Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 3136 | | Number of Logic Elements/Cells | 7448 | | Total RAM Bits | 100352 | | Number of I/O | 448 | | Number of Gates | 85000 | | Voltage - Supply | 3V ~ 3.6V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 560-LBGA Exposed Pad, Metal | | Supplier Device Package | 560-MBGA (42.5x42.5) | | Purchase URL | https://www.e-xfl.com/product-detail/xilinx/xc4085xl-2bg560c | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 1: Simplified Block Diagram of XC4000 Series CLB (RAM and Carry Logic functions not shown) #### Flip-Flops The CLB can pass the combinatorial output(s) to the interconnect network, but can also store the combinatorial results or other incoming data in one or two flip-flops, and connect their outputs to the interconnect network as well. The two edge-triggered D-type flip-flops have common clock (K) and clock enable (EC) inputs. Either or both clock inputs can also be permanently enabled. Storage element functionality is described in Table 2. #### Latches (XC4000X only) The CLB storage elements can also be configured as latches. The two latches have common clock (K) and clock enable (EC) inputs. Storage element functionality is described in Table 2. #### Clock Input Each flip-flop can be triggered on either the rising or falling clock edge. The clock pin is shared by both storage elements. However, the clock is individually invertible for each storage element. Any inverter placed on the clock input is automatically absorbed into the CLB. #### Clock Enable The clock enable signal (EC) is active High. The EC pin is shared by both storage elements. If left unconnected for either, the clock enable for that storage element defaults to the active state. EC is not invertible within the CLB. Table 2: CLB Storage Element Functionality (active rising edge is shown) | Mode | K | EC | SR | D | Q | |--------------------|---|----|----|---|----| | Power-Up or
GSR | Х | Х | Х | Х | SR | | | Х | Х | 1 | Х | SR | | Flip-Flop | | 1* | 0* | D | D | | | 0 | Х | 0* | Х | Q | | Latch | 1 | 1* | 0* | Х | Q | | Lateri | 0 | 1* | 0* | D | D | | Both | Х | 0 | 0* | Х | Ø | Legend: X Don't care Rising edge SR Set or Reset value. Reset is default. 0* Input is Low or unconnected (default value) 1* Input is High or unconnected (default value) #### Set/Reset An asynchronous storage element input (SR) can be configured as either set or reset. This configuration option determines the state in which each flip-flop becomes operational after configuration. It also determines the effect of a Global Set/Reset pulse during normal operation, and the effect of a pulse on the SR pin of the CLB. All three set/reset functions for any single flip-flop are controlled by the same configuration data bit. The set/reset state can be independently specified for each flip-flop. This input can also be independently disabled for either flip-flop. The set/reset state is specified by using the INIT attribute, or by placing the appropriate set or reset flip-flop library symbol. SR is active High. It is not invertible within the CLB. #### Global Set/Reset A separate Global Set/Reset line (not shown in Figure 1) sets or clears each storage element during power-up, re-configuration, or when a dedicated Reset net is driven active. This global net (GSR) does not compete with other routing resources; it uses a dedicated distribution network. Each flip-flop is configured as either globally set or reset in the same way that the local set/reset (SR) is specified. Therefore, if a flip-flop is set by SR, it is also set by GSR. Similarly, a reset flip-flop is reset by both SR and GSR. Figure 2: Schematic Symbols for Global Set/Reset GSR can be driven from any user-programmable pin as a global reset input. To use this global net, place an input pad and input buffer in the schematic or HDL code, driving the GSR pin of the STARTUP symbol. (See Figure 2.) A specific pin location can be assigned to this input using a LOC attribute or property, just as with any other user-programmable pad. An inverter can optionally be inserted after the input buffer to invert the sense of the Global Set/Reset signal. Alternatively, GSR can be driven from any internal node. #### Data Inputs and Outputs The source of a storage element data input is programmable. It is driven by any of the functions F', G', and H', or by the Direct In (DIN) block input. The flip-flops or latches drive the XQ and YQ CLB outputs. Two fast feed-through paths are available, as shown in Figure 1. A two-to-one multiplexer on each of the XQ and YQ outputs selects between a storage element output and any of the control inputs. This bypass is sometimes used by the automated router to repower internal signals. #### **Control Signals** Multiplexers in the CLB map the four control inputs (C1 - C4 in Figure 1) into the four internal control signals (H1, DIN/H2, SR/H0, and EC). Any of these inputs can drive any of the four internal control signals. When the logic function is enabled, the four inputs are: - EC Enable Clock - SR/H0 Asynchronous Set/Reset or H function generator Input 0 - DIN/H2 Direct In or H function generator Input 2 - H1 H function generator Input 1. When the memory function is enabled, the four inputs are: - EC Enable Clock - WE Write Enable - D0 Data Input to F and/or G function generator - D1 Data input to G function generator (16x1 and 16x2 modes) or 5th Address bit (32x1 mode). #### Using FPGA Flip-Flops and Latches The abundance of flip-flops in the XC4000 Series invites pipelined designs. This is a powerful way of increasing performance by breaking the function into smaller subfunctions and executing them in parallel, passing on the results through pipeline flip-flops. This method should be seriously considered wherever throughput is more important than latency. To include a CLB flip-flop, place the appropriate library symbol. For example, FDCE is a D-type flip-flop with clock enable and asynchronous clear. The corresponding latch symbol (for the XC4000X only) is called LDCE. In XC4000 Series devices, the flip flops can be used as registers or shift registers without blocking the function generators from performing a different, perhaps unrelated task. This ability increases the functional capacity of the devices. The CLB setup time is specified between the function generator inputs and the clock input K. Therefore, the specified CLB flip-flop setup time includes the delay through the function generator. #### Using Function Generators as RAM Optional modes for each CLB make the memory look-up tables in the F' and G' function generators usable as an array of Read/Write memory cells. Available modes are level-sensitive (similar to the XC4000/A/H families), edge-triggered, and dual-port edge-triggered. Depending on the selected mode, a single CLB can be configured as either a 16x2, 32x1, or 16x1 bit array. Supported CLB memory configurations and timing modes for single- and dual-port modes are shown in Table 3. XC4000 Series devices are the first programmable logic devices with edge-triggered (synchronous) and dual-port RAM accessible to the user. Edge-triggered RAM simplifies system timing. Dual-port RAM doubles the effective throughput of FIFO applications. These features can be individually programmed in any XC4000 Series CLB. #### Advantages of On-Chip and Edge-Triggered RAM The on-chip RAM is extremely fast. The read access time is the same as the logic delay. The write access time is slightly slower. Both access times are much faster than any off-chip solution, because they avoid I/O delays. Edge-triggered RAM, also called synchronous RAM, is a feature never before available in a Field Programmable Gate Array. The simplicity of designing with edge-triggered RAM, and the markedly higher achievable performance, add up to a significant improvement over existing devices with on-chip RAM. Three application notes are available from Xilinx that discuss edge-triggered RAM: "XC4000E Edge-Triggered and Dual-Port RAM Capability," "Implementing FIFOs in XC4000E RAM," and "Synchronous and Asynchronous FIFO Designs." All three application notes apply to both XC4000E and XC4000X RAM. **Table 3: Supported RAM Modes** | | 16 | 16 | 32 | Edge- | Level- | |-------------|----|----|----|-----------|-----------| | | х | х | x | Triggered | Sensitive | | | 1 | 2 | 1 | Timing | Timing | | Single-Port | V | √ | 1 | 1 | V | | Dual-Port | 1 | | | $\sqrt{}$ | | #### **RAM Configuration Options** The function generators in any CLB can be configured as RAM arrays in the following sizes: - Two 16x1 RAMs: two data inputs and two data outputs with identical or, if preferred, different addressing for each RAM - One 32x1 RAM: one data input and one data output. One F or G function generator can be configured as a 16x1 RAM while the other function generators are used to implement any function of up to 5 inputs. Additionally, the XC4000 Series RAM may have either of two timing modes: - Edge-Triggered
(Synchronous): data written by the designated edge of the CLB clock. WE acts as a true clock enable. - Level-Sensitive (Asynchronous): an external WE signal acts as the write strobe. The selected timing mode applies to both function generators within a CLB when both are configured as RAM. The number of read ports is also programmable: - Single Port: each function generator has a common read and write port - Dual Port: both function generators are configured together as a single 16x1 dual-port RAM with one write port and two read ports. Simultaneous read and write operations to the same or different addresses are supported. RAM configuration options are selected by placing the appropriate library symbol. #### **Choosing a RAM Configuration Mode** The appropriate choice of RAM mode for a given design should be based on timing and resource requirements, desired functionality, and the simplicity of the design process. Recommended usage is shown in Table 4. The difference between level-sensitive, edge-triggered, and dual-port RAM is only in the write operation. Read operation and timing is identical for all modes of operation. **Table 4: RAM Mode Selection** | | Level-Sens itive | Edge-Trigg
ered | Dual-Port
Edge-Trigg
ered | |----------------------------|------------------|--------------------|---------------------------------| | Use for New Designs? | No | Yes | Yes | | Size (16x1,
Registered) | 1/2 CLB | 1/2 CLB | 1 CLB | | Simultaneous
Read/Write | No | No | Yes | | Relative
Performance | Х | 2X | 2X (4X
effective) | #### **RAM Inputs and Outputs** The F1-F4 and G1-G4 inputs to the function generators act as address lines, selecting a particular memory cell in each look-up table. The functionality of the CLB control signals changes when the function generators are configured as RAM. The DIN/H2, H1, and SR/H0 lines become the two data inputs (D0, D1) and the Write Enable (WE) input for the 16x2 memory. When the 32x1 configuration is selected, D1 acts as the fifth address bit and D0 is the data input. The contents of the memory cell(s) being addressed are available at the F' and G' function-generator outputs. They can exit the CLB through its X and Y outputs, or can be captured in the CLB flip-flop(s). Configuring the CLB function generators as Read/Write memory does not affect the functionality of the other por- Figure 9: 16x2 (or 16x1) Level-Sensitive Single-Port RAM Figure 10: 32x1 Level-Sensitive Single-Port RAM (F and G addresses are identical) ## Output Multiplexer/2-Input Function Generator (XC4000X only) As shown in Figure 16 on page 21, the output path in the XC4000X IOB contains an additional multiplexer not available in the XC4000E IOB. The multiplexer can also be configured as a 2-input function generator, implementing a pass-gate, AND-gate, OR-gate, or XOR-gate, with 0, 1, or 2 inverted inputs. The logic used to implement these functions is shown in the upper gray area of Figure 16. When configured as a multiplexer, this feature allows two output signals to time-share the same output pad; effectively doubling the number of device outputs without requiring a larger, more expensive package. When the MUX is configured as a 2-input function generator, logic can be implemented within the IOB itself. Combined with a Global Early buffer, this arrangement allows very high-speed gating of a single signal. For example, a wide decoder can be implemented in CLBs, and its output gated with a Read or Write Strobe Driven by a BUFGE buffer, as shown in Figure 19. The critical-path pin-to-pin delay of this circuit is less than 6 nanoseconds. As shown in Figure 16, the IOB input pins Out, Output Clock, and Clock Enable have different delays and different flexibilities regarding polarity. Additionally, Output Clock sources are more limited than the other inputs. Therefore, the Xilinx software does not move logic into the IOB function generators unless explicitly directed to do so. The user can specify that the IOB function generator be used, by placing special library symbols beginning with the letter "O." For example, a 2-input AND-gate in the IOB function generator is called OAND2. Use the symbol input pin labelled "F" for the signal on the critical path. This signal is placed on the OK pin — the IOB input with the shortest delay to the function generator. Two examples are shown in Figure 20. Figure 19: Fast Pin-to-Pin Path in XC4000X Figure 20: AND & MUX Symbols in XC4000X IOB #### Other IOB Options There are a number of other programmable options in the XC4000 Series IOB. #### Pull-up and Pull-down Resistors Programmable pull-up and pull-down resistors are useful for tying unused pins to Vcc or Ground to minimize power consumption and reduce noise sensitivity. The configurable pull-up resistor is a p-channel transistor that pulls to Vcc. The configurable pull-down resistor is an n-channel transistor that pulls to Ground. The value of these resistors is 50 k Ω – 100 k Ω . This high value makes them unsuitable as wired-AND pull-up resistors. The pull-up resistors for most user-programmable IOBs are active during the configuration process. See Table 22 on page 58 for a list of pins with pull-ups active before and during configuration. After configuration, voltage levels of unused pads, bonded or un-bonded, must be valid logic levels, to reduce noise sensitivity and avoid excess current. Therefore, by default, unused pads are configured with the internal pull-up resistor active. Alternatively, they can be individually configured with the pull-down resistor, or as a driven output, or to be driven by an external source. To activate the internal pull-up, attach the PULLUP library component to the net attached to the pad. To activate the internal pull-down, attach the PULLDOWN library component to the net attached to the pad. #### Independent Clocks Separate clock signals are provided for the input and output flip-flops. The clock can be independently inverted for each flip-flop within the IOB, generating either falling-edge or rising-edge triggered flip-flops. The clock inputs for each IOB are independent, except that in the XC4000X, the Fast Capture latch shares an IOB input with the output clock pin. #### Early Clock for IOBs (XC4000X only) Special early clocks are available for IOBs. These clocks are sourced by the same sources as the Global Low-Skew buffers, but are separately buffered. They have fewer loads and therefore less delay. The early clock can drive either the IOB output clock or the IOB input clock, or both. The early clock allows fast capture of input data, and fast clock-to-output on output data. The Global Early buffers that drive these clocks are described in "Global Nets and Buffers (XC4000X only)" on page 37. #### **Global Set/Reset** As with the CLB registers, the Global Set/Reset signal (GSR) can be used to set or clear the input and output registers, depending on the value of the INIT attribute or property. The two flip-flops can be individually configured to set The oscillator output is optionally available after configuration. Any two of four resynchronized taps of a built-in divider are also available. These taps are at the fourth, ninth, fourteenth and nineteenth bits of the divider. Therefore, if the primary oscillator output is running at the nominal 8 MHz, the user has access to an 8 MHz clock, plus any two of 500 kHz, 16kHz, 490Hz and 15Hz (up to 10% lower for low-voltage devices). These frequencies can vary by as much as -50% or +25%. These signals can be accessed by placing the OSC4 library element in a schematic or in HDL code (see Figure 24). The oscillator is automatically disabled after configuration if the OSC4 symbol is not used in the design. ### **Programmable Interconnect** All internal connections are composed of metal segments with programmable switching points and switching matrices to implement the desired routing. A structured, hierarchical matrix of routing resources is provided to achieve efficient automated routing. The XC4000E and XC4000X share a basic interconnect structure. XC4000X devices, however, have additional routing not available in the XC4000E. The extra routing resources allow high utilization in high-capacity devices. All XC4000X-specific routing resources are clearly identified throughout this section. Any resources not identified as XC4000X-specific are present in all XC4000 Series devices. This section describes the varied routing resources available in XC4000 Series devices. The implementation software automatically assigns the appropriate resources based on the density and timing requirements of the design. #### **Interconnect Overview** There are several types of interconnect. - CLB routing is associated with each row and column of the CLB array. - IOB routing forms a ring (called a VersaRing) around the outside of the CLB array. It connects the I/O with the internal logic blocks. Global routing consists of dedicated networks primarily designed to distribute clocks throughout the device with minimum delay and skew. Global routing can also be used for other high-fanout signals. Five interconnect types are distinguished by the relative length of their segments: single-length lines, double-length lines, quad and octal lines (XC4000X only), and longlines. In the XC4000X, direct connects allow fast data flow between adjacent CLBs, and between IOBs and CLBs. Extra routing is included in the IOB pad ring. The XC4000X also includes a ring of octal interconnect lines near the IOBs to improve pin-swapping and routing to locked pins. XC4000E/X devices include two types of global buffers. These global buffers have different properties, and are intended for different purposes. They are discussed in detail later in this section. #### **CLB Routing Connections** A high-level diagram of the routing resources associated with one CLB is shown in Figure 25. The shaded arrows represent routing present only in XC4000X devices. Table 14
shows how much routing of each type is available in XC4000E and XC4000X CLB arrays. Clearly, very large designs, or designs with a great deal of interconnect, will route more easily in the XC4000X. Smaller XC4000E designs, typically requiring significantly less interconnect, do not require the additional routing. Figure 27 on page 30 is a detailed diagram of both the XC4000E and the XC4000X CLB, with associated routing. The shaded square is the programmable switch matrix, present in both the XC4000E and the XC4000X. The L-shaped shaded area is present only in XC4000X devices. As shown in the figure, the XC4000X block is essentially an XC4000E block with additional routing. CLB inputs and outputs are distributed on all four sides, providing maximum routing flexibility. In general, the entire architecture is symmetrical and regular. It is well suited to established placement and routing algorithms. Inputs, outputs, and function generators can freely swap positions within a CLB to avoid routing congestion during the placement and routing operation. Figure 28: Single- and Double-Length Lines, with Programmable Switch Matrices (PSMs) #### **Double-Length Lines** The double-length lines consist of a grid of metal segments, each twice as long as the single-length lines: they run past two CLBs before entering a switch matrix. Double-length lines are grouped in pairs with the switch matrices staggered, so that each line goes through a switch matrix at every other row or column of CLBs (see Figure 28). There are four vertical and four horizontal double-length lines associated with each CLB. These lines provide faster signal routing over intermediate distances, while retaining routing flexibility. Double-length lines are connected by way of the programmable switch matrices. Routing connectivity is shown in Figure 27. #### Quad Lines (XC4000X only) XC4000X devices also include twelve vertical and twelve horizontal quad lines per CLB row and column. Quad lines are four times as long as the single-length lines. They are interconnected via buffered switch matrices (shown as diamonds in Figure 27 on page 30). Quad lines run past four CLBs before entering a buffered switch matrix. They are grouped in fours, with the buffered switch matrices staggered, so that each line goes through a buffered switch matrix at every fourth CLB location in that row or column. (See Figure 29.) The buffered switch matrixes have four pins, one on each edge. All of the pins are bidirectional. Any pin can drive any or all of the other pins. Each buffered switch matrix contains one buffer and six pass transistors. It resembles the programmable switch matrix shown in Figure 26, with the addition of a programmable buffer. There can be up to two independent inputs Figure 29: Quad Lines (XC4000X only) and up to two independent outputs. Only one of the independent inputs can be buffered. The place and route software automatically uses the timing requirements of the design to determine whether or not a quad line signal should be buffered. A heavily loaded signal is typically buffered, while a lightly loaded one is not. One scenario is to alternate buffers and pass transistors. This allows both vertical and horizontal quad lines to be buffered at alternating buffered switch matrices. Due to the buffered switch matrices, quad lines are very fast. They provide the fastest available method of routing heavily loaded signals for long distances across the device. #### Longlines Longlines form a grid of metal interconnect segments that run the entire length or width of the array. Longlines are intended for high fan-out, time-critical signal nets, or nets that are distributed over long distances. In XC4000X devices, quad lines are preferred for critical nets, because the buffered switch matrices make them faster for high fan-out nets. Two horizontal longlines per CLB can be driven by 3-state or open-drain drivers (TBUFs). They can therefore implement unidirectional or bidirectional buses, wide multiplexers, or wired-AND functions. (See "Three-State Buffers" on page 26 for more details.) Each horizontal longline driven by TBUFs has either two (XC4000E) or eight (XC4000X) pull-up resistors. To activate these resistors, attach a PULLUP symbol to the long-line net. The software automatically activates the appropriate number of pull-ups. There is also a weak keeper at each end of these two horizontal longlines. This circuit prevents undefined floating levels. However, it is overridden by any driver, even a pull-up resistor. Each XC4000E longline has a programmable splitter switch at its center, as does each XC4000X longline driven by TBUFs. This switch can separate the line into two independent routing channels, each running half the width or height of the array. Each XC4000X longline not driven by TBUFs has a buffered programmable splitter switch at the 1/4, 1/2, and 3/4 points of the array. Due to the buffering, XC4000X longline performance does not deteriorate with the larger array sizes. If the longline is split, the resulting partial longlines are independent. Routing connectivity of the longlines is shown in Figure 27 on page 30. #### Direct Interconnect (XC4000X only) The XC4000X offers two direct, efficient and fast connections between adjacent CLBs. These nets facilitate a data flow from the left to the right side of the device, or from the top to the bottom, as shown in Figure 30. Signals routed on the direct interconnect exhibit minimum interconnect propagation delay and use no general routing resources. The direct interconnect is also present between CLBs and adjacent IOBs. Each IOB on the left and top device edges has a direct path to the nearest CLB. Each CLB on the right and bottom edges of the array has a direct path to the nearest two IOBs, since there are two IOBs for each row or column of CLBs. The place and route software uses direct interconnect whenever possible, to maximize routing resources and minimize interconnect delays. Figure 30: XC4000X Direct Interconnect #### I/O Routing XC4000 Series devices have additional routing around the IOB ring. This routing is called a VersaRing. The VersaRing facilitates pin-swapping and redesign without affecting board layout. Included are eight double-length lines spanning two CLBs (four IOBs), and four longlines. Global lines and Wide Edge Decoder lines are provided. XC4000X devices also include eight octal lines. A high-level diagram of the VersaRing is shown in Figure 31. The shaded arrows represent routing present only in XC4000X devices. Figure 33 on page 34 is a detailed diagram of the XC4000E and XC4000X VersaRing. The area shown includes two IOBs. There are two IOBs per CLB row or column, therefore this diagram corresponds to the CLB routing diagram shown in Figure 27 on page 30. The shaded areas represent routing and routing connections present only in XC4000X devices. #### Octal I/O Routing (XC4000X only) Between the XC4000X CLB array and the pad ring, eight interconnect tracks provide for versatility in pin assignment and fixed pinout flexibility. (See Figure 32 on page 33.) These routing tracks are called octals, because they can be broken every eight CLBs (sixteen IOBs) by a programmable buffer that also functions as a splitter switch. The buffers are staggered, so each line goes through a buffer at every eighth CLB location around the device edge. The octal lines bend around the corners of the device. The lines cross at the corners in such a way that the segment most recently buffered before the turn has the farthest distance to travel before the next buffer, as shown in Figure 32. 6-32 May 14, 1999 (Version 1.6) Figure 34: XC4000E Global Net Distribution Figure 35: XC4000X Global Net Distribution 6-36 May 14, 1999 (Version 1.6) **Table 16: Pin Descriptions (Continued)** | | I/O | I/O | | |--|-----------------|---------------|--| | Pin Name | During Config. | After Config. | Pin Description | | 1 III Name | coming. | Coming. | These four inputs are used in Asynchronous Peripheral mode. The chip is selected | | CSO, CS1,
WS, RS | ı | I/O | when $\overline{\text{CS0}}$ is Low and CS1 is High. While the chip is selected, a Low on Write Strobe $(\overline{\text{WS}})$ loads the data present on the D0 - D7 inputs into the internal data buffer. A Low on Read Strobe $(\overline{\text{RS}})$ changes D7 into a status output — High if Ready, Low if Busy — and drives D0 - D6 High. In Express mode, CS1 is used as a serial-enable signal for daisy-chaining. $\overline{\text{WS}}$ and $\overline{\text{RS}}$ should be mutually exclusive, but if both are Low simultaneously, the Write Strobe overrides. After configuration, these are user-programmable I/O pins. | | A0 - A17 | 0 | I/O | During Master Parallel configuration, these 18 output pins address the configuration EPROM. After configuration, they are user-programmable I/O pins. | | A18 - A21
(XC4003XL to
XC4085XL) | 0 | I/O | During Master Parallel configuration with an XC4000X master, these 4 output pins add 4 more bits to address the configuration EPROM. After configuration, they are user-programmable I/O pins. (See Master Parallel Configuration section for additional details.) | | D0 - D7 | I | I/O | During Master Parallel and Peripheral configuration, these eight input pins receive configuration data.
After configuration, they are user-programmable I/O pins. | | DIN | I | I/O | During Slave Serial or Master Serial configuration, DIN is the serial configuration data input receiving data on the rising edge of CCLK. During Parallel configuration, DIN is the D0 input. After configuration, DIN is a user-programmable I/O pin. | | DOUT | 0 | I/O | During configuration in any mode but Express mode, DOUT is the serial configuration data output that can drive the DIN of daisy-chained slave FPGAs. DOUT data changes on the falling edge of CCLK, one-and-a-half CCLK periods after it was received at the DIN input. In Express modefor XC4000E and XC4000X only, DOUT is the status output that can drive the CS1 of daisy-chained FPGAs, to enable and disable downstream devices. After configuration, DOUT is a user-programmable I/O pin. | | Unrestricted U | ser-Prog | rammabl | e I/O Pins | | I/O | Weak
Pull-up | I/O | These pins can be configured to be input and/or output after configuration is completed. Before configuration is completed, these pins have an internal high-value pull-up resistor (25 k Ω - 100 k Ω) that defines the logic level as High. | ## **Boundary Scan** The 'bed of nails' has been the traditional method of testing electronic assemblies. This approach has become less appropriate, due to closer pin spacing and more sophisticated assembly methods like surface-mount technology and multi-layer boards. The IEEE Boundary Scan Standard 1149.1 was developed to facilitate board-level testing of electronic assemblies. Design and test engineers can imbed a standard test logic structure in their device to achieve high fault coverage for I/O and internal logic. This structure is easily implemented with a four-pin interface on any boundary scan-compatible IC. IEEE 1149.1-compatible devices may be serial daisy-chained together, connected in parallel, or a combination of the two. The XC4000 Series implements IEEE 1149.1-compatible BYPASS, PRELOAD/SAMPLE and EXTEST boundary scan instructions. When the boundary scan configuration option is selected, three normal user I/O pins become dedicated inputs for these functions. Another user output pin becomes the dedicated boundary scan output. The details of how to enable this circuitry are covered later in this section. By exercising these input signals, the user can serially load commands and data into these devices to control the driving of their outputs and to examine their inputs. This method is an improvement over bed-of-nails testing. It avoids the need to over-drive device outputs, and it reduces the user interface to four pins. An optional fifth pin, a reset for the control logic, is described in the standard but is not implemented in Xilinx devices. The dedicated on-chip logic implementing the IEEE 1149.1 functions includes a 16-state machine, an instruction register and a number of data registers. The functional details can be found in the IEEE 1149.1 specification and are also discussed in the Xilinx application note XAPP 017: "Boundary Scan in XC4000 Devices." Figure 40 on page 43 shows a simplified block diagram of the XC4000E Input/Output Block with boundary scan implemented. XC4000X boundary scan logic is identical. Figure 41: XC4000 Series Boundary Scan Logic #### **Instruction Set** The XC4000 Series boundary scan instruction set also includes instructions to configure the device and read back the configuration data. The instruction set is coded as shown in Table 17. #### **Bit Sequence** The bit sequence within each IOB is: In, Out, 3-State. The input-only M0 and M2 mode pins contribute only the In bit to the boundary scan I/O data register, while the output-only M1 pin contributes all three bits. The first two bits in the I/O data register are TDO.T and TDO.O, which can be used for the capture of internal signals. The final bit is BSCANT.UPD, which can be used to drive an internal net. These locations are primarily used by Xilinx for internal testing. From a cavity-up view of the chip (as shown in XDE or Epic), starting in the upper right chip corner, the boundary scan data-register bits are ordered as shown in Figure 42. The device-specific pinout tables for the XC4000 Series include the boundary scan locations for each IOB pin. BSDL (Boundary Scan Description Language) files for XC4000 Series devices are available on the Xilinx FTP site. #### **Including Boundary Scan in a Schematic** If boundary scan is only to be used during configuration, no special schematic elements need be included in the schematic or HDL code. In this case, the special boundary scan pins TDI, TMS, TCK and TDO can be used for user functions after configuration. To indicate that boundary scan remain enabled after configuration, place the BSCAN library symbol and connect the TDI, TMS, TCK and TDO pad symbols to the appropriate pins, as shown in Figure 43. Even if the boundary scan symbol is used in a schematic, the input pins TMS, TCK, and TDI can still be used as inputs to be routed to internal logic. Care must be taken not to force the chip into an undesired boundary scan state by inadvertently applying boundary scan input patterns to these pins. The simplest way to prevent this is to keep TMS High, and then apply whatever signal is desired to TDI and TCK. used), and if RAM is present, the RAM content must be unchanged. Statistically, one error out of 2048 might go undetected. #### **Configuration Sequence** There are four major steps in the XC4000 Series power-up configuration sequence. - Configuration Memory Clear - Initialization - Configuration - Start-Up The full process is illustrated in Figure 46. #### Configuration Memory Clear When power is first applied or is reapplied to an FPGA, an internal circuit forces initialization of the configuration logic. When Vcc reaches an operational level, and the circuit passes the write and read test of a sample pair of configuration bits, a time delay is started. This time delay is nominally 16 ms, and up to 10% longer in the low-voltage devices. The delay is four times as long when in Master Modes (M0 Low), to allow ample time for all slaves to reach a stable Vcc. When all $\overline{\text{INIT}}$ pins are tied together, as recommended, the longest delay takes precedence. Therefore, devices with different time delays can easily be mixed and matched in a daisy chain. This delay is applied only on power-up. It is not applied when re-configuring an FPGA by pulsing the $\overline{\text{PROGRAM}}$ pin Figure 45: Circuit for Generating CRC-16 Figure 46: Power-up Configuration Sequence Figure 47: Start-up Timing #### Start-up from a User Clock (STARTUP.CLK) When, instead of CCLK, a user-supplied start-up clock is selected, Q1 is used to bridge the unknown phase relationship between CCLK and the user clock. This arbitration causes an unavoidable one-cycle uncertainty in the timing of the rest of the start-up sequence. #### DONE Goes High to Signal End of Configuration XC4000 Series devices read the expected length count from the bitstream and store it in an internal register. The length count varies according to the number of devices and the composition of the daisy chain. Each device also counts the number of CCLKs during configuration. Two conditions have to be met in order for the DONE pin to go high: - the chip's internal memory must be full, and - the configuration length count must be met, exactly. This is important because the counter that determines when the length count is met begins with the very first CCLK, not the first one after the preamble. Therefore, if a stray bit is inserted before the preamble, or the data source is not ready at the time of the first CCLK, the internal counter that holds the number of CCLKs will be one ahead of the actual number of data bits read. At the end of configuration, the configuration memory will be full, but the number of bits in the internal counter will not match the expected length count. As a consequence, a Master mode device will continue to send out CCLKs until the internal counter turns over to zero, and then reaches the correct length count a second time. This will take several seconds [2²⁴ * CCLK period] — which is sometimes interpreted as the device not configuring at all. If it is not possible to have the data ready at the time of the first CCLK, the problem can be avoided by increasing the number in the length count by the appropriate value. The *XACT User Guide* includes detailed information about manually altering the length count. Note that DONE is an open-drain output and does not go High unless an internal pull-up is activated or an external pull-up is attached. The internal pull-up is activated as the default by the bitstream generation software. #### Release of User I/O After DONE Goes High By default, the user I/O are released one CCLK cycle after the DONE pin goes High. If CCLK is not clocked after DONE goes High, the outputs remain in their initial state — 3-stated, with a 50 k Ω - 100 k Ω pull-up. The delay from DONE High to active user I/O is controlled by an option to the bitstream generation software. #### Release of Global Set/Reset After DONE Goes High By default, Global Set/Reset (GSR) is released two CCLK cycles after the DONE pin goes High. If CCLK is not clocked twice after DONE goes High, all flip-flops are held in their initial set or reset state. The delay from DONE High to GSR inactive is controlled by an option to the bitstream generation software. #### Configuration Complete After DONE Goes High Three full CCLK cycles are required after the DONE pin goes High, as shown in Figure 47 on page 53. If CCLK is not clocked three times after DONE goes High, readback cannot be initiated and most boundary scan instructions cannot be used. ## **Configuration Through the Boundary Scan Pins** XC4000 Series devices can be configured through the boundary scan pins. The basic procedure is as follows: - Power up the FPGA with INIT held Low (or drive the
PROGRAM pin Low for more than 300 ns followed by a High while holding INIT Low). Holding INIT Low allows enough time to issue the CONFIG command to the FPGA. The pin can be used as I/O after configuration if a resistor is used to hold INIT Low. - Issue the CONFIG command to the TMS input - Wait for INIT to go High - Sequence the boundary scan Test Access Port to the SHIFT-DR state - Toggle TCK to clock data into TDI pin. The user must account for all TCK clock cycles after INIT goes High, as all of these cycles affect the Length Count compare. For more detailed information, refer to the Xilinx application note XAPP017, "Boundary Scan in XC4000 Devices." This application note also applies to XC4000E and XC4000X devices. **Table 22: Pin Functions During Configuration** | CONFIGURATION MODE <m2:m1:m0></m2:m1:m0> | | | | | | | | |--|-----------------------------|---------------------------------|------------------------------|------------------------------------|----------------------------------|-------------------|--| | SLAVE
SERIAL
<1:1:1> | MASTER
SERIAL
<0:0:0> | SYNCH.
PERIPHERAL
<0:1:1> | ASYNCH. PERIPHERAL <1:0:1> | MASTER
PARALLEL DOWN
<1:1:0> | MASTER
PARALLEL UP
<1:0:0> | USER
OPERATION | | | M2(HIGH) (I) | M2(LOW) (I) | M2(LOW) (I) | M2(HIGH) (I) | M2(HIGH) (I) | M2(HIGH) (I) | (I) | | | M1(HIGH) (I) | M1(LOW) (I) | M1(HIGH) (I) | M1(LOW) (I) | M1(HIGH) (I) | M1(LOW) (I) | (O) | | | M0(HIGH) (I) | M0(LOW) (I) | M0(HIGH) (I) | M0(HIGH) (I) M0(LOW) (I) M0(| | M0(LOW) (I) | (I) | | | HDC (HIGH) | I/O | | | LDC (LOW) | I/O | | | ĪNIT | ĪNIT | ĪNIT | ĪNIT | ĪNIT | ĪNIT | I/O | | | DONE | | PROGRAM (I) | PROGRAM | | | CCLK (I) | CCLK (O) | CCLK (I) | CCLK (O) | CCLK (O) | CCLK (O) | CCLK (I) | | | | | RDY/BUSY (O) | RDY/BUSY (O) | RCLK (O) | RCLK (O) | I/O | | | | | | RS (I) | | | I/O | | | | | | CSO (I) | | | I/O | | | | | DATA 7 (I) | DATA 7 (I) | DATA 7 (I) | DATA 7 (I) | I/O | | | | | DATA 6 (I) | DATA 6 (I) | DATA 6 (I) | DATA 6 (I) | I/O | | | | | DATA 5 (I) | DATA 5 (I) | DATA 5 (I) | DATA 5 (I) | I/O | | | | | DATA 4 (I) | DATA 4 (I) | DATA 4 (I) | DATA 4 (I) | I/O | | | | | DATA 3 (I) | DATA 3 (I) | DATA 3 (I) | DATA 3 (I) | I/O | | | | | DATA 2 (I) | DATA 2 (I) | DATA 2 (I) | DATA 2 (I) | I/O | | | | | DATA 1 (I) | DATA 1 (I) | DATA 1 (I) | DATA 1 (I) | I/O | | | DIN (I) | DIN (I) | DATA 0 (I) | DATA 0 (I) | DATA 0 (I) | DATA 0 (I) | I/O | | | DOUT | DOUT | DOUT | DOUT | DOUT | DOUT | SGCK4-GCK6-I/O | | | TDI | TDI | TDI | TDI | TDI | TDI | TDI-I/O | | | TCK | TCK | TCK | TCK | TCK | TCK | TCK-I/O | | | TMS | TMS | TMS | TMS | TMS | TMS | TMS-I/O | | | TDO | TDO | TDO | TDO | TDO | TDO | TDO-(O) | | | | | | WS (I) | A0 | A0 | I/O | | | | | | | A1 | A1 | PGCK4-GCK7-I/O | | | | | | CS1 | A2 | A2 | I/O | | | | | | • | A3 | A3 | I/O | | | | | | | A4 | A4 | I/O | | | | | | | A5 | A5 | I/O | | | | | | | A6 | A6 | I/O | | | | | | | A7 | A7 | I/O | | | | | | | A8 | A8 | I/O | | | | | | | A9 | A9 | I/O | | | | | | | A10 | A10 | I/O | | | | | | | A11 | A11 | I/O | | | | | | | A12 | A12 | I/O | | | | | | | A13 | A13 | I/O | | | | | | | A14 | A14 | I/O | | | | | | | A15 | A15 | SGCK1-GCK8-I/O | | | | | | | A16 | A16 | PGCK1-GCK1-I/O | | | | | | | A17 | A17 | I/O | | | | | | | A18* | A18* | I/O | | | | | | | A19* | A19* | I/O | | | | | | | A20* | A20* | I/O | | | | | | | A21* | A21* | I/O | | | | | | | | | ALL OTHERS | | | | Description | | Symbol | Min | Max | Units | |------|------------------------|---|------------------|-----|-----|-------| | | Delay to Address valid | 1 | T _{RAC} | 0 | 200 | ns | | RCLK | Data setup time | 2 | T _{DRC} | 60 | | ns | | | Data hold time | 3 | T _{RCD} | 0 | | ns | Notes: 1. At power-up, Vcc must rise from 2.0 V to Vcc min in less than 25 ms, otherwise delay configuration by pulling PROGRAM Low until Vcc is valid. 2. The first Data byte is loaded and CCLK starts at the end of the first RCLK active cycle (rising edge). This timing diagram shows that the EPROM requirements are extremely relaxed. EPROM access time can be longer than 500 ns. EPROM data output has no hold-time requirements. Figure 55: Master Parallel Mode Programming Switching Characteristics #### Synchronous Peripheral Mode Synchronous Peripheral mode can also be considered Slave Parallel mode. An external signal drives the CCLK input(s) of the FPGA(s). The first byte of parallel configuration data must be available at the Data inputs of the lead FPGA a short setup time before the rising CCLK edge. Subsequent data bytes are clocked in on every eighth consecutive rising CCLK edge. The same CCLK edge that accepts data, also causes the RDY/BUSY output to go High for one CCLK period. The pin name is a misnomer. In Synchronous Peripheral mode it is really an ACKNOWLEDGE signal. Synchronous operation does not require this response, but it is a meaningful signal for test purposes. Note that RDY/BUSY is pulled High with a high-impedance pullup prior to $\overline{\text{INIT}}$ going High. The lead FPGA serializes the data and presents the preamble data (and all data that overflows the lead device) on its DOUT pin. There is an internal delay of 1.5 CCLK periods, which means that DOUT changes on the falling CCLK edge, and the next FPGA in the daisy chain accepts data on the subsequent rising CCLK edge. In order to complete the serial shift operation, 10 additional CCLK rising edges are required after the last data byte has been loaded, plus one more CCLK cycle for each daisy-chained device. Synchronous Peripheral mode is selected by a <011> on the mode pins (M2, M1, M0). Figure 56: Synchronous Peripheral Mode Circuit Diagram 6-64 ## **Configuration Switching Characteristics** ### Master Modes (XC4000E/EX) | Description | | Symbol | Min | Max | Units | | |----------------------------|-------------------|-------------------|------------------------|-----|------------|--| | | M0 = High | T _{POR} | 10 | 40 | ms | | | Power-On Reset | M0 = Low | T _{POR} | 40 | 130 | ms | | | Program Latency | | T _{PI} | T _{Pl} 30 200 | | | | | | | | | | CLB column | | | CCLK (output) Delay | | T _{ICCK} | 40 | 250 | μs | | | CCLK (output) Period, slow | T _{CCLK} | 640 | 2000 | ns | | | | CCLK (output) Period, fast | T _{CCLK} | 80 | 250 | ns | | | ### Master Modes (XC4000XL) | Description | | Symbol | Min | Max | Units | |----------------------------|-----------|-------------------|-----|------|------------| | | M0 = High | T _{POR} | 10 | 40 | ms | | Power-On Reset | M0 = Low | T _{POR} | 40 | 130 | ms | | Program Latency | | T _{Pl} | 30 | 200 | μs per | | | | | | | CLB column | | CCLK (output) Delay | | T _{ICCK} | 40 | 250 | μs | | CCLK (output) Period, slow | | T _{CCLK} | 540 | 1600 | ns | | CCLK (output) Period, fast | | T _{CCLK} | 67 | 200 | ns | ### Slave and Peripheral Modes (All) | Description | Symbol | Min | Max | Units | |--------------------------------|-------------------|-----|-----|----------------------| | Power-On Reset | T _{POR} | 10 | 33 | ms | | Program Latency | T _{Pl} | 30 | 200 | μs per
CLB column | | CCLK (input) Delay (required) | T _{ICCK} | 4 | | μs | | CCLK (input) Period (required) | T _{CCLK} | 100 | | ns | ## **Product Availability** Table 24, Table 25, and Table 26 show the planned packages and speed grades for XC4000-Series devices. Call your local sales office for the latest availability information, or see the Xilinx website at http://www.xilinx.com for the latest revision of the specifications. Table 24: Component Availability Chart for XC4000XL FPGAs | | PINS | 84 | 100 | 100 | 144 | 144 | 160 | 160 | 176 | 176 | 208 | 208 | 240 | 240 | 256 | 299 | 304 | 352 | 411 | 432 | 475 | 559 | 560 | |-------------|------------|----------------|----------------|----------------|----------------|--------------------|-------------------|----------------|----------------|--------------------|-------------------|----------------|-------------------|----------------|---------------|---------------|-------------------|---------------|---------------|---------------|---------------|---------------|---------------| Т | YPE | Plast.
PLCC | Plast.
PQFP | Plast.
VQFP | Plast.
TQFP | High-Perf.
TQFP | High-Perf.
QFP | Plast.
PQFP | Plast.
TQFP | High-Perf.
TQFP | High-Perf.
QFP | Plast.
PQFP | High-Perf.
QFP | Plast.
PQFP | Plast.
BGA | Ceram.
PGA | High-Perf.
QFP | Plast.
BGA | Ceram.
PGA | Plast.
BGA | Ceram.
PGA | Ceram.
PGA | Plast.
BGA | | CC | ODE | PC84 | PQ100 | VQ100 | TQ144 | HT144 | HQ160 | PQ160 | TQ176 | HT176 | HQ208 | PQ208 | HQ240 | PQ240 | BG256 | PG299 | HQ304 | BG352 | PG411 | BG432 | PG475 | PG559 | BG560 | | | -3 | СІ | СІ | СІ | XC4002XL | -2 | СІ | СІ | СІ | XO4002XL | -1 | СІ | СІ | СІ | -09C | С | С | С | -3 | СІ | СІ | СІ | СІ | | | СІ | | | | СІ | | | | | | | | | | | | | XC4005XL | -2 | CI | С | CI | CI | | | CI | | | | CI | | | | | | | | | | | | | | -1
-09C | C I | CI | C I | C I | | | C I | | | | C I | | | | | | | | | | | | | | -3 | CI | CI | | CI | | | CI | СІ | | | CI | | | СІ | | | | | | | | | | XC4010XL | -2 | СІ | СІ | | СІ | | | СІ | CI | | | СІ | | | CI | | | | | | | | | | AC40 IUAL | -1 | СІ | СІ | | СІ | | | СІ | СІ | | | СІ | | | CI | | | | | | | | | | | -09C | С | С | | С | | | С | С | | | С | | | С | | | | | | | | | | | -3
-2 | | | | | CI | CI | | | | | | | | | | XC4013XL | -1 | | | | | CI | CI | | | | | | | | | | AC4013AL | -09C | | | | | C | | C | | C | | C | | C | C | | | | | | | | | | | -08C | | | | | С | | С | | С | | С | | С | С | | | | | | | | | | | -3 | | | | | СІ | | CI | | CI | | СІ | | CI | СІ | | | | | | | | | | XC4020XL | -2 | | | | | СІ | СІ | | | | | | | | | | AC4020AL | -1 | | | | | СІ | | СІ | | СІ | |
СІ | | CI | СІ | | | | | | | | | | | -09C | | | | | С | | С | | С | | С | | С | С | | | | | | | | | | | -3 | | | | | | CI | | | | CI | | CI | | CI | CI | CI | CI | | | | | | | XC4028XL | -2
-1 | | | | | | CI | | | | CI | | CI | | CI | CI | CI | CI | | | | | | | | -09C | | | | | | C | | | | C | | С | | С | C | C | C | | | | | | | | -3 | | | | | | CI | | | | CI | | CI | | | | CI | CI | СІ | CI | | | | | | -2 | | | | | | СІ | | | | СІ | | С | | | | CI | CI | CI | СІ | | | | | XC4036XL | -1 | | | | | | СІ | | | | СІ | | СІ | | | | СІ | СІ | СІ | СІ | | | | | | -09C | | | | | | O | | | | С | | С | | | | С | С | С | С | | | | | | -08C | | | | | | С | | | | С | | С | | | | С | С | С | С | | | | | | -3 | | | | | | CI | | | | CI | | CI | | | | CI | CI | CI | CI | | | | | XC4044XL | -2
-1 | | | | | | CI | | | | CI | | CI | | | | CI | CI | CI | CI | | | | | - | -09C | | | | | | С | | | | С | | С | | | | С | C | С | С | | | | | | -3 | | | | | | | | | | | | CI | | | | CI | <u> </u> | CI | CI | | | СІ | | VC4050VI | -2 | | | | | | | | | | | | CI | | | | CI | | CI | CI | | | CI | | XC4052XL | -1 | | | | | | | | | | | | СІ | | | | СІ | | СІ | СІ | | | СІ | | | -09C | | | | | | | | | | | | С | | | | С | | С | С | | | С | | | -3 | | | | | | | | | | | | CI | | | | CI | | | CI | CI | | CI | | VC4000VI | -2 | | | | | | | | | | | | CI | | | | CI | | | CI | CI | | CI | | XC4062XL | -1
-09C | | | | | | | | | | | | C I | | | | CI | | | C I | C I | | CI
C | | | -09C | | | | | | | | | | | | С | | - | | С | | | С | С | | С | | | -3 | | | | | | | | | | | | | | | | | | | CI | | CI | CI | | \\ 0 | -2 | | | | | | | | | | | | | | | | | | | CI | | CI | CI | | XC4085XL | -1 | | | | | | | | | | | | | | | | | | | CI | | CI | CI | | | -09C | | | | | | | | | | | | | | | | | | | С | | С | С | | 1/29/99 | 550 | | | | | | | | | | | | | | | | | | | J | | | | 1/29/99 $C = Commercial \ T_J = 0^{\circ} \ to \ +85^{\circ}C$ I= Industrial $T_J = -40^{\circ}C$ to $+100^{\circ}C$ ## XC4000 Series Electrical Characteristics and Device-Specific Pinout Table For the latest Electrical Characteristics and package/pinout information for each XC4000 Family, see the Xilinx web site at http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp ## **Ordering Information** X9020 #### **Revision Control** | Version | Description | |---------------|---| | 3/30/98 (1.5) | Updated XC4000XL timing and added XC4002XL | | 1/29/99 (1.5) | Updated pin diagrams | | 5/14/99 (1.6) | Replaced Electrical Specification and pinout pages for E, EX, and XL families with separate updates and | | | added URL link for electrical specifications/pinouts for Web users |