Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 2304 | | Number of Logic Elements/Cells | 5472 | | Total RAM Bits | 73728 | | Number of I/O | 193 | | Number of Gates | 62000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 240-BFQFP Exposed Pad | | Supplier Device Package | 240-PQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xc4062xl-3hq240c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # Product Obsolete or Under Obsolescence XC4000E and XC4000X Series Field Programmable Gate Arrays ### Input Thresholds The input thresholds of 5V devices can be globally configured for either TTL (1.2 V threshold) or CMOS (2.5 V threshold), just like XC2000 and XC3000 inputs. The two global adjustments of input threshold and output level are independent of each other. The XC4000XL family has an input threshold of 1.6V, compatible with both 3.3V CMOS and TTL levels. #### Global Signal Access to Logic There is additional access from global clocks to the F and G function generator inputs. ## Configuration Pin Pull-Up Resistors During configuration, these pins have weak pull-up resistors. For the most popular configuration mode, Slave Serial, the mode pins can thus be left unconnected. The three mode inputs can be individually configured with or without weak pull-up or pull-down resistors. A pull-down resistor value of $4.7~\mathrm{k}\Omega$ is recommended. The three mode inputs can be individually configured with or without weak pull-up or pull-down resistors after configuration. The PROGRAM input pin has a permanent weak pull-up. #### Soft Start-up Like the XC3000A, XC4000 Series devices have "Soft Start-up." When the configuration process is finished and the device starts up, the first activation of the outputs is automatically slew-rate limited. This feature avoids potential ground bounce when all outputs are turned on simultaneously. Immediately after start-up, the slew rate of the individual outputs is, as in the XC4000 family, determined by the individual configuration option. ## XC4000 and XC4000A Compatibility Existing XC4000 bitstreams can be used to configure an XC4000E device. XC4000A bitstreams must be recompiled for use with the XC4000E due to improved routing resources, although the devices are pin-for-pin compatible. ## Additional Improvements in XC4000X Only ## Increased Routing New interconnect in the XC4000X includes twenty-two additional vertical lines in each column of CLBs and twelve new horizontal lines in each row of CLBs. The twelve "Quad Lines" in each CLB row and column include optional repowering buffers for maximum speed. Additional high-performance routing near the IOBs enhances pin flexibility. #### Faster Input and Output A fast, dedicated early clock sourced by global clock buffers is available for the IOBs. To ensure synchronization with the regular global clocks, a Fast Capture latch driven by the early clock is available. The input data can be initially loaded into the Fast Capture latch with the early clock, then transferred to the input flip-flop or latch with the low-skew global clock. A programmable delay on the input can be used to avoid hold-time requirements. See "IOB Input Signals" on page 20 for more information. ## Latch Capability in CLBs Storage elements in the XC4000X CLB can be configured as either flip-flops or latches. This capability makes the FPGA highly synthesis-compatible. #### IOB Output MUX From Output Clock A multiplexer in the IOB allows the output clock to select either the output data or the IOB clock enable as the output to the pad. Thus, two different data signals can share a single output pad, effectively doubling the number of device outputs without requiring a larger, more expensive package. This multiplexer can also be configured as an AND-gate to implement a very fast pin-to-pin path. See "IOB Output Signals" on page 23 for more information. ## Additional Address Bits Larger devices require more bits of configuration data. A daisy chain of several large XC4000X devices may require a PROM that cannot be addressed by the eighteen address bits supported in the XC4000E. The XC4000X Series therefore extends the addressing in Master Parallel configuration mode to 22 bits. ## **Detailed Functional Description** XC4000 Series devices achieve high speed through advanced semiconductor technology and improved architecture. The XC4000E and XC4000X support system clock rates of up to 80 MHz and internal performance in excess of 150 MHz. Compared to older Xilinx FPGA families, XC4000 Series devices are more powerful. They offer on-chip edge-triggered and dual-port RAM, clock enables on I/O flip-flops, and wide-input decoders. They are more versatile in many applications, especially those involving RAM. Design cycles are faster due to a combination of increased routing resources and more sophisticated software. ## **Basic Building Blocks** Xilinx user-programmable gate arrays include two major configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs). - CLBs provide the functional elements for constructing the user's logic. - IOBs provide the interface between the package pins and internal signal lines. Three other types of circuits are also available: - 3-State buffers (TBUFs) driving horizontal longlines are associated with each CLB. - Wide edge decoders are available around the periphery of each device. - An on-chip oscillator is provided. Programmable interconnect resources provide routing paths to connect the inputs and outputs of these configurable elements to the appropriate networks. The functionality of each circuit block is customized during configuration by programming internal static memory cells. The values stored in these memory cells determine the logic functions and interconnections implemented in the FPGA. Each of these available circuits is described in this section. ## **Configurable Logic Blocks (CLBs)** Configurable Logic Blocks implement most of the logic in an FPGA. The principal CLB elements are shown in Figure 1. Two 4-input function generators (F and G) offer unrestricted versatility. Most combinatorial logic functions need four or fewer inputs. However, a third function generator (H) is provided. The H function generator has three inputs. Either zero, one, or two of these inputs can be the outputs of F and G; the other input(s) are from outside the CLB. The CLB can, therefore, implement certain functions of up to nine variables, like parity check or expandable-identity comparison of two sets of four inputs. Each CLB contains two storage elements that can be used to store the function generator outputs. However, the storage elements and function generators can also be used independently. These storage elements can be configured as flip-flops in both XC4000E and XC4000X devices; in the XC4000X they can optionally be configured as latches. DIN can be used as a direct input to either of the two storage elements. H1 can drive the other through the H function generator. Function generator outputs can also drive two outputs independent of the storage element outputs. This versatility increases logic capacity and simplifies routing. Thirteen CLB inputs and four CLB outputs provide access to the function generators and storage elements. These inputs and outputs connect to the programmable interconnect resources outside the block. #### **Function Generators** Four independent inputs are provided to each of two function generators (F1 - F4 and G1 - G4). These function generators, with outputs labeled F' and G', are each capable of implementing any arbitrarily defined Boolean function of four inputs. The function generators are implemented as memory look-up tables. The propagation delay is therefore independent of the function implemented. A third function generator, labeled H', can implement any Boolean function of its three inputs. Two of these inputs can optionally be the F' and G' functional generator outputs. Alternatively, one or both of these inputs can come from outside the CLB (H2, H0). The third input must come from outside the block (H1). Signals from the function generators can exit the CLB on two outputs. F' or H' can be connected to the X output. G' or H' can be connected to the Y output. A CLB can be used to implement any of the following functions: - any function of up to four variables, plus any second function of up to four unrelated variables, plus any third function of up to three unrelated variables¹ - any single function of five variables - any function of four variables together with some functions of six variables - · some functions of up to nine variables. Implementing wide functions in a single block reduces both the number of blocks required and the delay in the signal path, achieving both increased capacity and speed. The versatility of the CLB function generators significantly improves system speed. In addition, the design-software tools can deal with each function generator
independently. This flexibility improves cell usage. ^{1.} When three separate functions are generated, one of the function outputs must be captured in a flip-flop internal to the CLB. Only two unregistered function generator outputs are available from the CLB. Figure 1: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown) ### Flip-Flops The CLB can pass the combinatorial output(s) to the interconnect network, but can also store the combinatorial results or other incoming data in one or two flip-flops, and connect their outputs to the interconnect network as well. The two edge-triggered D-type flip-flops have common clock (K) and clock enable (EC) inputs. Either or both clock inputs can also be permanently enabled. Storage element functionality is described in Table 2. #### Latches (XC4000X only) The CLB storage elements can also be configured as latches. The two latches have common clock (K) and clock enable (EC) inputs. Storage element functionality is described in Table 2. #### Clock Input Each flip-flop can be triggered on either the rising or falling clock edge. The clock pin is shared by both storage elements. However, the clock is individually invertible for each storage element. Any inverter placed on the clock input is automatically absorbed into the CLB. #### Clock Enable The clock enable signal (EC) is active High. The EC pin is shared by both storage elements. If left unconnected for either, the clock enable for that storage element defaults to the active state. EC is not invertible within the CLB. Table 2: CLB Storage Element Functionality (active rising edge is shown) | Mode | K | EC | SR | D | Q | |--------------------|---|----|----|---|----| | Power-Up or
GSR | Х | Х | Х | Х | SR | | | Х | Х | 1 | Х | SR | | Flip-Flop | | 1* | 0* | D | D | | | 0 | Х | 0* | Х | Q | | Latch | 1 | 1* | 0* | Х | Q | | Lateri | 0 | 1* | 0* | D | D | | Both | Х | 0 | 0* | Х | Ø | Legend: X Don't care Rising edge SR Set or Reset value. Reset is default. 0* Input is Low or unconnected (default value) 1* Input is High or unconnected (default value) #### **Dual-Port Edge-Triggered Mode** In dual-port mode, both the F and G function generators are used to create a single 16x1 RAM array with one write port and two read ports. The resulting RAM array can be read and written simultaneously at two independent addresses. Simultaneous read and write operations at the same address are also supported. Dual-port mode always has edge-triggered write timing, as shown in Figure 3. Figure 6 shows a simple model of an XC4000 Series CLB configured as dual-port RAM. One address port, labeled A[3:0], supplies both the read and write address for the F function generator. This function generator behaves the same as a 16x1 single-port edge-triggered RAM array. The RAM output, Single Port Out (SPO), appears at the F function generator output. SPO, therefore, reflects the data at address A[3:0]. The other address port, labeled DPRA[3:0] for Dual Port Read Address, supplies the read address for the G function generator. The write address for the G function generator, however, comes from the address A[3:0]. The output from this 16x1 RAM array, Dual Port Out (DPO), appears at the G function generator output. DPO, therefore, reflects the data at address DPRA[3:0]. Therefore, by using A[3:0] for the write address and DPRA[3:0] for the read address, and reading only the DPO output, a FIFO that can read and write simultaneously is easily generated. Simultaneous access doubles the effective throughput of the FIFO. The relationships between CLB pins and RAM inputs and outputs for dual-port, edge-triggered mode are shown in Table 6. See Figure 7 on page 16 for a block diagram of a CLB configured in this mode. Figure 6: XC4000 Series Dual-Port RAM, Simple Model Table 6: Dual-Port Edge-Triggered RAM Signals | RAM Signal | CLB Pin | Function | |------------|---------|---------------------------| | D | D0 | Data In | | A[3:0] | F1-F4 | Read Address for F, | | | | Write Address for F and G | | DPRA[3:0] | G1-G4 | Read Address for G | | WE | WE | Write Enable | | WCLK | K | Clock | | SPO | F' | Single Port Out | | | | (addressed by A[3:0]) | | DPO | G' | Dual Port Out | | | | (addressed by DPRA[3:0]) | **Note:** The pulse following the active edge of WCLK (T_{WPS} in Figure 3) must be less than one millisecond wide. For most applications, this requirement is not overly restrictive; however, it must not be forgotten. Stopping WCLK at this point in the write cycle could result in excessive current and even damage to the larger devices if many CLBs are configured as edge-triggered RAM. #### Single-Port Level-Sensitive Timing Mode **Note:** Edge-triggered mode is recommended for all new designs. Level-sensitive mode, also called asynchronous mode, is still supported for XC4000 Series backward-compatibility with the XC4000 family. Level-sensitive RAM timing is simple in concept but can be complicated in execution. Data and address signals are presented, then a positive pulse on the write enable pin (WE) performs a write into the RAM at the designated address. As indicated by the "level-sensitive" label, this RAM acts like a latch. During the WE High pulse, changing the data lines results in new data written to the old address. Changing the address lines while WE is High results in spurious data written to the new address—and possibly at other addresses as well, as the address lines inevitably do not all change simultaneously. The user must generate a carefully timed WE signal. The delay on the WE signal and the address lines must be carefully verified to ensure that WE does not become active until after the address lines have settled, and that WE goes inactive before the address lines change again. The data must be stable before and after the falling edge of WE. In practical terms, WE is usually generated by a 2X clock. If a 2X clock is not available, the falling edge of the system clock can be used. However, there are inherent risks in this approach, since the WE pulse must be guaranteed inactive before the next rising edge of the system clock. Several older application notes are available from Xilinx that discuss the design of level-sensitive RAMs. However, the edge-triggered RAM available in the XC4000 Series is superior to level-sensitive RAM for almost every application. Figure 7: 16x1 Edge-Triggered Dual-Port RAM Figure 8 shows the write timing for level-sensitive, single-port RAM. The relationships between CLB pins and RAM inputs and outputs for single-port level-sensitive mode are shown in Table 7. Figure 9 and Figure 10 show block diagrams of a CLB configured as 16x2 and 32x1 level-sensitive, single-port RAM. ## **Initializing RAM at Configuration** Both RAM and ROM implementations of the XC4000 Series devices are initialized during configuration. The initial contents are defined via an INIT attribute or property attached to the RAM or ROM symbol, as described in the schematic library guide. If not defined, all RAM contents are initialized to all zeros, by default. RAM initialization occurs only during configuration. The RAM content is not affected by Global Set/Reset. **Table 7: Single-Port Level-Sensitive RAM Signals** | RAM Signal | AM Signal CLB Pin | | | |------------|-------------------|--------------|--| | D | D0 or D1 | Data In | | | A[3:0] | F1-F4 or G1-G4 | Address | | | WE | WE | Write Enable | | | 0 | F' or G' | Data Out | | Figure 8: Level-Sensitive RAM Write Timing May 14, 1999 (Version 1.6) Figure 13: Fast Carry Logic in XC4000E CLB (shaded area not present in XC4000X) Table 8: Supported Sources for XC4000 Series Device Inputs | | | 00E/EX
Inputs | XC4000XL
Series Inputs | |---|-------------|------------------|---------------------------| | Source | 5 V,
TTL | 5 V,
CMOS | 3.3 V
CMOS | | Any device, Vcc = 3.3 V,
CMOS outputs | V | Unreli | √ | | XC4000 Series, Vcc = 5 V, TTL outputs | V | -able
Data | V | | Any device, $Vcc = 5 \text{ V}$, TTL outputs $(Voh \le 3.7 \text{ V})$ | √ | Data | √ | | Any device, Vcc = 5 V,
CMOS outputs | V | √ | √ | #### XC4000XL 5-Volt Tolerant I/Os The I/Os on the XC4000XL are fully 5-volt tolerant even though the $V_{\rm CC}$ is 3.3 volts. This allows 5 V signals to directly connect to the XC4000XL inputs without damage, as shown in Table 8. In addition, the 3.3 volt $V_{\rm CC}$ can be applied before or after 5 volt signals are applied to the I/Os. This makes the XC4000XL immune to power supply sequencing problems. #### **Registered Inputs** The I1 and I2 signals that exit the block can each carry either the direct or registered input signal. The input and output storage elements in each IOB have a common clock enable input, which, through configuration, can be activated individually for the input or output flip-flop, or both. This clock enable operates exactly like the EC pin on the XC4000 Series CLB. It cannot be inverted within the IOB. The storage element behavior is shown in Table 9. Table 9: Input Register Functionality (active rising edge is shown) | Mode | Clock | Clock
Enable | D | Q | |-----------------|-------|-----------------|---|----| | Power-Up or GSR | X | X | Х | SR | | Flip-Flop | | 1* | D | D | | | 0 | Х | Х | Q | | Latch | 1 | 1* | Х | Q | | | 0 | 1* | D | D | | Both | Χ | 0 | Х | Q | Legend: X Don't care Rising edge SR Set or Reset value. Reset is default. 0* Input is Low or unconnected (default value) 1* Input is High or unconnected (default value) #### **Optional Delay Guarantees Zero Hold Time** The data input to the register can optionally be delayed by several nanoseconds. With the delay enabled, the setup time of the input flip-flop is increased so that normal clock routing does not result in a positive hold-time requirement. A positive hold time requirement can lead to unreliable, temperature- or processing-dependent operation. The input
flip-flop setup time is defined between the data measured at the device I/O pin and the clock input at the IOB (not at the clock pin). Any routing delay from the device clock pin to the clock input of the IOB must, therefore, be subtracted from this setup time to arrive at the real setup time requirement relative to the device pins. A short specified setup time might, therefore, result in a negative setup time at the device pins, i.e., a positive hold-time requirement. When a delay is inserted on the data line, more clock delay can be tolerated without causing a positive hold-time requirement. Sufficient delay eliminates the possibility of a data hold-time requirement at the external pin. The maximum delay is therefore inserted as the default. The XC4000E IOB has a one-tap delay element: either the delay is inserted (default), or it is not. The delay guarantees a zero hold time with respect to clocks routed through any of the XC4000E global clock buffers. (See "Global Nets and Buffers (XC4000E only)" on page 35 for a description of the global clock buffers in the XC4000E.) For a shorter input register setup time, with non-zero hold, attach a NODELAY attribute or property to the flip-flop. The XC4000X IOB has a two-tap delay element, with choices of a full delay, a partial delay, or no delay. The attributes or properties used to select the desired delay are shown in Table 10. The choices are no added attribute, MEDDELAY, and NODELAY. The default setting, with no added attribute, ensures no hold time with respect to any of the XC4000X clock buffers, including the Global Low-Skew buffers. MEDDELAY ensures no hold time with respect to the Global Early buffers. Inputs with NODELAY may have a positive hold time with respect to all clock buffers. For a description of each of these buffers, see "Global Nets and Buffers (XC4000X only)" on page 37. Table 10: XC4000X IOB Input Delay Element | Value | When to Use | |------------------|--| | full delay | Zero Hold with respect to Global | | (default, no | Low-Skew Buffer, Global Early Buffer | | attribute added) | | | MEDDELAY | Zero Hold with respect to Global Early | | | Buffer | | NODELAY | Short Setup, positive Hold time | ## Global Nets and Buffers (XC4000X only) Eight vertical longlines in each CLB column are driven by special global buffers. These longlines are in addition to the vertical longlines used for standard interconnect. The global lines are broken in the center of the array, to allow faster distribution and to minimize skew across the whole array. Each half-column global line has its own buffered multiplexer, as shown in Figure 35. The top and bottom global lines cannot be connected across the center of the device, as this connection might introduce unacceptable skew. The top and bottom halves of the global lines must be separately driven — although they can be driven by the same global buffer. The eight global lines in each CLB column can be driven by either of two types of global buffers. They can also be driven by internal logic, because they can be accessed by single, double, and quad lines at the top, bottom, half, and quarter points. Consequently, the number of different clocks that can be used simultaneously in an XC4000X device is very large. There are four global lines feeding the IOBs at the left edge of the device. IOBs along the right edge have eight global lines. There is a single global line along the top and bottom edges with access to the IOBs. All IOB global lines are broken at the center. They cannot be connected across the center of the device, as this connection might introduce unacceptable skew. IOB global lines can be driven from two types of global buffers, or from local interconnect. Alternatively, top and bottom IOBs can be clocked from the global lines in the adjacent CLB column. Two different types of clock buffers are available in the XC4000X: - Global Low-Skew Buffers (BUFGLS) - Global Early Buffers (BUFGE) Global Low-Skew Buffers are the standard clock buffers. They should be used for most internal clocking, whenever a large portion of the device must be driven. Global Early Buffers are designed to provide a faster clock access, but CLB access is limited to one-fourth of the device. They also facilitate a faster I/O interface. Figure 35 is a conceptual diagram of the global net structure in the XC4000X. Global Early buffers and Global Low-Skew buffers share a single pad. Therefore, the same IPAD symbol can drive one buffer of each type, in parallel. This configuration is particularly useful when using the Fast Capture latches, as described in "IOB Input Signals" on page 20. Paired Global Early and Global Low-Skew buffers share a common input; they cannot be driven by two different signals. #### Choosing an XC4000X Clock Buffer The clocking structure of the XC4000X provides a large variety of features. However, it can be simple to use, without understanding all the details. The software automatically handles clocks, along with all other routing, when the appropriate clock buffer is placed in the design. In fact, if a buffer symbol called BUFG is placed, rather than a specific type of buffer, the software even chooses the buffer most appropriate for the design. The detailed information in this section is provided for those users who want a finer level of control over their designs. If fine control is desired, use the following summary and Table 15 on page 35 to choose an appropriate clock buffer. - The simplest thing to do is to use a Global Low-Skew buffer. - If a faster clock path is needed, try a BUFG. The software will first try to use a Global Low-Skew Buffer. If timing requirements are not met, a faster buffer will automatically be used. - If a single quadrant of the chip is sufficient for the clocked logic, and the timing requires a faster clock than the Global Low-Skew buffer, use a Global Early buffer. #### **Global Low-Skew Buffers** Each corner of the XC4000X device has two Global Low-Skew buffers. Any of the eight Global Low-Skew buffers can drive any of the eight vertical Global lines in a column of CLBs. In addition, any of the buffers can drive any of the four vertical lines accessing the IOBs on the left edge of the device, and any of the eight vertical lines accessing the IOBs on the right edge of the device. (See Figure 36 on page 38.) IOBs at the top and bottom edges of the device are accessed through the vertical Global lines in the CLB array, as in the XC4000E. Any Global Low-Skew buffer can, therefore, access every IOB and CLB in the device. The Global Low-Skew buffers can be driven by either semi-dedicated pads or internal logic. To use a Global Low-Skew buffer, instantiate a BUFGLS element in a schematic or in HDL code. If desired, attach a LOC attribute or property to direct placement to the designated location. For example, attach a LOC=T attribute or property to direct that a BUFGLS be placed in one of the two Global Low-Skew buffers on the top edge of the device, or a LOC=TR to indicate the Global Low-Skew buffer on the top edge of the device, on the right. Figure 36: Any BUFGLS (GCK1 - GCK8) Can Drive Any or All Clock Inputs on the Device ## **Global Early Buffers** Each corner of the XC4000X device has two Global Early buffers. The primary purpose of the Global Early buffers is to provide an earlier clock access than the potentially heavily-loaded Global Low-Skew buffers. A clock source applied to both buffers will result in the Global Early clock edge occurring several nanoseconds earlier than the Global Low-Skew buffer clock edge, due to the lighter loading. Global Early buffers also facilitate the fast capture of device inputs, using the Fast Capture latches described in "IOB Input Signals" on page 20. For Fast Capture, take a single clock signal, and route it through both a Global Early buffer and a Global Low-Skew buffer. (The two buffers share an input pad.) Use the Global Early buffer to clock the Fast Capture latch, and the Global Low-Skew buffer to clock the normal input flip-flop or latch, as shown in Figure 17 on page 23. The Global Early buffers can also be used to provide a fast Clock-to-Out on device output pins. However, an early clock in the output flip-flop IOB must be taken into consideration when calculating the internal clock speed for the design. The Global Early buffers at the left and right edges of the chip have slightly different capabilities than the ones at the top and bottom. Refer to Figure 37, Figure 38, and Figure 35 on page 36 while reading the following explanation. Each Global Early buffer can access the eight vertical Global lines for all CLBs in the quadrant. Therefore, only one-fourth of the CLB clock pins can be accessed. This restriction is in large part responsible for the faster speed of the buffers, relative to the Global Low-Skew buffers. Figure 37: Left and Right BUFGEs Can Drive Any or All Clock Inputs in Same Quadrant or Edge (GCK1 is shown. GCK2, GCK5 and GCK6 are similar.) The left-side Global Early buffers can each drive two of the four vertical lines accessing the IOBs on the entire left edge of the device. The right-side Global Early buffers can each drive two of the eight vertical lines accessing the IOBs on the entire right edge of the device. (See Figure 37.) Each left and right Global Early buffer can also drive half of the IOBs along either the top or bottom edge of the device, using a dedicated line that can only be accessed through the Global Early buffers. The top and bottom Global Early buffers can drive half of the IOBs along either the left or right edge of the device, as shown in Figure 38. They can only access the top and bottom IOBs via the CLB global lines. Figure 38: Top and Bottom BUFGEs Can Drive Any or All Clock Inputs in Same Quadrant (GCK8 is shown. GCK3, GCK4 and GCK7 are similar.) Figure 41 on page 44 is a diagram of the XC4000 Series boundary scan logic. It includes three bits of Data
Register per IOB, the IEEE 1149.1 Test Access Port controller, and the Instruction Register with decodes. XC4000 Series devices can also be configured through the boundary scan logic. See "Readback" on page 55. ## **Data Registers** The primary data register is the boundary scan register. For each IOB pin in the FPGA, bonded or not, it includes three bits for In, Out and 3-State Control. Non-IOB pins have appropriate partial bit population for In or Out only. PROGRAM, CCLK and DONE are not included in the boundary scan register. Each EXTEST CAPTURE-DR state captures all In, Out, and 3-state pins. The data register also includes the following non-pin bits: TDO.T, and TDO.O, which are always bits 0 and 1 of the data register, respectively, and BSCANT.UPD, which is always the last bit of the data register. These three boundary scan bits are special-purpose Xilinx test signals. The other standard data register is the single flip-flop BYPASS register. It synchronizes data being passed through the FPGA to the next downstream boundary scan device. The FPGA provides two additional data registers that can be specified using the BSCAN macro. The FPGA provides two user pins (BSCAN.SEL1 and BSCAN.SEL2) which are the decodes of two user instructions. For these instructions, two corresponding pins (BSCAN.TDO1 and BSCAN.TDO2) allow user scan data to be shifted out on TDO. The data register clock (BSCAN.DRCK) is available for control of test logic which the user may wish to implement with CLBs. The NAND of TCK and RUN-TEST-IDLE is also provided (BSCAN.IDLE). Figure 40: Block Diagram of XC4000E IOB with Boundary Scan (some details not shown). XC4000X Boundary Scan Logic is Identical. Figure 41: XC4000 Series Boundary Scan Logic #### **Instruction Set** The XC4000 Series boundary scan instruction set also includes instructions to configure the device and read back the configuration data. The instruction set is coded as shown in Table 17. ## **Bit Sequence** The bit sequence within each IOB is: In, Out, 3-State. The input-only M0 and M2 mode pins contribute only the In bit to the boundary scan I/O data register, while the output-only M1 pin contributes all three bits. The first two bits in the I/O data register are TDO.T and TDO.O, which can be used for the capture of internal signals. The final bit is BSCANT.UPD, which can be used to drive an internal net. These locations are primarily used by Xilinx for internal testing. From a cavity-up view of the chip (as shown in XDE or Epic), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 42. The device-specific pinout tables for the XC4000 Series include the boundary scan locations for each IOB pin. BSDL (Boundary Scan Description Language) files for XC4000 Series devices are available on the Xilinx FTP site. ## **Including Boundary Scan in a Schematic** If boundary scan is only to be used during configuration, no special schematic elements need be included in the schematic or HDL code. In this case, the special boundary scan pins TDI, TMS, TCK and TDO can be used for user functions after configuration. To indicate that boundary scan remain enabled after configuration, place the BSCAN library symbol and connect the TDI, TMS, TCK and TDO pad symbols to the appropriate pins, as shown in Figure 43. Even if the boundary scan symbol is used in a schematic, the input pins TMS, TCK, and TDI can still be used as inputs to be routed to internal logic. Care must be taken not to force the chip into an undesired boundary scan state by inadvertently applying boundary scan input patterns to these pins. The simplest way to prevent this is to keep TMS High, and then apply whatever signal is desired to TDI and TCK. ## **Setting CCLK Frequency** For Master modes, CCLK can be generated in either of two frequencies. In the default slow mode, the frequency ranges from 0.5 MHz to 1.25 MHz for XC4000E and XC4000EX devices and from 0.6 MHz to 1.8 MHz for XC4000XL devices. In fast CCLK mode, the frequency ranges from 4 MHz to 10 MHz for XC4000E/EX devices and from 5 MHz to 15 MHz for XC4000XL devices. The frequency is selected by an option when running the bitstream generation software. If an XC4000 Series Master is driving an XC3000- or XC2000-family slave, slow CCLK mode must be used. In addition, an XC4000XL device driving a XC4000E or XC4000EX should use slow mode. Slow mode is the default Table 19: XC4000 Series Data Stream Formats | Data Type | All Other
Modes (D0) | |--------------------|-------------------------| | Fill Byte | 11111111b | | Preamble Code | 0010b | | Length Count | COUNT(23:0) | | Fill Bits | 1111b | | Start Field | Ob | | Data Frame | DATA(n-1:0) | | CRC or Constant | xxxx (CRC) | | Field Check | or 0110b | | Extend Write Cycle | _ | | Postamble | 01111111b | | Start-Up Bytes | xxh | | Legend: | | | Not shaded | Once per bitstream | | Light | Once per data frame | | Dark | Once per device | #### **Data Stream Format** The data stream ("bitstream") format is identical for all configuration modes. The data stream formats are shown in Table 19. Bit-serial data is read from left to right, and byte-parallel data is effectively assembled from this serial bitstream, with the first bit in each byte assigned to D0. The configuration data stream begins with a string of eight ones, a preamble code, followed by a 24-bit length count and a separator field of ones. This header is followed by the actual configuration data in frames. The length and number of frames depends on the device type (see Table 20 and Table 21). Each frame begins with a start field and ends with an error check. A postamble code is required to signal the end of data for a single device. In all cases, additional start-up bytes of data are required to provide four clocks for the startup sequence at the end of configuration. Long daisy chains require additional startup bytes to shift the last data through the chain. All startup bytes are don't-cares; these bytes are not included in bitstreams created by the Xilinx software. A selection of CRC or non-CRC error checking is allowed by the bitstream generation software. The non-CRC error checking tests for a designated end-of-frame field for each frame. For CRC error checking, the software calculates a running CRC and inserts a unique four-bit partial check at the end of each frame. The 11-bit CRC check of the last frame of an FPGA includes the last seven data bits. Detection of an error results in the suspension of data loading and the pulling down of the $\overline{\text{INIT}}$ pin. In Master modes, CCLK and address signals continue to operate externally. The user must detect $\overline{\text{INIT}}$ and initialize a new configuration by pulsing the $\overline{\text{PROGRAM}}$ pin Low or cycling Vcc. Table 20: XC4000E Program Data | Device | XC4003E | XC4005E | XC4006E | XC4008E | XC4010E | XC4013E | XC4020E | XC4025E | |---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Max Logic Gates | 3,000 | 5,000 | 6,000 | 8,000 | 10,000 | 13,000 | 20,000 | 25,000 | | CLBs | 100 | 196 | 256 | 324 | 400 | 576 | 784 | 1,024 | | (Row x Col.) | (10 x 10) | (14 x 14) | (16 x 16) | (18 x 18) | (20 x 20) | (24 x 24) | (28 x 28) | (32 x 32) | | IOBs | 80 | 112 | 128 | 144 | 160 | 192 | 224 | 256 | | Flip-Flops | 360 | 616 | 768 | 936 | 1,120 | 1,536 | 2,016 | 2,560 | | Bits per Frame | 126 | 166 | 186 | 206 | 226 | 266 | 306 | 346 | | Frames | 428 | 572 | 644 | 716 | 788 | 932 | 1,076 | 1,220 | | Program Data | 53,936 | 94,960 | 119,792 | 147,504 | 178,096 | 247,920 | 329,264 | 422,128 | | PROM Size
(bits) | 53,984 | 95,008 | 119,840 | 147,552 | 178,144 | 247,968 | 329,312 | 422,176 | Notes: 1. Bits per Frame = (10 x number of rows) + 7 for the top + 13 for the bottom + 1 + 1 start bit + 4 error check bits Number of Frames = (36 x number of columns) + 26 for the left edge + 41 for the right edge + 1 Program Data = (Bits per Frame x Number of Frames) + 8 postamble bits PROM Size = Program Data + 40 (header) + 8 2. The user can add more "one" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra "one" bits, even for extra leading ones at the beginning of the header. Table 21: XC4000EX/XL Program Data | Device | XC4002XL | XC4005 | XC4010 | XC4013 | XC4020 | XC4028 | XC4036 | XC4044 | XC4052 | XC4062 | XC4085 | |---------------------------|---------------|------------------|------------------|------------------|------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | Max Logic
Gates | 2,000 | 5,000 | 10,000 | 13,000 | 20,000 | 28,000 | 36,000 | 44,000 | 52,000 | 62,000 | 85,000 | | CLBs
(Row x
Column) | 64
(8 x 8) | 196
(14 x 14) | 400
(20 x 20) | 576
(24 x 24) | 784
(28 x 28) | 1,024
(32 x 32) | 1,296
(36 x 36) | 1,600
(40 x 40) | 1,936
(44 x 44) | 2,304
(48 x 48) | 3,136
(56 x 56) | | IOBs | 64 | 112 | 160 | 192 | 224 | 256 | 288 | 320 | 352 | 384 | 448 | | Flip-Flops | 256 | 616 | 1,120 | 1,536 | 2,016 | 2,560 | 3,168 | 3,840 | 4,576 | 5,376 | 7,168 | | Bits per
Frame | 133 | 205 | 277 | 325 | 373 | 421 | 469 | 517 | 565 | 613 | 709 | | Frames | 459 | 741 | 1,023 | 1,211 | 1,399 | 1,587 | 1,775 | 1,963 | 2,151 | 2,339 | 2,715 | | Program Data | 61,052 | 151,910 | 283,376 | 393,580 | 521,832 | 668,124 | 832,480 | 1,014,876 | 1,215,320 | 1,433,804 | 1,924,940 | | PROM Size
(bits) | 61,104 | 151,960 | 283,424 | 393,632 | 521,880 | 668,172 | 832,528 | 1,014,924 | 1,215,368 | 1,433,852 | 1,924,992 | Notes: 1. Bits per frame = (13 x number of rows) + 9 for the top + 17 for the bottom + 8 + 1 start bit + 4 error check bits. Frames = (47 x number of columns) + 27 for the left edge
+ 52 for the right edge + 4. Program data = (bits per frame x number of frames) + 5 postamble bits. PROM size = (program data + 40 header bits + 8 start bits) rounded up to the nearest byte. 2. The user can add more "one" bits as leading dummy bits in the header, or, if CRC = off, as trailing dummy bits at the end of any frame, following the four error check bits. However, the Length Count value must be adjusted for all such extra "one" bits, even for extra leading "ones" at the beginning of the header. # Cyclic Redundancy Check (CRC) for Configuration and Readback The Cyclic Redundancy Check is a method of error detection in data transmission applications. Generally, the transmitting system performs a calculation on the serial bitstream. The result of this calculation is tagged onto the data stream as additional check bits. The receiving system performs an identical calculation on the bitstream and compares the result with the received checksum. Each data frame of the configuration bitstream has four error bits at the end, as shown in Table 19. If a frame data error is detected during the loading of the FPGA, the con- figuration process with a potentially corrupted bitstream is terminated. The FPGA pulls the $\overline{\text{INIT}}$ pin Low and goes into a Wait state. During Readback, 11 bits of the 16-bit checksum are added to the end of the Readback data stream. The checksum is computed using the CRC-16 CCITT polynomial, as shown in Figure 45. The checksum consists of the 11 most significant bits of the 16-bit code. A change in the checksum indicates a change in the Readback bitstream. A comparison to a previous checksum is meaningful only if the readback data is independent of the current device state. CLB outputs should not be included (Read Capture option not Figure 47: Start-up Timing Figure 48: Start-up Logic ## Readback The user can read back the content of configuration memory and the level of certain internal nodes without interfering with the normal operation of the device. Readback not only reports the downloaded configuration bits, but can also include the present state of the device, represented by the content of all flip-flops and latches in CLBs and IOBs, as well as the content of function generators used as RAMs. Note that in XC4000 Series devices, configuration data is *not* inverted with respect to configuration as it is in XC2000 and XC3000 families. XC4000 Series Readback does not use any dedicated pins, but uses four internal nets (RDBK.TRIG, RDBK.DATA, RDBK.RIP and RDBK.CLK) that can be routed to any IOB. To access the internal Readback signals, place the READ- BACK library symbol and attach the appropriate pad symbols, as shown in Figure 49. After Readback has been initiated by a High level on RDBK.TRIG after configuration, the RDBK.RIP (Read In Progress) output goes High on the next rising edge of RDBK.CLK. Subsequent rising edges of this clock shift out Readback data on the RDBK.DATA net. Readback data does not include the preamble, but starts with five dummy bits (all High) followed by the Start bit (Low) of the first frame. The first two data bits of the first frame are always High. Each frame ends with four error check bits. They are read back as High. The last seven bits of the last frame are also read back as High. An additional Start bit (Low) and an 11-bit Cyclic Redundancy Check (CRC) signature follow, before RDBK.RIP returns Low. Figure 49: Readback Schematic Example ## **Readback Options** Readback options are: Read Capture, Read Abort, and Clock Select. They are set with the bitstream generation software. ## Read Capture When the Read Capture option is selected, the readback data stream includes sampled values of CLB and IOB signals. The rising edge of RDBK.TRIG latches the inverted values of the four CLB outputs, the IOB output flip-flops and the input signals I1 and I2. Note that while the bits describing configuration (interconnect, function generators, and RAM content) are *not* inverted, the CLB and IOB output signals *are* inverted. When the Read Capture option is not selected, the values of the capture bits reflect the configuration data originally written to those memory locations. If the RAM capability of the CLBs is used, RAM data are available in readback, since they directly overwrite the F and G function-table configuration of the CLB. RDBK.TRIG is located in the lower-left corner of the device, as shown in Figure 50. #### Read Abort When the Read Abort option is selected, a High-to-Low transition on RDBK.TRIG terminates the readback operation and prepares the logic to accept another trigger. After an aborted readback, additional clocks (up to one readback clock per configuration frame) may be required to re-initialize the control logic. The status of readback is indicated by the output control net RDBK.RIP. RDBK.RIP is High whenever a readback is in progress. #### Clock Select CCLK is the default clock. However, the user can insert another clock on RDBK.CLK. Readback control and data are clocked on rising edges of RDBK.CLK. If readback must be inhibited for security reasons, the readback control nets are simply not connected. RDBK.CLK is located in the lower right chip corner, as shown in Figure 50. Figure 50: READBACK Symbol in Graphical Editor ## Violating the Maximum High and Low Time Specification for the Readback Clock The readback clock has a maximum High and Low time specification. In some cases, this specification cannot be met. For example, if a processor is controlling readback, an interrupt may force it to stop in the middle of a readback. This necessitates stopping the clock, and thus violating the specification. The specification is mandatory only on clocking data at the end of a frame prior to the next start bit. The transfer mechanism will load the data to a shift register during the last six clock cycles of the frame, prior to the start bit of the following frame. This loading process is dynamic, and is the source of the maximum High and Low time requirements. Therefore, the specification only applies to the six clock cycles prior to and including any start bit, including the clocks before the first start bit in the readback data stream. At other times, the frame data is already in the register and the register is not dynamic. Thus, it can be shifted out just like a regular shift register. The user must precisely calculate the location of the readback data relative to the frame. The system must keep track of the position within a data frame, and disable interrupts before frame boundaries. Frame lengths and data formats are listed in Table 19, Table 20 and Table 21. #### Readback with the XChecker Cable The XChecker Universal Download/Readback Cable and Logic Probe uses the readback feature for bitstream verification. It can also display selected internal signals on the PC or workstation screen, functioning as a low-cost in-circuit emulator. ## **Configuration Timing** The seven configuration modes are discussed in detail in this section. Timing specifications are included. #### **Slave Serial Mode** In Slave Serial mode, an external signal drives the CCLK input of the FPGA. The serial configuration bitstream must be available at the DIN input of the lead FPGA a short setup time before each rising CCLK edge. The lead FPGA then presents the preamble data—and all data that overflows the lead device—on its DOUT pin. There is an internal delay of 0.5 CCLK periods, which means that DOUT changes on the falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge. Figure 51 shows a full master/slave system. An XC4000 Series device in Slave Serial mode should be connected as shown in the third device from the left. Slave Serial mode is selected by a <111> on the mode pins (M2, M1, M0). Slave Serial is the default mode if the mode pins are left unconnected, as they have weak pull-up resistors during configuration. Figure 51: Master/Slave Serial Mode Circuit Diagram | | Description | | Symbol | Min | Max | Units | |------|-------------|---|------------------|-----|-----|-------| | | DIN setup | 1 | T _{DCC} | 20 | | ns | | | DIN hold | 2 | T _{CCD} | 0 | | ns | | CCLK | DIN to DOUT | 3 | T _{CCO} | | 30 | ns | | CCLR | High time | 4 | T _{CCH} | 45 | | ns | | | Low time | 5 | T _{CCL} | 45 | | ns | | | Frequency | | F _{CC} | | 10 | MHz | Note: Configuration must be delayed until the INIT pins of all daisy-chained FPGAs are High. Figure 52: Slave Serial Mode Programming Switching Characteristics #### Master Serial Mode In Master Serial mode, the CCLK output of the lead FPGA drives a Xilinx Serial PROM that feeds the FPGA DIN input. Each rising edge of the CCLK output increments the Serial PROM internal address counter. The next data bit is put on the SPROM data output, connected to the FPGA DIN pin. The lead FPGA accepts this data on the subsequent rising CCLK edge. The lead FPGA then presents the preamble data—and all data that overflows the lead device—on its DOUT pin. There is an internal pipeline delay of 1.5 CCLK periods, which means that DOUT changes on the falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge. In the bitstream generation software, the user can specify Fast ConfigRate, which, starting several bits into the first frame, increases the CCLK frequency by a factor of eight. For actual timing values please refer to "Configuration Switching Characteristics" on page 68. Be sure that the serial PROM and slaves are fast enough to support this data rate. XC2000, XC3000/A, and XC3100A devices do not support the Fast ConfigRate option. The SPROM CE input can be driven from either LDC or DONE. Using LDC avoids potential contention on the DIN pin, if this pin is configured as user-I/O, but LDC is then restricted to be a permanently High user output after configuration. Using DONE can also avoid contention on DIN, provided the early DONE option is
invoked. Figure 51 on page 60 shows a full master/slave system. The leftmost device is in Master Serial mode. Master Serial mode is selected by a <000> on the mode pins (M2, M1, M0). | | Description | Symbol | | Min | Max | Units | |-------|-------------|--------|-------------------|-----|-----|-------| | CCLK | DIN setup | 1 | T _{DSCK} | 20 | | ns | | COLIN | DIN hold | 2 | T _{CKDS} | 0 | | ns | Notes: 1. At power-up, Vcc must rise from 2.0 V to Vcc min in less than 25 ms, otherwise delay configuration by pulling PROGRAM Low until Vcc is valid. 2. Master Serial mode timing is based on testing in slave mode. Figure 53: Master Serial Mode Programming Switching Characteristics ## Synchronous Peripheral Mode Synchronous Peripheral mode can also be considered Slave Parallel mode. An external signal drives the CCLK input(s) of the FPGA(s). The first byte of parallel configuration data must be available at the Data inputs of the lead FPGA a short setup time before the rising CCLK edge. Subsequent data bytes are clocked in on every eighth consecutive rising CCLK edge. The same CCLK edge that accepts data, also causes the RDY/BUSY output to go High for one CCLK period. The pin name is a misnomer. In Synchronous Peripheral mode it is really an ACKNOWLEDGE signal. Synchronous operation does not require this response, but it is a meaningful signal for test purposes. Note that RDY/BUSY is pulled High with a high-impedance pullup prior to $\overline{\text{INIT}}$ going High. The lead FPGA serializes the data and presents the preamble data (and all data that overflows the lead device) on its DOUT pin. There is an internal delay of 1.5 CCLK periods, which means that DOUT changes on the falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge. In order to complete the serial shift operation, 10 additional CCLK rising edges are required after the last data byte has been loaded, plus one more CCLK cycle for each daisy-chained device. Synchronous Peripheral mode is selected by a <011> on the mode pins (M2, M1, M0). Figure 56: Synchronous Peripheral Mode Circuit Diagram 6-64 # **Product Availability** Table 24, Table 25, and Table 26 show the planned packages and speed grades for XC4000-Series devices. Call your local sales office for the latest availability information, or see the Xilinx website at http://www.xilinx.com for the latest revision of the specifications. Table 24: Component Availability Chart for XC4000XL FPGAs | PINS | | 84 | 100 | 100 | 144 | 144 | 160 | 160 | 176 | 176 | 208 | 208 | 240 | 240 | 256 | 299 | 304 | 352 | 411 | 432 | 475 | 559 | 560 | |----------|------------|----------------|----------------|----------------|----------------|--------------------|-------------------|----------------|----------------|--------------------|-------------------|----------------|-------------------|----------------|---------------|---------------|-------------------|---------------|---------------|---------------|---------------|---------------|---------------| | PINS | TYPE | | Plast.
PLCC | Plast.
PQFP | Plast.
VQFP | Plast.
TQFP | High-Perf.
TQFP | High-Perf.
QFP | Plast.
PQFP | Plast.
TQFP | High-Perf.
TQFP | High-Perf.
QFP | Plast.
PQFP | High-Perf.
QFP | Plast.
PQFP | Plast.
BGA | Ceram.
PGA | High-Perf.
QFP | Plast.
BGA | Ceram.
PGA | Plast.
BGA | Ceram.
PGA | Ceram.
PGA | Plast.
BGA | | CODE | | PC84 | PQ100 | VQ100 | TQ144 | HT144 | HQ160 | PQ160 | TQ176 | HT176 | HQ208 | PQ208 | HQ240 | PQ240 | BG256 | PG299 | HQ304 | BG352 | PG411 | BG432 | PG475 | PG559 | BG560 | | XC4002XL | -3 | СІ | СІ | СІ | -2 | СІ | СІ | СІ | -1 | СІ | СІ | СІ | -09C | С | С | С | XC4005XL | -3 | СІ | СІ | СІ | СІ | | | СІ | | | | СІ | | | | | | | | | | | | | | -2 | CI | С | CI | CI | | | CI | | | | CI | | | | | | | | | | | | | | -1
-09C | C I | CI | C I | C I | | | C I | | | | C I | | | | | | | | | | | | | XC4010XL | -3 | CI | CI | | CI | | | CI | СІ | | | CI | | | СІ | | | | | | | | | | | -2 | СІ | СІ | | СІ | | | СІ | CI | | | CI | | | CI | | | | | | | | | | | -1 | СІ | СІ | | СІ | | | СІ | СІ | | | СІ | | | CI | | | | | | | | | | | -09C | С | С | | С | | | С | С | | | С | | | С | | | | | | | | | | XC4013XL | -3
-2 | | | | | CI | | CI | | CI | | CI
CI | | CI | CI | | | | | | | | | | | -1 | | | | | CI | CI | | | | | | | | | | | -09C | | | | | C | | C | | C | | C | | C | C | | | | | | | | | | | -08C | | | | | С | | С | | С | | С | | С | С | | | | | | | | | | XC4020XL | -3 | | | | | СІ | | CI | | CI | | СІ | | CI | СІ | | | | | | | | | | | -2 | | | | | СІ | СІ | | | | | | | | | | | -1 | | | | | СІ | | СІ | | СІ | | СІ | | CI | СІ | | | | | | | | | | | -09C | | | | | С | | С | | С | | С | | С | С | | | | | | | | | | XC4028XL | -3 | | | | | | CI | | | | CI | | CI | | CI | CI | CI | CI | | | | | | | | -2
-1 | | | | | | CI | | | | CI | | CI | | CI | CI | CI | CI | | | | | | | | -09C | | | | | | C | | | | C | | С | | C | С | C | C | | | | | | | XC4036XL | -3 | | | | | | CI | | | | CI | | CI | | | | CI | CI | СІ | CI | | | | | | -2 | | | | | | СІ | | | | СІ | | С | | | | СІ | CI | CI | СІ | | | | | | -1 | | | | | | СІ | | | | СІ | | СІ | | | | СІ | СІ | СІ | СІ | | | | | | -09C | | | | | | O | | | | С | | С | | | | С | С | С | С | | | | | | -08C | | | | | | С | | | | С | | С | | | | С | С | С | С | | | | | XC4044XL | -3 | | | | | | CI | | | | CI | | CI | | | | CI | CI | CI | CI | | | | | | -2
-1 | | | | | | CI | | | | CI | | CI | | | | CI | CI | CI | CI | | | | | | -09C | | | | | | С | | | | С | | С | | | | С | C | С | С | | | | | XC4052XL | -3 | | | | | | | | | | | | CI | | | | CI | <u> </u> | CI | CI | | | СІ | | | -2 | | | | | | | | | | | | CI | | | | CI | | CI | CI | | | CI | | | -1 | | | | | | | | | | | | СІ | | | | СІ | | СІ | СІ | | | СІ | | | -09C | | | | | | | | | | | | С | | | | С | | С | С | | | С | | XC4062XL | -3 | | | | | | | | | | | | CI | | | | CI | | | CI | CI | | CI | | | -2 | | | | | | | | | | | | CI | | | | CI | | | CI | CI | | CI | | | -1
-09C | | | | | | | | | | | | C1 | | | | CI | | | C I | C I | | CI
C | | | -09C | | | | | | | | | | | | С | | - | | С | | | С | С | | С | | XC4085XL | -3 | | | | | | | | | | | | | | | | | | | CI | | CI | CI | | | -2 | | | | | | | | | | | | | | | | | | | CI | | CI | CI | | | -1 | | | | | | | | | | | | | | | | | | | CI | | CI | CI | | | -09C | | | | | | | | | | | | | | | | | | | С | | С | С | | 1/29/99 | 550 | | | | | | | | | | | | | | | | | | | J | | | | 1/29/99 $C = Commercial \ T_J = 0^{\circ} \ to \ +85^{\circ}C$ I= Industrial $T_J = -40^{\circ}C$ to $+100^{\circ}C$