

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

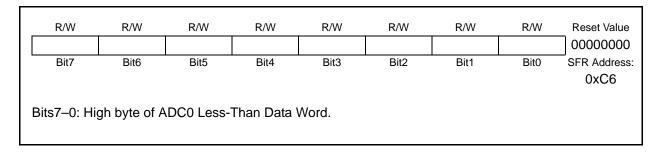
Details

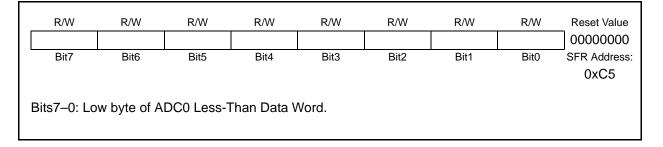
Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	20
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.25V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VFQFN Exposed Pad
Supplier Device Package	28-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f411-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

25.2.Capture/Compare Modules	251
25.2.1.Edge-triggered Capture Mode	
25.2.2.Software Timer (Compare) Mode	
25.2.3.High Speed Output Mode	
25.2.4.Frequency Output Mode	255
25.2.5.8-Bit Pulse Width Modulator Mode	256
25.2.6.16-Bit Pulse Width Modulator Mode	257
25.3.Watchdog Timer Mode	257
25.3.1.Watchdog Timer Operation	258
25.3.2.Watchdog Timer Usage	
25.4.Register Descriptions for PCA	
26.C2 Interface	
26.1.C2 Interface Registers	
26.2.C2 Pin Sharing	
2012.02.	201


Figure 9.3. Comparator Hysteresis Plot	85
10. CIP-51 Microcontroller	
Figure 10.1. CIP-51 Block Diagram	93
11. Memory Organization and SFRs	
Figure 11.1. Memory Map	103
12. Interrupt Handler	
13. Prefetch Engine	
14. Cyclic Redundancy Check Unit (CRC0)	
Figure 14.1. CRC0 Block Diagram	
Figure 14.2. Bit Reverse Register	124
15. Reset Sources	
Figure 15.1. Reset Sources	
Figure 15.2. Power-On and VDD Monitor Reset Timing	128
16. Flash Memory	
Figure 16.1. Flash Program Memory Map	137
17. External RAM	
18. Port Input/Output	
Figure 18.1. Port I/O Functional Block Diagram	147
Figure 18.2. Port I/O Cell Block Diagram	148
Figure 18.3. Crossbar Priority Decoder with No Pins Skipped	
Figure 18.4. Crossbar Priority Decoder with Crystal Pins Skipped	
Figure 18.5. Port 0 Input Overdrive Current Range	152
19. Oscillators	
Figure 19.1. Oscillator Diagram	165
Figure 19.2. 32.768 kHz External Crystal Example	169
Figure 19.3. Example Clock Multiplier Output	172
20. smaRTClock (Real Time Clock)	
Figure 20.1. smaRTClock Block Diagram	177
21.SMBus	
Figure 21.1. SMBus Block Diagram	191
Figure 21.2. Typical SMBus Configuration	192
Figure 21.3. SMBus Transaction	193
Figure 21.4. Typical SMBus SCL Generation	196
Figure 21.5. Typical Master Transmitter Sequence	202
Figure 21.6. Typical Master Receiver Sequence	202
Figure 21.7. Typical Slave Receiver Sequence	
Figure 21.8. Typical Slave Transmitter Sequence	
22. UART0	
Figure 22.1. UART0 Block Diagram	207
Figure 22.2. UART0 Baud Rate Logic	
Figure 22.3. UART Interconnect Diagram	
Figure 22.4. 8-Bit UART Timing Diagram	
Figure 22.5. 9-Bit UART Timing Diagram	
Figure 22.6. UART Multi-Processor Mode Interconnect Diagram	


NOTES:

SFR Definition 5.9. ADC0LTH: ADC0 Less-Than Data High Byte

SFR Definition 5.10. ADC0LTL: ADC0 Less-Than Data Low Byte

SFR Definition 9.2. CPT0MX: Comparator0 MUX Selection

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CMX0N3						CMX0P1	CMX0P0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address 0x9F
					e Input MUX Se the Comparato		e input.	
[CMX0N3	CMX0N2	CMX0N1	CMX0N0	Negative Inp	out		
	0	0	0	0	P0.1			
	0	0	0	1	P0.3			
	0	0	1	0	P0.5			
-	0	0	1	1	P0.7			
_	0	1	0	0	P1.1			
	0	1	0	1	P1.3			
	0	1	1	0	P1.5			
	0	1	1	1	P1.7			
-	1	0	0	0	P2.1			
_	1	0	0	1	P2.3*			
		0	1	0	P2.5*			
-	1		4	4	D O 7			
-	1	0	1	1	P2.7			
-	1 1	0 1	1 x on the C805	х	P2.7 Reserved			
	1 1 *Note: Ava CMX0P3–0 These bits	0 1 nilable only o CMX0P0: 0 select whice	x on the C805 Comparator ch Port pin	x 1F410/2. r0 Positive is used as	Reserved Input MUX Sel the Comparato	or0 positive	input.	
	1 *Note: Ava CMX0P3–0 These bits CMX0P3	0 1 iilable only o CMX0P0: 0 select whio CMX0P2	x on the C805 Comparator ch Port pin CMX0P1	x 1F410/2. r0 Positive is used as CMX0P0	Reserved Input MUX Sel the Comparato Positive Inp	or0 positive	input.	
	1 *Note: Ava CMX0P3–0 These bits CMX0P3 0	0 1 iilable only o CMX0P0: 0 select whio CMX0P2 0	x on the C805 Comparator ch Port pin CMX0P1 0	x 1F410/2. r0 Positive is used as CMX0P0 0	Reserved Input MUX Sel the Comparato Positive Inp P0.0	or0 positive	input.	
	1 1 *Note: Ava CMX0P3–0 These bits CMX0P3 0 0 0	0 1 nilable only of CMX0P0: 0 select whice CMX0P2 0 0	x on the C805 Comparator ch Port pin CMX0P1 0 0	x 1F410/2. r0 Positive is used as CMX0P0 0 1	Reserved Input MUX Sel the Comparato Positive Inp P0.0 P0.2	or0 positive	input.	
	1 1 *Note: Ava CMX0P3–0 These bits CMX0P3 0 0 0 0	0 1 hilable only of CMX0P0: C select which CMX0P2 0 0 0	x on the C805 Comparator ch Port pin CMX0P1 0 0 1	x 1F410/2. r0 Positive is used as CMX0P0 0 1 0	Reserved Input MUX Sel the Comparato Positive Inp P0.0 P0.2 P0.4	or0 positive	input.	
	1 *Note: Ava CMX0P3–0 These bits CMX0P3 0 0 0 0 0 0 0	0 1 iilable only o CMX0P0: C select whic CMX0P2 0 0 0 0 0	x on the C805 Comparator ch Port pin CMX0P1 0 0 1 1	x 1F410/2. r0 Positive is used as CMX0P0 0 1 0 1 1	Reserved Input MUX Sel the Comparato Positive Inp P0.0 P0.2 P0.4 P0.6	or0 positive	input.	
	1 *Note: Ava CMX0P3–0 These bits CMX0P3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 iilable only o CMX0P0: C select whic CMX0P2 0 0 0 0 0 1	x on the C805 Comparator ch Port pin CMX0P1 0 0 1 1 1 0	x 1F410/2. r0 Positive is used as CMX0P0 0 1 0 1 0 1 0	Reserved Input MUX Sel the Comparato Positive Inp P0.0 P0.2 P0.4 P0.6 P1.0	or0 positive	input.	
	1 1 *Note: Ava CMX0P3–0 These bits CMX0P3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 nilable only of CMX0P0: C select whice CMX0P2 0 0 0 0 0 1 1 1	x on the C805 Comparator ch Port pin CMX0P1 0 0 1 1 1 0 0	x 1F410/2. r0 Positive is used as CMX0P0 0 1 0 1 0 1 0 1	Reserved Input MUX Sel the Comparato Positive Inp P0.0 P0.2 P0.4 P0.6 P1.0 P1.2	or0 positive	input.	
	1 1 *Note: Ava CMX0P3–0 These bits CMX0P3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 iilable only o CMX0P0: C select whic CMX0P2 0 0 0 0 0 1 1 1	x on the C805 Comparator ch Port pin CMX0P1 0 0 1 1 0 0 1 1 1 0 0 1	x 1F410/2. r0 Positive is used as CMX0P0 0 1 0 1 0 1 0 1 0 1 0	Reserved Input MUX Sel the Comparato Positive Inp P0.0 P0.2 P0.4 P0.6 P1.0 P1.2 P1.4	or0 positive	input.	
	1 1 *Note: Ava CMX0P3–0 These bits CMX0P3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 iilable only of CMX0P0: C select white CMX0P2 0 0 0 0 0 0 1 1 1 1 1	x on the C805 Comparator ch Port pin CMX0P1 0 0 1 1 0 0 1 1 1 0 0 1 1 1	x 1F410/2. r0 Positive is used as CMX0P0 0 1 0 1 0 1 0 1 0 1 0 1	Reserved Input MUX Sel the Comparato Positive Inp P0.0 P0.2 P0.4 P0.6 P1.0 P1.2 P1.4 P1.6	or0 positive	input.	
	1 1 *Note: Ave CMX0P3–0 These bits CMX0P3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 iilable only o CMX0P0: C select whic CMX0P2 0 0 0 0 0 1 1 1 1 1 1 0	x on the C805 Comparator ch Port pin CMX0P1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0	x 1F410/2. r0 Positive is used as CMX0P0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Reserved Input MUX Sel the Comparato Positive Inp P0.0 P0.2 P0.4 P0.6 P1.0 P1.0 P1.2 P1.4 P1.6 P2.0	or0 positive	input.	
	1 1 *Note: Ava CMX0P3–0 These bits CMX0P3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 iilable only of CMX0P0: C select which CMX0P2 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	x on the C805 Comparator ch Port pin CMX0P1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0	x 1F410/2. r0 Positive is used as CMX0P0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Reserved Input MUX Sel the Comparato Po.0 P0.2 P0.4 P0.6 P1.0 P1.2 P1.4 P1.6 P2.0 P2.2	or0 positive	input.	
	1 1 *Note: Ave CMX0P3–0 These bits CMX0P3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 iilable only o CMX0P0: C select whic CMX0P2 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0	x on the C805 Comparator ch Port pin CMX0P1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1	x 1F410/2. r0 Positive is used as CMX0P0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Reserved Input MUX Sel the Comparato Positive Inp P0.0 P0.2 P0.4 P0.6 P1.0 P1.2 P1.4 P1.6 P2.0 P2.2 P2.4*	or0 positive	input.	
	1 1 *Note: Ave CMX0P3–0 These bits CMX0P3 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 iilable only of CMX0P0: C select which CMX0P2 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	x on the C805 Comparator ch Port pin CMX0P1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0	x 1F410/2. r0 Positive is used as CMX0P0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Reserved Input MUX Sel the Comparato Po.0 P0.2 P0.4 P0.6 P1.0 P1.2 P1.4 P1.6 P2.0 P2.2	or0 positive	input.	

Table 10.1. CIP-51 Instruction Set Summary ¹	(Continued)
---	-------------

Mnemonic	Description	Bytes	Clock Cycles		
ORL A, @Ri	OR indirect RAM to A	1	2		
ORL A, #data	OR immediate to A	2	2		
ORL direct, A	OR A to direct byte	2	2		
ORL direct, #data	OR immediate to direct byte	3	3		
XRL A, Rn	Exclusive-OR Register to A	1	1		
XRL A, direct	Exclusive-OR direct byte to A	2	2		
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2		
XRL A, #data	Exclusive-OR immediate to A	2	2		
XRL direct, A	Exclusive-OR A to direct byte	2	2		
XRL direct, #data	Exclusive-OR immediate to direct byte	3	3		
CLR A	Clear A	1	1		
CPL A	Complement A	1	1		
RL A	Rotate A left	1	1		
RLC A	Rotate A left through Carry	1	1		
RR A	Rotate A right	1	1		
RRC A	Rotate A right through Carry	1	1		
SWAP A	Swap nibbles of A	1	1		
	Data Transfer				
MOV A, Rn	Move Register to A	1	1		
MOV A, direct	Move direct byte to A	2	2		
MOV A, @Ri	Move indirect RAM to A	1	2		
MOV A, #data	Move immediate to A	2	2		
MOV Rn, A	Move A to Register	1	1		
MOV Rn, direct	Move direct byte to Register	2	2		
MOV Rn, #data	Move immediate to Register	2	2		
MOV direct, A	Move A to direct byte	2	2		
MOV direct, Rn	Move Register to direct byte	2	2		
MOV direct, direct	Move direct byte to direct byte	3	3		
MOV direct, @Ri	Move indirect RAM to direct byte	2	2		
MOV direct, #data	Move immediate to direct byte	3	3		
MOV @Ri, A	Move A to indirect RAM	1	2		
MOV @Ri, direct	Move direct byte to indirect RAM	2	2		
MOV @Ri, #data	Move immediate to indirect RAM	2	2		
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3		
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	4 to 7 ²		
MOVC A, @A+PC	Move code byte relative PC to A	1	4 to 7 ²		
MOVX A, @Ri	Move external data (8-bit address) to A	1	3		
MOVX @Ri, A	Move A to external data (8-bit address)	1	3		
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3		
MOVX @DPTR, A	Move A to external data (16-bit address)				
PUSH direct	Push direct byte onto stack	2	2		
Notes:		I			

Notes:

 Assumes PFEN = 1 for all instruction timing.
 MOVC instructions take 4 to 7 clock cycles depending on instruction alignment and the FLRT setting (SFR Definition 16.3. FLSCL: Flash Scale).

SFR Definition 12.3. EIE1: Extended Interrupt Enable 1
--

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
ET3	ECP1	ECP0	EPCA0	EADC0	EWADC0	ERTC0	ESMB0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
	SFR Address: 0x							: 0xE6			
Bit 7:	ET3: Enable Timer 3 Interrupt.										
	This bit sets		•	ner 3 interru	ipt.						
	0: Disable Ti		•								
	1: Enable int		•		TF3L or TF3	BH flags.					
Bit 6:	ECP1: Enab										
	This bit sets			1 interrupt.							
	0: Disable C										
D '' -	1: Enable int		•		CP1RIF or C	CP1FIF flag	js.				
Bit 5:	ECP0: Enab		· · ·								
	This bit sets			0 interrupt.							
	0: Disable C										
D:4 4.	1: Enable int		•				js.				
Bit 4:	EPCA0: Ena	•			` '	errupt.					
	This bit sets 0: Disable al		•	Au menup	IS.						
	1: Enable inf		•	atod by PC	0						
Bit 3:	EADC0: Ena										
Dit 5.	This bit sets				•	te interrun	ŀ				
	0: Disable A		•								
	1: Enable int										
Bit 2:	EWADC0: E					•					
DR Z.	This bit sets			•		n interrupt.					
	0: Disable A					in interrupti					
	1: Enable int					ad.					
Bit 1:	ERTC0: Ena					9-					
	This bit sets				nterrupt.						
	0: Disable sr		-								
	1: Enable int		•	ated by the	ALRM and C	DSCFAIL fl	ag.				
Bit 0:	ESMB0: Ena		•				5				
	This bit sets				t.						
	0: Disable al										
	1: Enable interrupt requests generated by SMB0.										

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
IN1PL	IN1SL2	IN1SL1	IN1SL0	INOPL	IN0SL2	IN0SL1	INOSLO	0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
							SFR Address	: 0xE4			
lote: Refer	to SFR Definition	24.1. "TCO	N: Timer Cont	rol" on page 2	35 for INT0/1 e	dge- or level-	sensitive interr	upt selection			
						0					
Bit 7:	IN1PL: /INT1	Polarity									
	0: /INT1 input is active low.										
	1: /INT1 input		•								
8its 6–4:	IN1SL2-0: /IN										
	These bits sel										
	pendent of the										
	peripheral tha										
	assign the Po					the selected	a pin (accor	npiisned b			
	setting to '1' th	he corresp	onding bit i	in register F	05KIP).						
	IN1SL2-0	/INT	1 Port Pin								
	000		P0.0								
	001		P0.1								
	010		P0.2								
	011		P0.3								
	100		P0.4								
	101		P0.5								
	110		P0.6								
	111		P0.7								
Bit 3:	IN0PL: /INT0										
	0: /INT0 interr	•									
	1: /INT0 interr	•	•								
3its 2–0:	INT0SL2-0: /										
	These bits sel pendent of the										
	peripheral tha										
	assign the Po										
	setting to '1' the		•	•							
	eeting te i t		on an ig sit								
	IN0SL2-0	/INT	0 Port Pin								
	000		P0.0								
	001		P0.1								
	010		P0.2								
	011		P0.3								
	100		P0.4								
	101		P0.5								
	110	1	P0.6								
	111		P0.7								

For example, the 16-bit 'F41x CRC algorithm can be described by the following code:

```
unsigned short UpdateCRC (unsigned short CRC_acc, unsigned char CRC_input)
ł
   unsigned char i;
                                        // loop counter
   #define POLY 0x1021
   // Create the CRC "dividend" for polynomial arithmetic (binary arithmetic
   // with no carries)
   CRC_acc = CRC_acc ^ (CRC_input << 8);</pre>
   // "Divide" the poly into the dividend using CRC XOR subtraction
   // CRC_acc holds the "remainder" of each divide
   11
   // Only complete this division for 8 bits since input is 1 byte
   for (i = 0; i < 8; i++)
   {
      // Check if the MSB is set (if MSB is 1, then the POLY can "divide"
      // into the "dividend")
      if ((CRC_acc & 0x8000) == 0x8000)
      {
         // if so, shift the CRC value, and XOR "subtract" the poly
         CRC_acc = CRC_acc << 1;
         CRC_acc ^= POLY;
      }
      else
      {
         // if not, just shift the CRC value
         CRC_acc = CRC_acc << 1;</pre>
      }
   }
   // Return the final remainder (CRC value)
   return CRC_acc;
}
```

The following table lists several input values and the associated outputs using the 16-bit 'F41x CRC algorithm (an initial value of 0xFFFF is used):

Input	Output
0x63	0xBD35
0x8C	0xB1F4
0x7D	0x4ECA
0xAA, 0xBB, 0xCC	0x6CF6
0x00, 0x00, 0xAA, 0xBB, 0xCC	0xB166

16. Flash Memory

On-chip, re-programmable Flash memory is included for program code and non-volatile data storage. The Flash memory can be programmed in-system through the C2 interface or by software using the MOVX write instruction. Once cleared to logic 0, a Flash bit must be erased to set it back to logic 1. Flash bytes would typically be erased (set to 0xFF) before being reprogrammed. The write and erase operations are automatically timed by hardware for proper execution; data polling to determine the end of the write/erase operations is not required. Code execution is stalled during Flash write/erase operations. Refer to Table 16.2 for complete Flash memory electrical characteristics.

16.1. Programming The Flash Memory

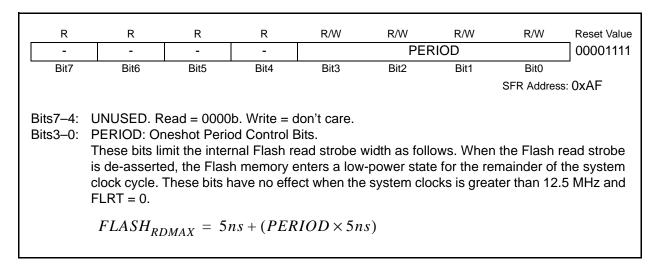
The simplest means of programming the Flash memory is through the C2 interface using programming tools provided by Silicon Laboratories or a third party vendor. This is the only means for programming a non-initialized device. For details on the C2 commands to program Flash memory, see Section "26. C2 Interface" on page 265. For detailed guidelines on writing or erasing Flash from firmware, please see Section "16.4. Flash Write and Erase Guidelines" on page 139.

To ensure the integrity of the Flash contents, the on-chip VDD Monitor must be enabled to the higher setting (VDMLVL = '1') in any system that includes code that writes and/or erases Flash memory from software. Furthermore, there should be no delay between enabling the V_{DD} Monitor and enabling the V_{DD} Monitor as a reset source. Any attempt to write or erase Flash memory while the V_{DD} Monitor disabled will cause a Flash Error device reset.

16.1.1. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash write or erase is attempted before the key codes have been written properly. The Flash lock resets after each write or erase; the key codes must be written again before a following Flash operation can be performed. The FLKEY register is detailed in SFR Definition 16.2.

16.1.2. Flash Erase Procedure


The Flash memory can be programmed by software using the MOVX write instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write operations must be enabled by: (1) setting the PSWE Program Store Write Enable bit (PSCTL.0) to logic 1 (this directs the MOVX writes to target Flash memory); and (2) Writing the Flash key codes in sequence to the Flash Lock register (FLKEY). The PSWE bit remains set until cleared by software.

A write to Flash memory can clear bits to logic 0 but cannot set them; only an erase operation can set bits to logic 1 in Flash. **A byte location to be programmed should be erased before a new value is written.** The Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting all bytes in the page to 0xFF). To erase an entire 512-byte page, perform the following steps:

- Step 1. Disable interrupts (recommended).
- Step 2. Write the first key code to FLKEY: 0xA5.
- Step 3. Write the second key code to FLKEY: 0xF1.
- Step 4. Set the PSEE bit (register PSCTL).
- Step 5. Set the PSWE bit (register PSCTL).
- Step 6. Using the MOVX instruction, write a data byte to any location within the 512-byte page to be erased.
- Step 7. Clear the PSWE and PSEE bits.
- Step 8. Re-enable interrupts.

SFR Definition 16.4. ONESHOT: Flash Oneshot Period

Table 16.2. Flash Electrical Characteristics

V_{DD} = 2.0 to 2.75 V; -40 to +85 °C unless otherwise specified. Typical values are given at 25 °C.

Parameter	Conditions	Min	Тур	Max	Units
Flash Size	C8051F410/1	32768*			butoo
FIASIT SIZE	C8051F412/3	16384	—	_	bytes
Endurance	V _{DD} is 2.2 V or greater	20 k	90 k	—	Erase/Write
Erase Cycle Time	FLSCL.3-0 written to '0000'	16	20	24	ms
Write Cycle Time	FLSCL.3-0 written to '0000'	38	46	57	μs
Read Cycle Time		40	_	_	ns
V _{DD}	Write/Erase Operations	2.25	_	—	V
*Note: 512 bytes at addr	esses 0x7E00 to 0x7FFF are reserved				

(P1MATCH & P1MASK). This allows Software to be notified if a certain change or pattern occurs on P0 or P1 input pins regardless of the XBRn settings. A port match event can cause an interrupt if EMAT (EIE2.1) is set to '1' or cause the internal oscillator to awaken from SUSPEND mode. See Section "19.1.1. Internal Oscillator Suspend Mode" on page 166 for more information.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Address	s: 0x80
Bits7–0:	P0.[7:0] Write - Outpu 0: Logic Low 1: Logic High Read - Alway pin when cor 0: P0.n pin is 1: P0.n pin is	Output. Output (h ys reads '0 nfigured as s logic low.	igh impedar if selected digital input	nce if corres as analog i	sponding PC)MDOUT.n	,	reads Port

SFR Definition 18.3. P0: Port0

SFR Definition 18.4. POMDIN: Port0 Input Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Addres	s: 0xF1
Bits7–0:	Analog Input Port pins cor	nfigured as			· ·	• /	driver, and	digital
Bits7–0:	• •	nfigured as Ibled. Iding P0.n	analog inpu pin is config	its have the ured as an	ir weak pull analog inpu	up, digital t. In order	for the P0.	n pin to be

R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	Reset Value		
MULEN	MULINIT	MULRDY		MULDIV		MU	LSEL	0000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
							SFR Addres	ss: 0xAB		
Note:	The maximu	m SYSCLK	is 50 MH	z, so the Cloc	k Multiplie	r output sho	ould be sca	aled accord-		
	ingly.				·	·				
Bit7:	MULEN: Clo 0: Clock Mul 1: Clock Mul	tiplier disable	ed.							
Bit6:	MULINIT: CI			`						
DILO.				- Clock Multiplie	r is onable	od Onco or	abled writ	ting a '1' to		
				iplier. The ML						
	is stabilized.									
Bit5:	MULRDY: C	lock Multiplie	r Ready							
Dito.				atus of the Clo	ock Multinli	ier				
	0: Clock Mul									
	1: Clock Mul									
Bits4–2:				Scaling Facto	r					
Dit34 2.	These bits s									
				d by a factor	nf 1					
				d by a factor						
				d by a factor						
				d by a factor						
						(2)				
	100: Clock Multiplier Output scaled by a factor of 2/4 (or 1/2).									
	101: Clock Multiplier Output scaled by a factor of 2/5*.									
	110: Clock Multiplier Output scaled by a factor of 2/6 (or 1/3).111: Clock Multiplier Output scaled by a factor of 2/7*.									
				ity cycle is not		so sottings				
Bits1–0:	MULSEL: CI					se settings.				
Dita 1=0.				ed to the Cloc	k Multinlie	r				
			SK Suppli		R Multiplie					
	MU	LSEL	Se	lected Input	Clock	Clock M	ultiplier O	utput		
							JLDIV = 00			
		00	Int	ternal Oscillat	or / 2		I Oscillator			
))))		External Oscill			al Oscillato			
		10		ternal Oscilla			al Oscillato			
		10		nternal Oscilla			I Oscillator			
		11		memai Oscilla	3101	interna	u Oscillator	х 4		

20.1. smaRTClock Interface

The smaRTClock Interface consists of three registers: RTC0KEY, RTC0ADR, and RTC0DAT. These interface registers are located on the CIP-51's SFR map and provide access to the smaRTClock internal registers listed in Table 20.1. The smaRTClock internal registers can only be accessed indirectly through the smaRTClock Interface.

20.1.1. smaRTClock Lock and Key Functions

The smaRTClock Interface is protected with a lock and key function. The smaRTClock Lock and Key Register (RTC0KEY) must be written with the correct key codes, in sequence, before writes and reads to RTC0ADR and RTC0DAT may be performed. The key codes are: 0xA5, 0xF1. There are no timing restrictions, but the key codes must be written in order. If the key codes are written out of order, the wrong codes are written, or an invalid read or write is attempted, further writes and reads to RTC0ADR and RTC0DAT will be disabled until the next system reset. Once the smaRTClock interface is unlocked, software may perform accesses of the smaRTClock registers until an invalid access, the interface is locked, or a system reset.

Reading the RTC0KEY register at any time will provide the smaRTClock Interface status and will not interfere with the sequence that is being written. The RTC0KEY register description in SFR Definition 20.1 lists the definition of each status code.

20.1.2. Using RTC0ADR and RTC0DAT to Access smaRTClock Internal Registers

The smaRTClock internal registers can be read and written using RTC0ADR and RTC0DAT. The RTC0ADR register selects the smaRTClock internal register that will be targeted by subsequent reads or writes. Prior to each read or write, BUSY (RTC0ADR.7) should be checked to make sure the smaRTClock Interface is not busy performing another read or write operation. A smaRTClock Write operation is initiated by writing to the RTC0DAT register. Below is an example of writing to a smaRTClock internal register.

- Step 1. Poll BUSY (RTC0ADR.7) until it returns a '0'.
- Step 2. Write 0x06 to RTC0ADR. This selects the internal RTC0CN register at smaRTClock Address 0x06.
- Step 3. Write 0x00 to RTC0DAT. This operation writes 0x00 to the internal RTC0CN register.

An smaRTClock Read operation is initiated by setting the smaRTClock Interface Busy bit. This transfers the contents of the internal register selected by RTC0ADR to RTC0DAT. The transferred data will remain in RTC0DAT until the next read or write operation. Below is an example of reading a smaRTClock internal register.

- Step 1. Poll BUSY (RTC0ADR.7) until it returns a '0'.
- Step 2. Write 0x06 to RTC0ADR. This selects the internal RTC0CN register at smaRTClock Address 0x06.
- Step 3. Write '1' to BUSY. This initiates the transfer of data from RTC0CN to RTC0DAT.
- Step 4. Poll BUSY (RTC0ADR.7) until it returns a '0'.
- Step 5. Read data from RTC0DAT. This data is a copy of the RTC0CN register.

Note: The RTC0ADR and RTC0DAT registers will retain their state upon a device reset.

20.1.3. smaRTClock Interface Autoread Feature

When Autoread is enabled, each read from RTC0DAT initiates the next indirect read operation on the smaRTClock internal register selected by RTC0ADR. Software should set the BUSY bit once at the begin-

Internal Register Definition 20.4. RTC0CN: smaRTClock Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
RTC0EN	I MCLKEN	OSCFAIL	RTC0TR	RTC0AEN	ALRM	RTC0SET	RTC0CAP	Variable
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	smaRTClock Address:
Note:	This register is n	ot an SFR. It c	an only be ac	cessed indirectly	/ through RT	COADR and R	TC0DAT.	0x06
Bit 7:	RTC0EN: sn							
			-	cillator disabl				
	battery if V _{DI}		i crystal os	cillator enable	ed. smar i	I Clock can s	switch to the	раскир
Bit 6:			Missing Cl	ock Detector	Enable Bi	t.		
Dit 0.				issing clock of			FAIL bit if th	e smaRT-
				pproximately				
		•		ctor disabled.				
D:+ C.		-		ctor enabled.				
Bit 5:	OSCFAIL: sr			ock detector	timeout or	cure When	the smaRT	Clock
			•	causes the C				
	•		-	natically clea				
Bit 4:	RTC0TR: sm	naRTClock	Timer Run	Control.	-			
	0: smaRTClo							
D:+ 0.				very smaRTC	Clock clock	k period.		
Bit 3:	RTC0AEN: s 0: smaRTClo							
	1: smaRTCld							
Bit 2:	ALRM: smal							
				clock timer va	lue is gre a	ater than or	equal to th	e value of
		•		maRTClock I	•		•	
			smaRTClo	ock interrupt s	service rou	utine. This bi	t is not auto	matically
	cleared by h		0					
Bit 1:	RTCOSET: s			7-bit value in		En rogistors	to be transf	orrod to
				utomatically				
	complete.			atomatically	biodrod by			
Bit 0:	RTC0CAP: s	maRTClock	Capture E	Bit.				
	-			7-bit smaRT(
		registers. T	his bit is au	itomatically c	leared by	hardware or	nce the trans	sfer is
	complete.							

R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
SOMOD	E -	MCE0	REN0	TB80	RB80	TI0	RI0	0100000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							SFR Addres	ss: 0x98
Bit7:	SOMODE: S							
	This bit sele		•					
	0: 8-bit UAR							
2:00	1: 9-bit UAR							
Bit6: Bit5:	UNUSED. R							
ວແວ.	MCE0: Multi The function	•				noration M	lodo	
	SOMODE =		•				ioue.	
		ogic level of						
					s logic level	1.		
	SOMODE =							
		ogic level of						
	1: R	I0 is set and	d an interru	ot is genera	ted only wh	en the nint	h bit is logi	c 1.
Bit4:	REN0: Rece	eive Enable.		_	-		_	
	This bit enal	oles/disable	s the UART	receiver.				
	0: UART0 re							
	1: UART0 re	•						
Bit3:	TB80: Ninth							
	The logic lev							RT Mode. It
	is not used i			set or cleare	ed by softwa	ire as requ	ired.	
Bit2:	RB80: Ninth						4	
	RB80 is ass data bit in M		alue of the s	STOP bit in	Node U; it is	s assigned	the value of	of the 9th
Bit1:	TIO: Transm							
51(1.	Set by hard			ta has heer	transmitter		Ω (after the	8th hit in 8.
	bit UART Mo							
	interrupt is e							
	routine. This							
Bit0:	RI0: Receive			, , , , , , , , , , , , , , , , , , ,				
	Set to '1' by	hardware w	hen a byte	of data has	been receiv	ed by UAR	T0 (set at t	he STOP bit
	sampling tim to vector to t	,				•		

SFR Definition 22.1. SCON0: Serial Port 0 Control

25.2.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 25.1.

$$F_{CEXn} = \frac{F_{PCA}}{2 \times PCA0CPHn}$$

Note: A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.

Equation 25.1. Square Wave Frequency Output

Where F_{PCA} is the frequency of the clock selected by the CPS2-0 bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register.

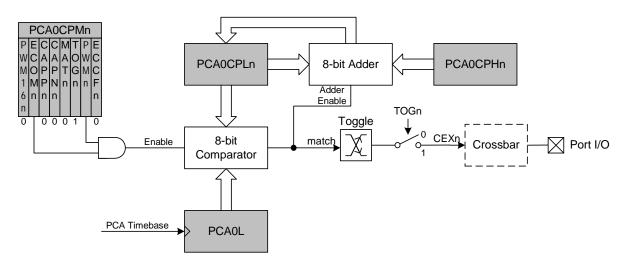


Figure 25.7. PCA Frequency Output Mode

System Clock (Hz)	PCA0CPL5	Timeout Interval (ms)
24,500,000	255	32.1
24,500,000	128	16.2
24,500,000	32	4.1
18,432,000	255	42.7
18,432,000	128	21.5
18,432,000	32	5.5
11,059,200	255	71.1
11,059,200	128	35.8
11,059,200	32	9.2
3,062,500	255	257
3,062,500	128	129.5
3,062,500	32	33.1
191,406 ²	255	4109
191,406 ²	128	2070
191,406 ²	32	530
32,000	255	24576
32,000	128	12384
32,000	32	3168
Notes: 1. Assumes SYSCLK / value of 0x00 at the	update time.	k source, and a PCA0L

Table 25.3. Watchdog Timer Timeout Intervals¹

2. Internal oscillator reset frequency.

R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	Reset Value		
CIDL	WDTE	WDLC	K -	CPS2	CPS1	CPS0	ECF	0100000		
Bit7	Bit6	Bit5	Bit	4 Bit3	Bit2	Bit1	Bit0			
							SFR Addres	ss: 0xD9		
D:+7.		Counter/	Timor Idla	Control						
Bit7:	CIDL: PCA			CONTROL CPU is in Idle M	lodo					
				ormally while th		ontroller is i	n Idle Mod	e		
				d while the syste				0.		
Bit6:	WDTE: Wa									
		•		is used as the v	vatchdog tir	mer.				
	0: Watchdo	og Timer d	isabled.		_					
				Natchdog Timer						
Bit5:	WDLCK: W	•								
				chdog Timer Ena		WDLCK is	set, the Wa	atchdog		
				til the next syste	m reset.					
	0: Watchdo 1: Watchdo	•								
Bit4:	UNUSED.	•								
Bits3–1:					t					
2.00 1.	CPS2–CPS0: PCA Counter/Timer Pulse Select. These bits select the timebase source for the PCA counter.									
			linebase		O/ Counte					
	CPS2	CPS1	CPS0			imebase				
	0	0	0	System clock di	•	2				
	0	0	1	System clock di	•					
	0	1	0	Timer 0 overflow						
			1	High-to-low transitions on ECI (max rate = system clock						
	0	1	1							
	0			divided by 4)						
	1	0	0	System clock		4				
				• /	livided by 8	*				
	1	0	0	System clock External clock c smaRTClock clo						
	1	0	0 1	System clock External clock c						
	1 1 1 *Note: Exte	0 0 1 1 ernal clock	0 1 0 1	System clock External clock c smaRTClock clo	ock divided	by 8 [*]	synchronize	ed with the		
	1 1 1 *Note: Exte	0 0 1 1	0 1 0 1	System clock External clock c smaRTClock clo Reserved	ock divided	by 8 [*]	synchronize	ed with the		
	1 1 1 *Note: Exte syste	0 0 1 1 ernal clock em clock.	0 1 0 1 divided by	System clock External clock c smaRTClock clo Reserved 8 and smaRTClo	ock divided	by 8 [*]	synchronize	ed with the		
Bit0:	1 1 1 *Note: Exto syste ECF: PCA	0 1 1 ernal clock em clock. Counter/T	0 1 0 divided by	System clock External clock c smaRTClock clo Reserved 8 and smaRTClo rflow Interrupt E	ck clock divided	by 8 [*] ded by 8 are	-	ed with the		
Bit0:	1 1 1 *Note: Extension system ECF: PCA This bit set	0 1 1 ernal clock em clock. Counter/T s the mas	0 1 0 divided by	System clock External clock c smaRTClock clo Reserved 8 and smaRTClo	ck clock divided	by 8 [*] ded by 8 are	-	ed with the		
Bit0:	1 1 1 *Note: Extension system ECF: PCA This bit set 0: Disable t	0 0 1 1 ernal clock em clock. Counter/T s the mas the CF inte	0 1 0 divided by ïmer Ove king of the errupt.	System clock External clock c smaRTClock clo Reserved 8 and smaRTClo rflow Interrupt E e PCA Counter/	ck divided ck clock divid nable. Timer Overf	by 8 [*] ded by 8 are flow (CF) in	terrupt.			
Bit0:	1 1 1 *Note: Extension system ECF: PCA This bit set 0: Disable t	0 0 1 1 ernal clock em clock. Counter/T s the mas the CF inte	0 1 0 divided by ïmer Ove king of the errupt.	System clock External clock c smaRTClock clo Reserved 8 and smaRTClo rflow Interrupt E	ck divided ck clock divid nable. Timer Overf	by 8 [*] ded by 8 are flow (CF) in	terrupt.			
Note: Wr	1 1 1 *Note: Extension *Note: Extension system ECF: PCA This bit set 0: Disable to 1: Enable a nen the WD	0 1 1 ernal clock em clock. Counter/T s the mas the CF into a PCA Cou TE bit is s	0 1 0 1 divided by ïmer Ove king of the errupt. unter/Time	System clock External clock c smaRTClock clo Reserved 8 and smaRTClo rflow Interrupt E e PCA Counter/	nable. Timer Overf	by 8 [*] ded by 8 are flow (CF) in st when CF anot be mo	terrupt. (PCA0CN. dified. To	7) is set. change the		

DOCUMENT CHANGE LIST

Revision 0.7 to Revision 0.8

- Updated specification tables with most recently available characterization data.
- Corrected references to configuring pins for Analog Mode Port Latch must contain a '1'.
- SFR Definition 5.6: Address correction to 0xBA.
- Added Figure 8.2 showing power connection diagram without using on-chip regulator.
- Section 9 : Removed references to "High Speed Analog Mode".
- Table 11.2 : Corrected SFR Name P2MDIN on location 0xF3.
- Section 14 : Corrected operational description of CRC engine.
- Section 18, Important Note on page 151 : Added "and have the same behavior as P0 in Normal Mode." to last sentence.
- Section 19.2.2 : Inserted Step 3 "Release the crystal pins by writing '1's to the port latch."
- Section 19.3 : Added Figure 19.3 and text to describe behavior of clock multiplier with slower input frequencies.
- Section 21: Corrected SMBus maximum rate to 1/20th system clock.
- Table 21.4 : Made corrections to SMBus state descriptions.
- Figure 24.6 : Corrected T2RCLK Mux selection options.
- Figure 24.9 : Corrected T3RCLK Mux selection options.
- C2 Register Definition 26.2 : Corrected DEVICEID value to 0x0C.

Revision 0.8 to Revision 1.0

- Updated specification tables with full characterization data.
- Updated Flash write and erase procedures to include a write to FLSCL.3-0.
- Changed /RST pin comments in Table 4.1, "Pin Definitions for the C8051F41x," on page 41 for the recommended pull-up resistor.
- Changed the reset value of the SFR Definition 16.3. FLSCL: Flash Scale.
- Removed the "Optional GND Connection" from Figure 4.5. 'Typical QFN-28 Landing Diagram' on page 48.
- Added a note regarding the maximum SYSCLK frequency to SFR Definition 19.4. CLKMUL: Clock Multiplier Control.

Revision 1.0 to Revision 1.1

- Updated Figure 4.3. 'LQFP-32 Package Diagram' on page 46, Figure 4.5. 'QFN-28 Package Drawing' on page 48, and Figure 4.6. 'QFN-28 Recommended PCB Land Pattern' on page 49.
- Added note that VIO must be \geq VDD in Table 3.1, "Global DC Electrical Characteristics," on page 36.
- Added information about ADC0 output register auto-clearing in SFR Definition 5.2.
- Corrected ADC0 Tracking time equation in SFR Definition 5.6.
- Clarified Voltage Regulator Electrical Specifications in Table 8.1 on page 82.
- Added information about 16-bit and 32-bit CRC algorithms in Section 14.

