the CLB clock. WE acts as a true clock enable. - Level-Sensitive (Asynchronous): an external WE signal acts as the write strobe. The selected timing mode applies to both function generators within a CLB when both are configured as RAM. The number of read ports is also programmable: - Single Port: each function generator has a common read and write port - Dual Port: both function generators are configured together as a single 16x1 dual-port RAM with one write port and two read ports. Simultaneous read and write operations to the same or different addresses are supported. RAM configuration options are selected by placing the appropriate library symbol. # **Choosing a RAM Configuration Mode** The appropriate choice of RAM mode for a given design should be based on timing and resource requirements, desired functionality, and the simplicity of the design process. Recommended usage is shown in Table 4. The difference between level-sensitive, edge-triggered, and dual-port RAM is only in the write operation. Read operation and timing is identical for all modes of operation. **Table 4: RAM Mode Selection** | | Level-Sens itive | Edge-Trigg
ered | Dual-Port
Edge-Trigg
ered | |----------------------------|------------------|--------------------|---------------------------------| | Use for New Designs? | No | Yes | Yes | | Size (16x1,
Registered) | 1/2 CLB | 1/2 CLB | 1 CLB | | Simultaneous
Read/Write | No | No | Yes | | Relative
Performance | Х | 2X | 2X (4X
effective) | #### **RAM Inputs and Outputs** The F1-F4 and G1-G4 inputs to the function generators act as address lines, selecting a particular memory cell in each look-up table. The functionality of the CLB control signals changes when the function generators are configured as RAM. The DIN/H2, H1, and SR/H0 lines become the two data inputs (D0, D1) and the Write Enable (WE) input for the 16x2 memory. When the 32x1 configuration is selected, D1 acts as the fifth address bit and D0 is the data input. The contents of the memory cell(s) being addressed are available at the F' and G' function-generator outputs. They can exit the CLB through its X and Y outputs, or can be captured in the CLB flip-flop(s). Configuring the CLB function generators as Read/Write memory does not affect the functionality of the other por- Figure 14: Detail of XC4000E Dedicated Carry Logic # Input/Output Blocks (IOBs) User-configurable input/output blocks (IOBs) provide the interface between external package pins and the internal logic. Each IOB controls one package pin and can be configured for input, output, or bidirectional signals. Figure 15 shows a simplified block diagram of the XC4000E IOB. A more complete diagram which includes the boundary scan logic of the XC4000E IOB can be found in Figure 40 on page 43, in the "Boundary Scan" section. The XC4000X IOB contains some special features not included in the XC4000E IOB. These features are highlighted in a simplified block diagram found in Figure 16, and discussed throughout this section. When XC4000X special features are discussed, they are clearly identified in the text. Any feature not so identified is present in both XC4000E and XC4000X devices. ### IOB Input Signals Two paths, labeled I1 and I2 in Figure 15 and Figure 16, bring input signals into the array. Inputs also connect to an input register that can be programmed as either an edge-triggered flip-flop or a level-sensitive latch. The choice is made by placing the appropriate library symbol. For example, IFD is the basic input flip-flop (rising edge triggered), and ILD is the basic input latch (transparent-High). Variations with inverted clocks are available, and some combinations of latches and flip-flops can be implemented in a single IOB, as described in the *XACT Libraries Guide*. The XC4000E inputs can be globally configured for either TTL (1.2V) or 5.0 volt CMOS thresholds, using an option in the bitstream generation software. There is a slight input hysteresis of about 300mV. The XC4000E output levels are also configurable; the two global adjustments of input threshold and output level are independent. Inputs on the XC4000XL are TTL compatible and 3.3V CMOS compatible. Outputs on the XC4000XL are pulled to the 3.3V positive supply. The inputs of XC4000 Series 5-Volt devices can be driven by the outputs of any 3.3-Volt device, if the 5-Volt inputs are in TTL mode. Supported sources for XC4000 Series device inputs are shown in Table 8. Figure 15: Simplified Block Diagram of XC4000E IOB Figure 16: Simplified Block Diagram of XC4000X IOB (shaded areas indicate differences from XC4000E) # Additional Input Latch for Fast Capture (XC4000X only) The XC4000X IOB has an additional optional latch on the input. This latch, as shown in Figure 16, is clocked by the output clock — the clock used for the output flip-flop — rather than the input clock. Therefore, two different clocks can be used to clock the two input storage elements. This additional latch allows the very fast capture of input data, which is then synchronized to the internal clock by the IOB flip-flop or latch. To use this Fast Capture technique, drive the output clock pin (the Fast Capture latching signal) from the output of one of the Global Early buffers supplied in the XC4000X. The second storage element should be clocked by a Global Low-Skew buffer, to synchronize the incoming data to the internal logic. (See Figure 17.) These special buffers are described in "Global Nets and Buffers (XC4000X only)" on page 37. The Fast Capture latch (FCL) is designed primarily for use with a Global Early buffer. For Fast Capture, a single clock signal is routed through both a Global Early buffer and a Global Low-Skew buffer. (The two buffers share an input pad.) The Fast Capture latch is clocked by the Global Early buffer, and the standard IOB flip-flop or latch is clocked by the Global Low-Skew buffer. This mode is the safest way to use the Fast Capture latch, because the clock buffers on both storage elements are driven by the same pad. There is no external skew between clock pads to create potential problems. To place the Fast Capture latch in a design, use one of the special library symbols, ILFFX or ILFLX. ILFFX is a transparent-Low Fast Capture latch followed by an active-High input flip-flop. ILFLX is a transparent-Low Fast Capture latch followed by a transparent-High input latch. Any of the clock inputs can be inverted before driving the library element, and the inverter is absorbed into the IOB. If a single BUFG output is used to drive both clock inputs, the software automatically runs the clock through both a Global Low-Skew buffer and a Global Early buffer, and clocks the Fast Capture latch appropriately. Figure 16 on page 21 also shows a two-tap delay on the input. By default, if the Fast Capture latch is used, the Xilinx software assumes a Global Early buffer is driving the clock, and selects MEDDELAY to ensure a zero hold time. Select Figure 17: Examples Using XC4000X FCL the desired delay based on the discussion in the previous subsection. # IOB Output Signals Output signals can be optionally inverted within the IOB, and can pass directly to the pad or be stored in an edge-triggered flip-flop. The functionality of this flip-flop is shown in Table 11. An active-High 3-state signal can be used to place the output buffer in a high-impedance state, implementing 3-state outputs or bidirectional I/O. Under configuration control, the output (OUT) and output 3-state (T) signals can be inverted. The polarity of these signals is independently configured for each IOB. The 4-mA maximum output current specification of many FPGAs often forces the user to add external buffers, which are especially cumbersome on bidirectional I/O lines. The XC4000E and XC4000EX/XL devices solve many of these problems by providing a guaranteed output sink current of 12 mA. Two adjacent outputs can be interconnected externally to sink up to 24 mA. The XC4000E and XC4000EX/XL FPGAs can thus directly drive buses on a printed circuit board. By default, the output pull-up structure is configured as a TTL-like totem-pole. The High driver is an n-channel pull-up transistor, pulling to a voltage one transistor threshold below Vcc. Alternatively, the outputs can be globally configured as CMOS drivers, with p-channel pull-up transistors pulling to Vcc. This option, applied using the bitstream generation software, applies to all outputs on the device. It is not individually programmable. In the XC4000XL, all outputs are pulled to the positive supply rail. Table 11: Output Flip-Flop Functionality (active rising edge is shown) | Mode | Clock | Clock
Enable | Т | D | Q | |-----------------|-------|-----------------|----|---|----| | Power-Up or GSR | Х | Х | 0* | Х | SR | | | Х | 0 | 0* | Х | Q | | Flip-Flop | /_ | 1* | 0* | D | D | | | Х | Х | 1 | Х | Z | | | 0 | Х | 0* | Х | Q | Legend: X Don't care Rising edge SR Set or Reset value. Reset is default. 0* Input is Low or unconnected (default value) 1* Input is High or unconnected (default value) 7 3-state Figure 31: High-Level Routing Diagram of XC4000 Series VersaRing (Left Edge) WED = Wide Edge Decoder, IOB = I/O Block (shaded arrows indicate XC4000X only) Figure 32: XC4000X Octal I/O Routing Figure 33: Detail of Programmable Interconnect Associated with XC4000 Series IOB (Left Edge) The top and bottom Global Early buffers are about 1 ns slower clock to out than the left and right Global Early buffers. The Global Early buffers can be driven by either semi-dedicated pads or internal logic. They share pads with the Global Low-Skew buffers, so a single net can drive both global buffers, as described above. To use a Global Early buffer, place a BUFGE element in a schematic or in HDL code. If desired, attach a LOC attribute or property to direct placement to the designated location. For example, attach a LOC=T attribute or property to direct that a BUFGE be placed in one of the two Global Early buffers on the top edge of the device, or a LOC=TR to indicate the Global Early buffer on the top edge of the device, on the right. # **Power Distribution** Power for the FPGA is distributed through a grid to achieve high noise immunity and isolation between logic and I/O. Inside the FPGA, a dedicated Vcc and Ground ring surrounding the logic array provides power to the I/O drivers, as shown in Figure 39. An independent matrix of Vcc and Ground lines supplies the interior logic of the device. This power distribution grid provides a stable supply and ground for all internal logic, providing the external package power pins are all connected and appropriately de-coupled. Typically, a 0.1 μ F capacitor connected between each Vcc pin and the board's Ground plane will provide adequate de-coupling. Output buffers capable of driving/sinking the specified 12 mA loads under specified worst-case conditions may be capable of driving/sinking up to 10 times as much current under best case conditions. Noise can be reduced by minimizing external load capacitance and reducing simultaneous output transitions in the same direction. It may also be beneficial to locate heavily loaded output buffers near the Ground pads. The I/O Block output buffers have a slew-rate limited mode (default) which should be used where output rise and fall times are not speed-critical. Figure 39: XC4000 Series Power Distribution # **Pin Descriptions** There are three types of pins in the XC4000 Series devices: - · Permanently dedicated pins - User I/O pins that can have special functions - · Unrestricted user-programmable I/O pins. Before and during configuration, all outputs not used for the configuration process are 3-stated with a 50 k Ω - 100 k Ω pull-up resistor. After configuration, if an IOB is unused it is configured as an input with a 50 k Ω - 100 k Ω pull-up resistor. XC4000 Series devices have no dedicated Reset input. Any user I/O can be configured to drive the Global Set/Reset net, GSR. See "Global Set/Reset" on page 11 for more information on GSR. XC4000 Series devices have no Powerdown control input, as the XC3000 and XC2000 families do. The XC3000/XC2000 Powerdown control also 3-stated all of the device I/O pins. For XC4000 Series devices, use the global 3-state net, GTS, instead. This net 3-states all outputs, but does not place the device in low-power mode. See "IOB Output Signals" on page 23 for more information on GTS. Device pins for XC4000 Series devices are described in Table 16. Pin functions during configuration for each of the seven configuration modes are summarized in Table 22 on page 58, in the "Configuration Timing" section. # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays **Table 16: Pin Descriptions** | | 1/0 | I/O | | |---------------|----------------|------------------------------|---| | Pin Name | During Config. | After Config. | Pin Description | | Permanently [| _ | | 1 2000pus | | VCC | I | I | Eight or more (depending on package) connections to the nominal +5 V supply voltage (+3.3 V for low-voltage devices). All must be connected, and each must be decoupled with a $0.01 - 0.1 \mu\text{F}$ capacitor to Ground. | | GND | I | I | Eight or more (depending on package type) connections to Ground. All must be connected. | | CCLK | I or O | I | During configuration, Configuration Clock (CCLK) is an output in Master modes or Asynchronous Peripheral mode, but is an input in Slave mode and Synchronous Peripheral mode. After configuration, CCLK has a weak pull-up resistor and can be selected as the Readback Clock. There is no CCLK High or Low time restriction on XC4000 Series devices, except during Readback. See "Violating the Maximum High and Low Time Specification for the Readback Clock" on page 56 for an explanation of this exception. | | DONE | I/O | 0 | DONE is a bidirectional signal with an optional internal pull-up resistor. As an output, it indicates the completion of the configuration process. As an input, a Low level on DONE can be configured to delay the global logic initialization and the enabling of outputs. The optional pull-up resistor is selected as an option in the XACT step program that creates the configuration bitstream. The resistor is included by default. | | PROGRAM | ı | I | PROGRAM is an active Low input that forces the FPGA to clear its configuration memory. It is used to initiate a configuration cycle. When PROGRAM goes High, the FPGA finishes the current clear cycle and executes another complete clear cycle, before it goes into a WAIT state and releases INIT. The PROGRAM pin has a permanent weak pull-up, so it need not be externally pulled up to Vcc. | | User I/O Pins | That Can | Have Sp | ecial Functions | | RDY/BUSY | 0 | I/O | During Peripheral mode configuration, this pin indicates when it is appropriate to write another byte of data into the FPGA. The same status is also available on D7 in Asynchronous Peripheral mode, if a read operation is performed when the device is selected. After configuration, RDY/BUSY is a user-programmable I/O pin. RDY/BUSY is pulled High with a high-impedance pull-up prior to INIT going High. | | RCLK | 0 | I/O | During Master Parallel configuration, each change on the A0-A17 outputs (A0 - A21 for XC4000X) is preceded by a rising edge on \overline{RCLK} , a redundant output signal. \overline{RCLK} is useful for clocked PROMs. It is rarely used during configuration. After configuration, \overline{RCLK} is a user-programmable I/O pin. | | M0, M1, M2 | I | I (M0),
O (M1),
I (M2) | As Mode inputs, these pins are sampled after $\overline{\text{INIT}}$ goes High to determine the configuration mode to be used. After configuration, M0 and M2 can be used as inputs, and M1 can be used as a 3-state output. These three pins have no associated input or output registers. During configuration, these pins have weak pull-up resistors. For the most popular configuration mode, Slave Serial, the mode pins can thus be left unconnected. The three mode inputs can be individually configured with or without weak pull-up or pull-down resistors. A pull-down resistor value of 4.7 k Ω is recommended. These pins can only be used as inputs or outputs when called out by special schematic definitions. To use these pins, place the library components MD0, MD1, and MD2 instead of the usual pad symbols. Input or output buffers must still be used. | | TDO | 0 | 0 | If boundary scan is used, this pin is the Test Data Output. If boundary scan is not used, this pin is a 3-state output without a register, after configuration is completed. This pin can be user output only when called out by special schematic definitions. To use this pin, place the library component TDO instead of the usual pad symbol. An output buffer must still be used. | **Table 17: Boundary Scan Instructions** | | nstructio | | Test
Selected | TDO Source | I/O Data
Source | |---|-----------|---|--------------------|--------------------|--------------------| | 0 | 0 | 0 | EXTEST | DR | DR | | 0 | 0 | 1 | SAMPLE/PR
ELOAD | DR | Pin/Logic | | 0 | 1 | 0 | USER 1 | BSCAN.
TDO1 | User Logic | | 0 | 1 | 1 | USER 2 | BSCAN.
TDO2 | User Logic | | 1 | 0 | 0 | READBACK | Readback
Data | Pin/Logic | | 1 | 0 | 1 | CONFIGURE | DOUT | Disabled | | 1 | 1 | 0 | Reserved | | | | 1 | 1 | 1 | BYPASS | Bypass
Register | _ | X6075 Figure 42: Boundary Scan Bit Sequence # **Avoiding Inadvertent Boundary Scan** If TMS or TCK is used as user I/O, care must be taken to ensure that at least one of these pins is held constant during configuration. In some applications, a situation may occur where TMS or TCK is driven during configuration. This may cause the device to go into boundary scan mode and disrupt the configuration process. To prevent activation of boundary scan during configuration, do either of the following: - TMS: Tie High to put the Test Access Port controller in a benign RESET state - TCK: Tie High or Low—don't toggle this clock input. For more information regarding boundary scan, refer to the Xilinx Application Note XAPP 017.001, "Boundary Scan in XC4000E Devices." Figure 43: Boundary Scan Schematic Example # Configuration Configuration is the process of loading design-specific programming data into one or more FPGAs to define the functional operation of the internal blocks and their interconnections. This is somewhat like loading the command registers of a programmable peripheral chip. XC4000 Series devices use several hundred bits of configuration data per CLB and its associated interconnects. Each configuration bit defines the state of a static memory cell that controls either a function look-up table bit, a multiplexer input, or an interconnect pass transistor. The XACT step development system translates the design into a netlist file. It automatically partitions, places and routes the logic and generates the configuration data in PROM format. # **Special Purpose Pins** Three configuration mode pins (M2, M1, M0) are sampled prior to configuration to determine the configuration mode. After configuration, these pins can be used as auxiliary connections. M2 and M0 can be used as inputs, and M1 can be used as an output. The XACT step development system does not use these resources unless they are explicitly specified in the design entry. This is done by placing a special pad symbol called MD2, MD1, or MD0 instead of the input or output pad symbol. In XC4000 Series devices, the mode pins have weak pull-up resistors during configuration. With all three mode pins High, Slave Serial mode is selected, which is the most popular configuration mode. Therefore, for the most common configuration mode, the mode pins can be left unconnected. (Note, however, that the internal pull-up resistor value can be as high as 100 k Ω .) After configuration, these pins can individually have weak pull-up or pull-down resistors, as specified in the design. A pull-down resistor value of 4.7 k Ω is recommended. These pins are located in the lower left chip corner and are near the readback nets. This location allows convenient routing if compatibility with the XC2000 and XC3000 family conventions of M0/RT, M1/RD is desired. # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays is passed through and is captured by each FPGA when it recognizes the 0010 preamble. Following the length-count data, each FPGA outputs a High on DOUT until it has received its required number of data frames. After an FPGA has received its configuration data, it passes on any additional frame start bits and configuration data on DOUT. When the total number of configuration clocks applied after memory initialization equals the value of the 24-bit length count, the FPGAs begin the start-up sequence and become operational together. FPGA I/O are normally released two CCLK cycles after the last configuration bit is received. Figure 47 on page 53 shows the start-up timing for an XC4000 Series device. The daisy-chained bitstream is not simply a concatenation of the individual bitstreams. The PROM file formatter must be used to combine the bitstreams for a daisy-chained configuration. # **Multi-Family Daisy Chain** All Xilinx FPGAs of the XC2000, XC3000, and XC4000 Series use a compatible bitstream format and can, therefore, be connected in a daisy chain in an arbitrary sequence. There is, however, one limitation. The lead device must belong to the highest family in the chain. If the chain contains XC4000 Series devices, the master normally cannot be an XC2000 or XC3000 device. The reason for this rule is shown in Figure 47 on page 53. Since all devices in the chain store the same length count value and generate or receive one common sequence of CCLK pulses, they all recognize length-count match on the same CCLK edge, as indicated on the left edge of Figure 47. The master device then generates additional CCLK pulses until it reaches its finish point F. The different families generate or require different numbers of additional CCLK pulses until they reach F. Not reaching F means that the device does not really finish its configuration, although DONE may have gone High, the outputs became active, and the internal reset was released. For the XC4000 Series device, not reaching F means that readback cannot be ini- tiated and most boundary scan instructions cannot be used. The user has some control over the relative timing of these events and can, therefore, make sure that they occur at the proper time and the finish point F is reached. Timing is controlled using options in the bitstream generation software. #### XC3000 Master with an XC4000 Series Slave Some designers want to use an inexpensive lead device in peripheral mode and have the more precious I/O pins of the XC4000 Series devices all available for user I/O. Figure 44 provides a solution for that case. This solution requires one CLB, one IOB and pin, and an internal oscillator with a frequency of up to 5 MHz as a clock source. The XC3000 master device must be configured with late Internal Reset, which is the default option. One CLB and one IOB in the lead XC3000-family device are used to generate the additional CCLK pulse required by the XC4000 Series devices. When the lead device removes the internal RESET signal, the 2-bit shift register responds to its clock input and generates an active Low output signal for the duration of the subsequent clock period. An external connection between this output and CCLK thus creates the extra CCLK pulse. Figure 44: CCLK Generation for XC3000 Master Driving an XC4000 Series Slave Figure 47: Start-up Timing Figure 48: Start-up Logic # Readback The user can read back the content of configuration memory and the level of certain internal nodes without interfering with the normal operation of the device. Readback not only reports the downloaded configuration bits, but can also include the present state of the device, represented by the content of all flip-flops and latches in CLBs and IOBs, as well as the content of function generators used as RAMs. Note that in XC4000 Series devices, configuration data is *not* inverted with respect to configuration as it is in XC2000 and XC3000 families. XC4000 Series Readback does not use any dedicated pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA, RDBK.RIP and RDBK.CLK) that can be routed to any IOB. To access the internal Readback signals, place the READ- BACK library symbol and attach the appropriate pad symbols, as shown in Figure 49. After Readback has been initiated by a High level on RDBK.TRIG after configuration, the RDBK.RIP (Read In Progress) output goes High on the next rising edge of RDBK.CLK. Subsequent rising edges of this clock shift out Readback data on the RDBK.DATA net. Readback data does not include the preamble, but starts with five dummy bits (all High) followed by the Start bit (Low) of the first frame. The first two data bits of the first frame are always High. Each frame ends with four error check bits. They are read back as High. The last seven bits of the last frame are also read back as High. An additional Start bit (Low) and an 11-bit Cyclic Redundancy Check (CRC) signature follow, before RDBK.RIP returns Low. **Table 22: Pin Functions During Configuration** | CONFIGURATION MODE <m2:m1:m0></m2:m1:m0> | | | | | | | | |--|-----------------------------|---------------------------------|----------------------------|------------------------------------|----------------------------------|-------------------|--| | SLAVE
SERIAL
<1:1:1> | MASTER
SERIAL
<0:0:0> | SYNCH.
PERIPHERAL
<0:1:1> | ASYNCH. PERIPHERAL <1:0:1> | MASTER
PARALLEL DOWN
<1:1:0> | MASTER
PARALLEL UP
<1:0:0> | USER
OPERATION | | | M2(HIGH) (I) | M2(LOW) (I) | M2(LOW) (I) | M2(HIGH) (I) | M2(HIGH) (I) | M2(HIGH) (I) | (I) | | | M1(HIGH) (I) | M1(LOW) (I) | M1(HIGH) (I) | M1(LOW) (I) | M1(HIGH) (I) | M1(LOW) (I) | (O) | | | M0(HIGH) (I) | M0(LOW) (I) | M0(HIGH) (I) | M0(HIGH) (I) | M0(LOW) (I) | M0(LOW) (I) | (I) | | | HDC (HIGH) | I/O | | | LDC (LOW) | I/O | | | ĪNIT | ĪNIT | ĪNĪT | ĪNIT | ĪNIT | ĪNIT | I/O | | | DONE | | PROGRAM (I) | PROGRAM | | | CCLK (I) | CCLK (O) | CCLK (I) | CCLK (O) | CCLK (O) | CCLK (O) | CCLK (I) | | | | | RDY/BUSY (O) | RDY/BUSY (O) | RCLK (O) | RCLK (O) | I/O | | | | | | RS (I) | | | I/O | | | | | | CS0 (I) | | | I/O | | | | | DATA 7 (I) | DATA 7 (I) | DATA 7 (I) | DATA 7 (I) | I/O | | | | | DATA 6 (I) | DATA 6 (I) | DATA 6 (I) | DATA 6 (I) | I/O | | | | | DATA 5 (I) | DATA 5 (I) | DATA 5 (I) | DATA 5 (I) | I/O | | | | | DATA 4 (I) | DATA 4 (I) | DATA 4 (I) | DATA 4 (I) | I/O | | | | | DATA 3 (I) | DATA 3 (I) | DATA 3 (I) | DATA 3 (I) | I/O | | | | | DATA 2 (I) | DATA 2 (I) | DATA 2 (I) | DATA 2 (I) | I/O | | | | | DATA 1 (I) | DATA 1 (I) | DATA 1 (I) | DATA 1 (I) | I/O | | | DIN (I) | DIN (I) | DATA 0 (I) | DATA 0 (I) | DATA 0 (I) | DATA 0 (I) | I/O | | | DOUT | DOUT | DOUT | DOUT DOUT DOUT | | DOUT | SGCK4-GCK6-I/O | | | TDI | TDI | TDI | TDI | TDI | TDI | TDI-I/O | | | TCK | TCK | TCK | TCK | TCK | TCK | TCK-I/O | | | TMS | TMS | TMS | TMS | TMS | TMS | TMS-I/O | | | TDO | TDO | TDO | TDO | TDO | TDO | TDO-(O) | | | | | | WS (I) | A0 | A0 | I/O | | | | | | | A1 | A1 | PGCK4-GCK7-I/O | | | | | | CS1 | A2 | A2 | I/O | | | | | | • | A3 | A3 | I/O | | | | | | | A4 | A4 | I/O | | | | | | | A5 | A5 | I/O | | | | | | | A6 | A6 | I/O | | | | | | | A7 | A7 | I/O | | | | | | | A8 | A8 | I/O | | | | | | | A9 | A9 | I/O | | | | | | | A10 | A10 | I/O | | | | | | | A11 | A11 | I/O | | | | | | | A12 | A12 | I/O | | | | | | | A13 | A13 | I/O | | | | | | | A14 | A14 | I/O | | | | | | | A15 | A15 | SGCK1-GCK8-I/O | | | | | | | A16 | A16 | PGCK1-GCK1-I/O | | | | | | | A17 | A17 | I/O | | | | | | | A18* | A18* | I/O | | | | | | | A19* | A19* | I/O | | | | | | | A20* | A20* | I/O | | | | | | | A21* | A21* | I/O | | | | | | | | | ALL OTHERS | | # **Configuration Timing** The seven configuration modes are discussed in detail in this section. Timing specifications are included. ### Slave Serial Mode In Slave Serial mode, an external signal drives the CCLK input of the FPGA. The serial configuration bitstream must be available at the DIN input of the lead FPGA a short setup time before each rising CCLK edge. The lead FPGA then presents the preamble data—and all data that overflows the lead device—on its DOUT pin. There is an internal delay of 0.5 CCLK periods, which means that DOUT changes on the falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge. Figure 51 shows a full master/slave system. An XC4000 Series device in Slave Serial mode should be connected as shown in the third device from the left. Slave Serial mode is selected by a <111> on the mode pins (M2, M1, M0). Slave Serial is the default mode if the mode pins are left unconnected, as they have weak pull-up resistors during configuration. Figure 51: Master/Slave Serial Mode Circuit Diagram | | Description | | Symbol | Min | Max | Units | |------|-------------|---|------------------|-----|-----|-------| | | DIN setup | 1 | T _{DCC} | 20 | | ns | | | DIN hold | 2 | T _{CCD} | 0 | | ns | | CCLK | DIN to DOUT | 3 | T _{CCO} | | 30 | ns | | CCLR | High time | 4 | T _{CCH} | 45 | | ns | | | Low time | 5 | T _{CCL} | 45 | | ns | | | Frequency | | F _{CC} | | 10 | MHz | Note: Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High. Figure 52: Slave Serial Mode Programming Switching Characteristics #### Master Serial Mode In Master Serial mode, the CCLK output of the lead FPGA drives a Xilinx Serial PROM that feeds the FPGA DIN input. Each rising edge of the CCLK output increments the Serial PROM internal address counter. The next data bit is put on the SPROM data output, connected to the FPGA DIN pin. The lead FPGA accepts this data on the subsequent rising CCLK edge. The lead FPGA then presents the preamble data—and all data that overflows the lead device—on its DOUT pin. There is an internal pipeline delay of 1.5 CCLK periods, which means that DOUT changes on the falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge. In the bitstream generation software, the user can specify Fast ConfigRate, which, starting several bits into the first frame, increases the CCLK frequency by a factor of eight. For actual timing values please refer to "Configuration Switching Characteristics" on page 68. Be sure that the serial PROM and slaves are fast enough to support this data rate. XC2000, XC3000/A, and XC3100A devices do not support the Fast ConfigRate option. The SPROM CE input can be driven from either LDC or DONE. Using LDC avoids potential contention on the DIN pin, if this pin is configured as user-I/O, but LDC is then restricted to be a permanently High user output after configuration. Using DONE can also avoid contention on DIN, provided the early DONE option is invoked. Figure 51 on page 60 shows a full master/slave system. The leftmost device is in Master Serial mode. Master Serial mode is selected by a <000> on the mode pins (M2, M1, M0). | | Description | Symbol | | Min | Max | Units | |-------|-------------|--------|-------------------|-----|-----|-------| | CCLK | DIN setup | 1 | T _{DSCK} | 20 | | ns | | COLIN | DIN hold | 2 | T _{CKDS} | 0 | | ns | Notes: 1. At power-up, Vcc must rise from 2.0 V to Vcc min in less than 25 ms, otherwise delay configuration by pulling PROGRAM Low until Vcc is valid. 2. Master Serial mode timing is based on testing in slave mode. Figure 53: Master Serial Mode Programming Switching Characteristics | | Description | | Symbol | Min | Max | Units | |------|------------------------|---|------------------|-----|-----|-------| | | Delay to Address valid | 1 | T _{RAC} | 0 | 200 | ns | | RCLK | Data setup time | 2 | T _{DRC} | 60 | | ns | | | Data hold time | 3 | T _{RCD} | 0 | | ns | Notes: 1. At power-up, Vcc must rise from 2.0 V to Vcc min in less than 25 ms, otherwise delay configuration by pulling PROGRAM Low until Vcc is valid. 2. The first Data byte is loaded and CCLK starts at the end of the first RCLK active cycle (rising edge). This timing diagram shows that the EPROM requirements are extremely relaxed. EPROM access time can be longer than 500 ns. EPROM data output has no hold-time requirements. Figure 55: Master Parallel Mode Programming Switching Characteristics # Synchronous Peripheral Mode Synchronous Peripheral mode can also be considered Slave Parallel mode. An external signal drives the CCLK input(s) of the FPGA(s). The first byte of parallel configuration data must be available at the Data inputs of the lead FPGA a short setup time before the rising CCLK edge. Subsequent data bytes are clocked in on every eighth consecutive rising CCLK edge. The same CCLK edge that accepts data, also causes the RDY/BUSY output to go High for one CCLK period. The pin name is a misnomer. In Synchronous Peripheral mode it is really an ACKNOWLEDGE signal. Synchronous operation does not require this response, but it is a meaningful signal for test purposes. Note that RDY/BUSY is pulled High with a high-impedance pullup prior to $\overline{\text{INIT}}$ going High. The lead FPGA serializes the data and presents the preamble data (and all data that overflows the lead device) on its DOUT pin. There is an internal delay of 1.5 CCLK periods, which means that DOUT changes on the falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge. In order to complete the serial shift operation, 10 additional CCLK rising edges are required after the last data byte has been loaded, plus one more CCLK cycle for each daisy-chained device. Synchronous Peripheral mode is selected by a <011> on the mode pins (M2, M1, M0). Figure 56: Synchronous Peripheral Mode Circuit Diagram 6-64 # XC4000 Series Electrical Characteristics and Device-Specific Pinout Table For the latest Electrical Characteristics and package/pinout information for each XC4000 Family, see the Xilinx web site at http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp # **Ordering Information** X9020 # **Revision Control** | Version | Description | |---------------|--| | 3/30/98 (1.5) | Updated XC4000XL timing and added XC4002XL | | 1/29/99 (1.5) | Updated pin diagrams | | , , , | Replaced Electrical Specification and pinout pages for E, EX, and XL families with separate updates and added URL link for electrical specifications/pinouts for Web users |