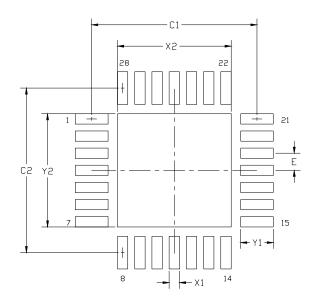


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	20
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.25V
Data Converters	A/D 20x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VFQFN Exposed Pad
Supplier Device Package	28-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f413-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 4.6. QFN-28 Recommended PCB Land Pattern

Table 4.5. QFN-28 PCB Land Pattern Dimensions	S
---	---

Dimension	Min	Max		Dimension	Min	Max						
C1	4.80			X2	3.20	3.30						
C2	4.3	80		Y1	0.85	0.95						
E	0.	50		Y2	3.20	3.30						
X1	0.20	0.30										
 Notes: General 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification. 3. This Land Pattern Design is based on the IPC-7351 guidelines. Solder Mask Design 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60µm minimum, all the way around the pad. 												
 Stencil Design 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 6. The stencil thickness should be 0.125mm (5 mils). 7. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pins. 8. A 3x3 array of 0.90mm openings on a 1.1mm pitch should be used for the center pad to assure the proper paste volume (67% Paste Coverage). 												
 9. A No-C 10. The rec 	 Card Assembly 9. A No-Clean, Type-3 solder paste is recommended. 10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components. 											

5.3.5. Output Conversion Code

The registers ADC0H and ADC0L contain the high and low bytes of the output conversion code. When the repeat count is set to 1, conversion codes are represented in 12-bit unsigned integer format and the output conversion code is updated after each conversion. Inputs are measured from '0' to $V_{REF} \times 4095/4096$. Data can be right-justified or left-justified, depending on the setting of the AD0LJST bit (ADC0CN.2). Unused bits in the ADC0H and ADC0L registers are set to '0'. Example codes are shown in Table 5.1 for both right-justified and left-justified data.

Input Voltage	Right-Justified ADC0H:ADC0L (AD0LJST = 0)	Left-Justified ADC0H:ADC0L (AD0LJST = 1)
V _{REF} x 4095/4096	0x0FFF	0xFFF0
V _{REF} x 2048/4096	0x0800	0x8000
V _{REF} x 2047/4096	0x07FF	0x7FF0
0	0x0000	0x0000

 Table 5.1. ADC0 Examples of Right- and Left-Justified Samples

When the ADC0 Repeat Count is greater than 1, the output conversion code represents the accumulated result of the conversions performed and is updated after the last conversion in the series is finished. Sets of 4, 8, or 16 consecutive samples can be accumulated and represented in unsigned integer format. The repeat count can be selected using the AD0RPT bits in the ADC0CF register. The value must be right-justified (AD0LJST = "0"), and unused bits in the ADC0H and ADC0L registers are set to '0'. The example in Table 5.2 shows the right-justified result for various input voltages and repeat counts. Notice that accumulating 2^n samples is equivalent to left-shifting by *n* bit positions when all samples returned from the ADC have the same value.

Table 5.2. ADC0	Repeat Count	Examples at	Various	Input V	Voltages
					U

Input Voltage	Repeat Count = 4	Repeat Count = 8	Repeat Count = 16
V _{REF} x 4095/4096	0x3FFC	0x7FF8	0xFFF0
V _{REF} x 2048/4096	0x2000	0x4000	0x8000
V _{REF} x 2047/4096	0x1FFC	0x3FF8	0x7FF0
0	0x0000	0x0000	0x0000

SFR Definition 5.1. ADC0MX: ADC0 Channel Select

R	R	R	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-			AD0MX			00011111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address 0xBB
its7–5: I	UNUSED. R	ead = 000	o: Write = c	on't care.				
	AD0MX4–0:							
ſ	AD0MX	4–0	AD	C0 Input C	hannel			
ŀ	0000	0		P0.0				
Ī	0000	1		P0.1				
Ī	0001	0		P0.2				
-	0001	1		P0.3				
	0010	0		P0.4				
ſ	0010	1						
	0011							
	0011							
	0100							
	0100			P1.1				
	0101			P1.2				
	0101			P1.3				
	0110			P1.4				
	0110			P1.5				
	0111			P1.6				
_	0111			P1.7				
	1000			P2.0				
	1000			P2.1				
F	1001			P2.2				
	1001			P2.3*				
	1010			P2.4*				
F	1010			P2.5*				
F	1011			P2.6*				
F	10111			P2.7				
ļ	1100			Temp Sens V _{DD}				
	1100							
	11010 - 1	11111		GND				

Important Note About the V_{REF} Pin: Port pin P1.2 is used as the external V_{REF} input and as an output for the internal V_{REF}. When using either an external voltage reference or the internal reference circuitry, P1.2 should be configured as an analog pin, and skipped by the Digital Crossbar. To configure P1.2 as an analog pin, clear Bit 2 in register P1MDIN to '0' and set Bit 2 in register P1 to '1'. To configure the Crossbar to skip P1.2, set Bit 2 in register P1SKIP to '1'. Refer to Section "18. Port Input/Output" on page 147 for complete Port I/O configuration details. The TEMPE bit in register REFOCN enables/disables the temperature sensor. While disabled, the temperature sensor defaults to a high impedance state and any ADCO measurements performed on the sensor result in meaningless data.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
IDAMR	G GF	ZTCEN	REFLV	REFSL	TEMPE	BIASE	REFBE	00000000	
Bit7	Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0								
								0xD1	
Bit7:	IDAMRG: ID 0: IDA1 Out		Merge Sele	ect.					
	1: IDA1 Out		Merged wi	th IDA0 Out	out)				
Bit6:	GF. General				putj.				
Bito.	This bit is a		•	or use under	software c	ontrol			
Bit5:	ZTCEN: Zer	• •			oonnaro o	ontroll			
2.101	0: ZeroTC B	•			ed when ne	eded.			
	1: ZeroTC B								
Bit4:	REFLV: Volt	age Refere	nce Output	Level Selec	t.				
	This bit sele	cts the outp	ut voltage	evel for the	internal vol	tage referer	nce.		
	0: Internal v	oltage refere	ence set to	1.5 V.					
	1: Internal v	•							
Bit3:	REFSL: Volt	•							
	This bit sele				ge referenc	ce.			
	0: V _{REF} pin		-	nce.					
	1: V _{DD} used	as voltage	reference.						
Bit2:	TEMPE: Ter	•							
	0: Internal T	•							
	1: Internal T								
Bit1:	BIASE: Inter								
	0: Internal A	•			y enabled v	vhen neede	ed.		
D '(0	1: Internal A	•							
Bit0:	REFBE: Inte								
	0: Internal R				oltogo rofo	rongo drivo	n on tha V	nin	
	1: Internal R			eu. mitemal v	ionage rele	rence unve		REF PILL	

SFR Definition 7.1. REF0CN: Reference Control

9. Comparators

C8051F41x devices include two on-chip programmable voltage comparators: Comparator0 is shown in Figure 9.1; Comparator1 is shown in Figure 9.2. The two comparators operate identically, but only Comparator0 can be used as a reset source.

The Comparator offers programmable response time and hysteresis, an analog input multiplexer, and two outputs that are optionally available at the Port pins: a synchronous "latched" output (CP0, CP1), or an asynchronous "raw" output (CP0A, CP1A). The asynchronous CP0A signal is available even when the system clock is not active. This allows the Comparator to operate and generate an output with the device in STOP or SUSPEND mode. When assigned to a Port pin, the Comparator output may be configured as open drain or push-pull (see Section "18.2. Port I/O Initialization" on page 151). Comparator0 may also be used as a reset source (see Section "15.5. Comparator0 Reset" on page 130).

The Comparator0 inputs are selected in the CPT0MX register (SFR Definition 9.2). The CMX0P3-CMX0P0 bits select the Comparator0 positive input; the CMX0N3-CMX0N0 bits select the Comparator0 negative input. The Comparator1 inputs are selected in the CPT1MX register (SFR Definition 9.4). The CMX1P3-CMX1P0 bits select the Comparator1 positive input; the CMX1N3-CMX1N0 bits select the Comparator1 negative input.

Important Note About Comparator Inputs: The Port pins selected as Comparator inputs should be configured as analog inputs in their associated Port configuration register (with a '1' written to the corresponding Port Latch register), and configured to be skipped by the Crossbar (for details on Port configuration, see **Section "18.3. General Purpose Port I/O" on page 154**)

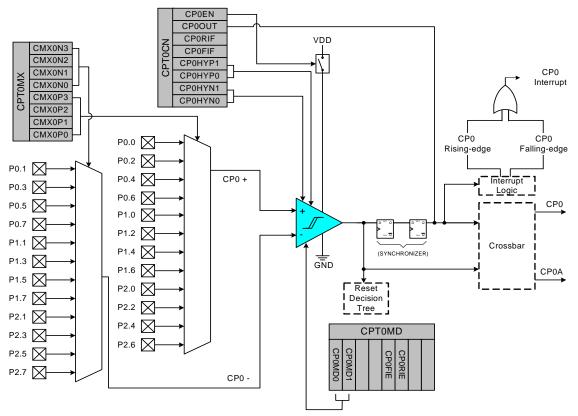


Figure 9.1. Comparator0 Functional Block Diagram

16. Flash Memory

On-chip, re-programmable Flash memory is included for program code and non-volatile data storage. The Flash memory can be programmed in-system through the C2 interface or by software using the MOVX write instruction. Once cleared to logic 0, a Flash bit must be erased to set it back to logic 1. Flash bytes would typically be erased (set to 0xFF) before being reprogrammed. The write and erase operations are automatically timed by hardware for proper execution; data polling to determine the end of the write/erase operations is not required. Code execution is stalled during Flash write/erase operations. Refer to Table 16.2 for complete Flash memory electrical characteristics.

16.1. Programming The Flash Memory

The simplest means of programming the Flash memory is through the C2 interface using programming tools provided by Silicon Laboratories or a third party vendor. This is the only means for programming a non-initialized device. For details on the C2 commands to program Flash memory, see Section "26. C2 Interface" on page 265. For detailed guidelines on writing or erasing Flash from firmware, please see Section "16.4. Flash Write and Erase Guidelines" on page 139.

To ensure the integrity of the Flash contents, the on-chip VDD Monitor must be enabled to the higher setting (VDMLVL = '1') in any system that includes code that writes and/or erases Flash memory from software. Furthermore, there should be no delay between enabling the V_{DD} Monitor and enabling the V_{DD} Monitor as a reset source. Any attempt to write or erase Flash memory while the V_{DD} Monitor disabled will cause a Flash Error device reset.

16.1.1. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash write or erase is attempted before the key codes have been written properly. The Flash lock resets after each write or erase; the key codes must be written again before a following Flash operation can be performed. The FLKEY register is detailed in SFR Definition 16.2.

16.1.2. Flash Erase Procedure

The Flash memory can be programmed by software using the MOVX write instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write operations must be enabled by: (1) setting the PSWE Program Store Write Enable bit (PSCTL.0) to logic 1 (this directs the MOVX writes to target Flash memory); and (2) Writing the Flash key codes in sequence to the Flash Lock register (FLKEY). The PSWE bit remains set until cleared by software.

A write to Flash memory can clear bits to logic 0 but cannot set them; only an erase operation can set bits to logic 1 in Flash. **A byte location to be programmed should be erased before a new value is written.** The Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting all bytes in the page to 0xFF). To erase an entire 512-byte page, perform the following steps:

- Step 1. Disable interrupts (recommended).
- Step 2. Write the first key code to FLKEY: 0xA5.
- Step 3. Write the second key code to FLKEY: 0xF1.
- Step 4. Set the PSEE bit (register PSCTL).
- Step 5. Set the PSWE bit (register PSCTL).
- Step 6. Using the MOVX instruction, write a data byte to any location within the 512-byte page to be erased.
- Step 7. Clear the PSWE and PSEE bits.
- Step 8. Re-enable interrupts.

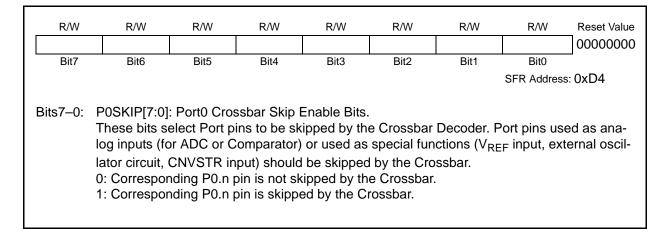
NOTES:

	PO							P1							P2									
SF Signals	i0	·i1				C	nvs	tr	x1	x2	vref													
PIN I/O	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
ТХО							_																	
RX0																								
SCK							-																	
MISO																								
MOSI																								
NSS*																	(*4-	Wire	e SP	'l Or	nly)			
SDA																								
SCL							1																	
CP0																								
CP0A																								
CP1																								
CP1A																								
/SYSCLK																								
CEX0															1									
CEX1																I								
CEX2																								
CEX3																								
CEX4																			1					
CEX5																								
ECI																								
ТО																								
T1																								
	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	(
	P0SKIP[0:7]									ISK			-	-						P[0:				

SF Signals Special Function Signals are not assigned by the crossbar. When these signals are enabled, the CrossBar must be manually configured to skip their corresponding port pins.

Figure 18.4. Crossbar Priority Decoder with Crystal Pins Skipped

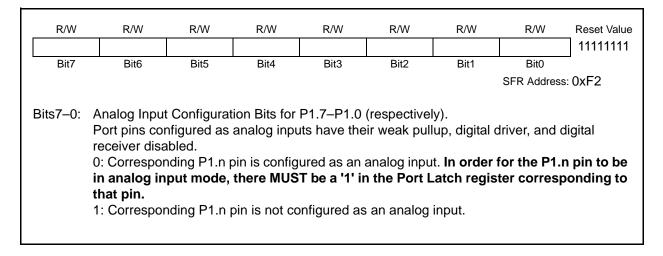
Registers XBR0 and XBR1 are used to assign the digital I/O resources to the physical I/O Port pins. Note that when the SMBus is selected, the Crossbar assigns both pins associated with the SMBus (SDA and SCL); when the UART is selected, the Crossbar assigns both pins associated with the UART (TX and RX). UART0 pin assignments are fixed for bootloading purposes: UART TX0 is always assigned to P0.4; UART RX0 is always assigned to P0.5. Standard Port I/Os appear contiguously starting at P0.0 after prioritized functions and skipped pins are assigned.


Important Note: The SPI can be operated in either 3-wire or 4-wire modes, depending on the state of the NSSMD1-NSSMD0 bits in register SPI0CN. According to the SPI mode, the NSS signal may or may not be routed to a Port pin.

SFR Definition 18.5. P0MDOUT: Port0 Output	Mode
--	------

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0						
	SFR Address: 0xA4												
Bits7–0:	Output Confi ter P0MDIN 0: Correspor 1: Correspor (Note: When of the value	is logic 0. Inding P0.n (Inding P0.n (ISDA and S	Output is op Output is pu SCL appear	ben-drain. ush-pull.	., .			Ū.					

SFR Definition 18.6. P0SKIP: Port0 Skip



R/W P1.7	R/W P1.6	R/W P1.5	R/W P1.4	R/W P1.3	R/W P1.2	R/W P1.1	R/W P1.0	Reset Value					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 Addressable						
	SFR Address: 0x90												
Bits7–0:	P1.[7:0] Write - Outpu 0: Logic Low 1: Logic High Read - Alway pin when cor 0: P1.n pin is 1: P1.n pin is	Output. n Output (hi ys reads '0' nfigured as s logic low.	gh impedar if selected digital input	nce if corres as analog i	ponding P1	IMDOUT.n	,	eads Port					

SFR Definition 18.10. P1: Port1

SFR Definition 18.11. P1MDIN: Port1 Input Mode

NOTES:

ning of each series of consecutive reads. Software must check if the smaRTClock Interface is busy prior to reading RTC0DAT. Autoread is enabled by setting AUTORD (RTC0ADR.6) to logic 1.

20.1.4. RTC0ADR Autoincrement Feature

For ease of reading and writing the 48-bit CAPTURE and ALARM values, RTC0ADR automatically increments after each read or write to a CAPTUREn or ALARMn register. This speeds up the process of setting an alarm or reading the current smaRTClock timer value.

smaRTClock Address	smaRTClock Register	Register Name	Description
0x00 - 0x05	CAPTUREn	smaRTClock Capture Registers	Six Registers used for setting the 47-bit smaRTClock timer or reading its current value. The LSB of CAPTURE0 is not used.
0x06	RTC0CN	smaRTClock Control Register	Controls the operation of the smaRTClock State Machine.
0x07	RTC0XCN	smaRTClock Oscillator Control Register	Controls the operation of the smaRTClock Oscillator.
0x08–0x0D	ALARMn	smaRTClock Alarm Registers	Six registers used to set or read the 47-bit smaRTClock alarm value. The LSB of ALARM0 is not used.
0x0E	RAMADDR	smaRTClock Backup RAM Indirect Address Register	Used as an index to the 64 byte smaRTClock backup RAM.
0x0F	RAMDATA	smaRTClock Backup RAM Indirect Data Register	Used to read or write the byte pointed to by RAMADDR.

Table 20.1. smaRTClock Internal Registers


```
; Enable the smaRTClock
   mov RTCOADR, #06h ; address the RTCOCN register
   mov RTC0DAT, #080h ; enable the smaRTClock
                  ; poll on the BUSY bit
L0:mov A, RTCOADR
   jb ACC.7, L0
   ; Write to the smaRTClock RAM
   mov RTCOADR, #OEh; address the RAMADDR register
   mov RTC0DAT, #20h; write the address of 0x20 to RAMADDR
L1: mov A, RTCOADR
                    ; poll on the BUSY bit
   jb ACC.7, L1
   mov RTCOADR, #0Fh; address the RAMDATA register
   mov RTC0DAT, #0A5h; write 0xA5 to RAM address 0x20
L2: mov A, RTCOADR
                    ; poll on the BUSY bit
   jb ACC.7, L2
   ; Read from the smaRTClock RAM
   mov RTCOADR, #0Eh; address the RAMADDR register
   mov RTC0DAT, #20h; write the address of 0x20 to RAMADDR
L3: mov A, RTCOADR ; poll on the BUSY bit
   jb ACC.7, L3
   mov RTCOADR, #OFh ; address the RAMDATA register
   orl RTCOADR, #80h ; initiate a read of the RAMDATA register
L4: mov A, RTCOADR ; poll on the BUSY bit
   jb ACC.7, L4
   movR0, #80h
   mov@R0, RTC0DAT
                      ; read the value of RAM address 0x20 into
             ; the 128-byte internal RAM
```

```
To reduce the number of instructions necessary to read and write sections of the 64-byte RAM, the RAMADDR register automatically increments after each write or read. The following C example initializes the entire 64-byte RAM to 0xA5 and copies this value from the RAM to an array using the auto-increment feature:
```

```
// in 'C':
unsigned char RAM_data[64] = 0x00;
unsigned char addr;
// Unlock smaRTClock, enable smaRTClock
// Write to the entire smaRTClock RAM
RTC0ADR = 0x0E;// address the RAMADDR register
RTC0DAT = 0x00;// write the address of 0x00 to RAMADDR
while ((RTC0ADR & 0x80) == 0x80); // poll on the BUSY bit
RTC0ADR = 0x0F;// address the RAMDATA register
for (addr = 0; addr < 64; addr++)
{
    RTC0DAT = 0xA5; // write 0xA5 to every RAM address
    while ((RTC0ADR & 0x80) == 0x80);// poll on the BUSY bit
}
// Read from the entire smaRTClock RAM
RTC0ADR = 0x0E;// address the RAMADDR register
```


SFR Definition 22.2. SBUF0: Serial (UART0) Port Data Buffer

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Addres	s: 0 x9 9
Bits7–0:	SBUF0[7:0]: This SFR ac data is writte sion. Writing tents of the r	cesses two en to SBUF(a byte to S	registers; a 0, it goes to BUF0 initia	transmit sh the transmi	ift register a t shift regis	ter and is h	eld for seria	al transmis-

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
GATE1	C/T1	T1M1	T1M0	GATE0	C/T0	T0M1	T0M0	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	1				
								SFR Address: 0x89				
Bit7:	GATE1: Timer 1 Gate Control.											
		 0: Timer 1 enabled when TR1 = 1 irrespective of /INT1 logic level. 1: Timer 1 enabled only when TR1 = 1 AND /INT1 is active as defined by bit IN1PL in regis- 										
D:40			Definition 12.	7. "IT01CF	: IN I 0/IN I '	Configurat	tion" on pag	ge 118).				
Bit6:		nter/Timer 1			اد مام المعمم ا							
			ner 1 increme				· · · ·					
	(T1).	Function.	Timer 1 increr	nented by n	Ign-to-low	transitions (on external	input pin				
Rite5_1.		10. Timor 1	Mode Select									
Dit30-4.			Timer 1 opera									
	T1M1	T1M0		Mode								
	0	0	Mode 0: 13-bit counter/timer									
	0	1	Mode	e 1: 16-bit c								
	1	0	Mode 2: 8-bi	t counter/tin								
	1	1	Мо	de 3: Timer								
			•									
Bit3:		mer 0 Gate	· ·									
Bit3:	0: Timer 0	enabled wh	nen TR0 = 1 i		of /INT0 log							
Bit3:	0: Timer 0 1: Timer 0	enabled wh enabled on	nen TR0 = 1 i ly when TR0	= 1 AND /IN	of /INT0 log	e as define						
	0: Timer 0 1: Timer 0 ter IT01CF	enabled wh enabled on (see SFR	nen TR0 = 1 i ly when TR0 Definition 12.	= 1 AND /IN	of /INT0 log	e as define						
Bit3: Bit2:	0: Timer 0 1: Timer 0 ter IT01CF C/T0: Cour	enabled wh enabled on (see SFR nter/Timer S	nen TR0 = 1 i ly when TR0 Definition 12. Select.	= 1 AND /IN 7. "IT01CF	of /INT0 log IT0 is activ : INT0/INT	e as define 1 Configurat	tion" on pag	ge 118).				
	0: Timer 0 1: Timer 0 ter IT01CF C/T0: Cour 0: Timer Fr	enabled wh enabled on (see SFR nter/Timer S unction: Tim	hen TR0 = 1 i ly when TR0 Definition 12. Select. her 0 increme	= 1 AND /IN 7. "IT01CF ented by cloo	of /INT0 log IT0 is activ INT0/INT ² ck defined l	e as define 1 Configurat	tion" on pag CKCON.3)	ge 118).				
	0: Timer 0 1: Timer 0 ter IT01CF C/T0: Coun 0: Timer Fu 1: Counter	enabled wh enabled on (see SFR nter/Timer S unction: Tim	nen TR0 = 1 i ly when TR0 Definition 12. Select.	= 1 AND /IN 7. "IT01CF ented by cloo	of /INT0 log IT0 is activ INT0/INT ² ck defined l	e as define 1 Configurat	tion" on pag CKCON.3)	ge 118).				
Bit2:	0: Timer 0 1: Timer 0 ter IT01CF C/T0: Cour 0: Timer Fo 1: Counter (T0).	enabled wh enabled on (see SFR hter/Timer S unction: Tim Function: 1	hen TR0 = 1 i ly when TR0 Definition 12. Select. her 0 increme Fimer 0 increm	= 1 AND /IN 7. "IT01CF Inted by cloo mented by h	of /INT0 log IT0 is activ INT0/INT ² ck defined l	e as define 1 Configurat	tion" on pag CKCON.3)	ge 118).				
	0: Timer 0 1: Timer 0 ter IT01CF C/T0: Cour 0: Timer Fu 1: Counter (T0). T0M1-T0M	enabled wh enabled on (see SFR) nter/Timer S unction: Tim Function: 1 10: Timer 0	hen TR0 = 1 i ly when TR0 Definition 12. Select. her 0 increme Fimer 0 increme Mode Select	= 1 AND /IN 7. "IT01CF Inted by cloo mented by h	of /INT0 log IT0 is activ INT0/INT ² ck defined l	e as define 1 Configurat	tion" on pag CKCON.3)	ge 118).				
Bit2:	0: Timer 0 1: Timer 0 ter IT01CF C/T0: Cour 0: Timer Fu 1: Counter (T0). T0M1-T0M	enabled wh enabled on (see SFR) nter/Timer S unction: Tim Function: 1 10: Timer 0	hen TR0 = 1 i ly when TR0 Definition 12. Select. her 0 increme Fimer 0 increm	= 1 AND /IN 7. "IT01CF Inted by cloo mented by h	of /INT0 log IT0 is activ INT0/INT ² ck defined l	e as define 1 Configurat	tion" on pag CKCON.3)	ge 118).				
Bit2:	0: Timer 0 1: Timer 0 ter IT01CF C/T0: Cour 0: Timer Fu 1: Counter (T0). T0M1-T0M	enabled wh enabled on (see SFR) nter/Timer S unction: Tim Function: 1 10: Timer 0	hen TR0 = 1 i ly when TR0 Definition 12. Select. her 0 increme Fimer 0 increme Mode Select	= 1 AND /IN 7. "IT01CF Inted by cloo mented by h	of /INT0 log IT0 is activ INT0/INT k defined l igh-to-low	e as define 1 Configurat	tion" on pag CKCON.3)	ge 118).				
Bit2:	0: Timer 0 1: Timer 0 ter IT01CF C/T0: Court 0: Timer Fu 1: Counter (T0). T0M1–T0M These bits	enabled wh enabled on (see SFR) Inter/Timer S unction: Tim Function: T 10: Timer 0 select the	hen TR0 = 1 i ly when TR0 Definition 12. Select. her 0 increme Fimer 0 increme Mode Select Timer 0 opera	= 1 AND /IN 7. "IT01CF ented by cloo mented by h ation mode. Mode e 0: 13-bit c	of /INT0 log IT0 is activ INT0/INT ck defined l igh-to-low	e as define I Configurat by TOM bit (transitions o	tion" on pag CKCON.3)	ge 118).				
Bit2:	0: Timer 0 1: Timer 0 ter IT01CF C/T0: Count 0: Timer For 1: Counter (T0). T0M1–T0M These bits T0M1	enabled wh enabled on (see SFR inter/Timer S unction: Tim Function: T 40: Timer 0 select the TOM0	hen TR0 = 1 i ly when TR0 Definition 12. Select. her 0 increme Fimer 0 increme Mode Select Timer 0 opera	= 1 AND /IN 7. "IT01CF ented by cloo mented by h ation mode. Mode	of /INT0 log IT0 is activ INT0/INT ck defined l igh-to-low	e as define I Configurat by TOM bit (transitions o	tion" on pag CKCON.3)	ge 118).				
Bit2:	0: Timer 0 1: Timer 0 ter IT01CF C/T0: Courd 0: Timer Fu 1: Counter (T0). T0M1–T0M These bits T0M1 0	enabled wh enabled on (see SFR) inter/Timer S unction: Tim Function: T M0: Timer 0 select the TOM0 0	hen TR0 = 1 i ly when TR0 Definition 12. Select. her 0 increme Fimer 0 increme Mode Select Timer 0 opera	= 1 AND /IN 7. "IT01CF Inted by cloo mented by h ation mode. Mode e 0: 13-bit c e 1: 16-bit c	of /INT0 log IT0 is activ INT0/INT k defined l igh-to-low	e as define 1 Configurat by TOM bit (transitions of transitions of transitions of transitions of	tion" on pag CKCON.3)	ge 118).				

SFR Definition 24.2. TMOD: Timer Mode

25. Programmable Counter Array (PCA0)

The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and six 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled (See Section "18.1. Priority Crossbar Decoder" on page 149 for details on configuring the Crossbar). The counter/timer is driven by a programmable timebase that can select between seven sources: system clock, system clock divided by four, system clock divided by twelve, the external oscillator clock source divided by 8, smaRTClock Clock divided by 8, Timer 0 overflow, or an external clock signal on the ECI input pin. Each capture/compare module may be configured to operate independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8-Bit PWM, or 16-Bit PWM (each mode is described in Section "25.2. Capture/Compare Modules" on page 251). The PCA is configured and controlled through the system controller's Special Function Registers. The PCA block diagram is shown in Figure 25.1

Important Note: The PCA Module 5 may be used as a watchdog timer (WDT), and is enabled in this mode following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. See Section 25.3 for details.

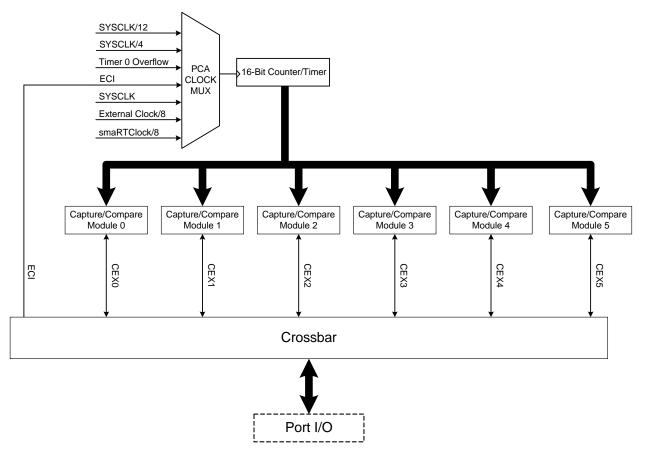


Figure 25.1. PCA Block Diagram

25.4. Register Descriptions for PCA

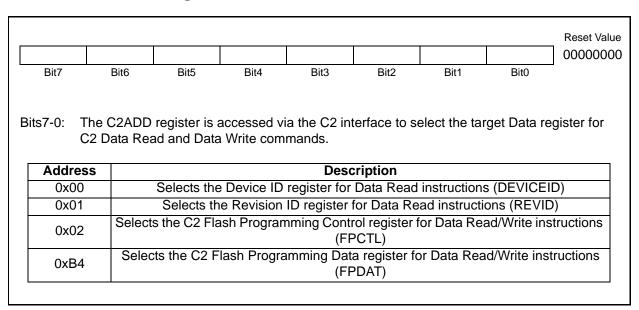
Following are detailed descriptions of the special function registers related to the operation of the PCA.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu				
CF	CR	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0	000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressabl				
							SFR Addres	s: 0xD8				
Bit7:	CF: PCA Co											
	Set by hardware when the PCA Counter/Timer overflows from 0xFFFF to 0x0000. When the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to vector											
	to the PCA is											
	must be clea	•		. 1115 011 15	not automa	allcally clear	ieu by haiu					
Bit6:	CR: PCA Co	•		rol.								
	This bit enab				ner.							
	0: PCA Cour	nter/Timer o	disabled.									
	1: PCA Cou											
BitO:	CCF5: PCA		•									
	This bit is se				•							
	enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.											
Bit4:					ia must be o	cleared by s	sonware.					
5114.	CCF4: PCA Module 4 Capture/Compare Flag. This bit is set by hardware when a match or capture occurs. When the CCF4 interrupt is											
	enabled, set											
	bit is not aut	-										
Bit3:	CCF3: PCA											
	This bit is se	et by hardwa	are when a	match or ca	apture occu	rs. When th	e CCF3 int	errupt is				
	enabled, set	•						outine. This				
	bit is not aut				nd must be o	cleared by s	software.					
Bit2:	CCF2: PCA		•	• •								
	This bit is se enabled, set				•			•				
	bit is not aut	•										
Bit1:	CCF1: PCA	•	•			bicarca by t	Jonward.					
			•		apture occu	rs. When th	e CCF1 int	errupt is				
	This bit is set by hardware when a match or capture occurs. When the CCF1 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This											
	bit is not aut	omatically o	cleared by h	nardware ar	nd must be o	cleared by s	software.					
BitO:	CCF0: PCA											
	This bit is se											
	enabled, set	ting this bit	causes the	CPU to ve	ctor to the P	'CA interrur	ot service re	outine. This				
	bit is not aut	a matiaally s	بالممعمم المدير									

SFR Definition 25.1. PCA0CN: PCA Control

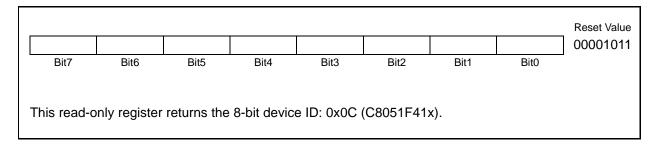
SFR Definition 25.3. PCA0CPMn: PCA Capture/Compare Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
PWM16	Sn ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
SFR Addre	PCA0CPM0: PCA0CPM5:		CPM1: 0xDB, P	CA0CPM2: 0x	DC, PCA0CP	M3: 0xDD, PC	A0CPM4: 0x	DE,			
Bit7:	PWM16n: 16 This bit selec					mode is en	abled (PM	(Mp – 1)			
	0: 8-bit PWM	1 selected.			Modulation		ableu (F M	iviii — 1 <i>)</i> .			
	1: 16-bit PW										
Bit6:	ECOMn: Cor	•									
	This bit enab	oles/disable	s the compa	rator function	on for PCA	module n.					
	0: Disabled.										
	1: Enabled.										
Bit5:	CAPPn: Cap										
	This bit enab	oles/disable	s the positiv	e edge cap	ture for PC	A module n.					
	0: Disabled.										
	1: Enabled.										
Bit4:	CAPNn: Capture Negative Function Enable.										
	This bit enables/disables the negative edge capture for PCA module n.										
	0: Disabled.										
	1: Enabled.										
Bit3:	MATn: Match										
	This bit enab										
	the PCA cou			pture/comp	are register	r cause the	CCFn bit i	n PCA0MD			
	register to be	e set to logi	c 1.								
	0: Disabled.										
DVA	1: Enabled.										
Bit2:	TOGn: Toggl										
	This bit enab										
	the PCA cou										
	CEXn pin to		e PVVIVIN bit	IS also set	to logic 1, th	ne module c	perates in	Frequency			
	Output Mode	2.									
	0: Disabled.										
D:+1 -	1: Enabled.	a Width Ma	dulation Ma	da Enabla							
Bit1:	PWMn: Puls				DCA modul	o n Whon	nablad a	nulaa width			
	This bit enab						,	•			
	modulated signal is output on the CEXn pin. 8-bit PWM is used if PWM16n is cleared; 16-bit mode is used if PWM16n is set to logic 1. If the TOGn bit is also set, the module operates in										
					TOGIT DIL 18	s also set, ti	le module	operates in			
	Frequency C										
	0: Disabled. 1: Enabled.										
Bit0:		turo/Comp	oro Elog Into	rrupt Epobl	0						
DILU.	ECCFn: Cap	•	-	•		CEn) interru	int				
	This bit sets 0: Disable C			ture/Compa	are Flay (C		ipt.				
	1: Enable a (interrunt re	nuest when	CCEn is se	tد				
		Saptule/CO	inpare i lay	menuprie	Anest when	001113 56	<i>,</i>				

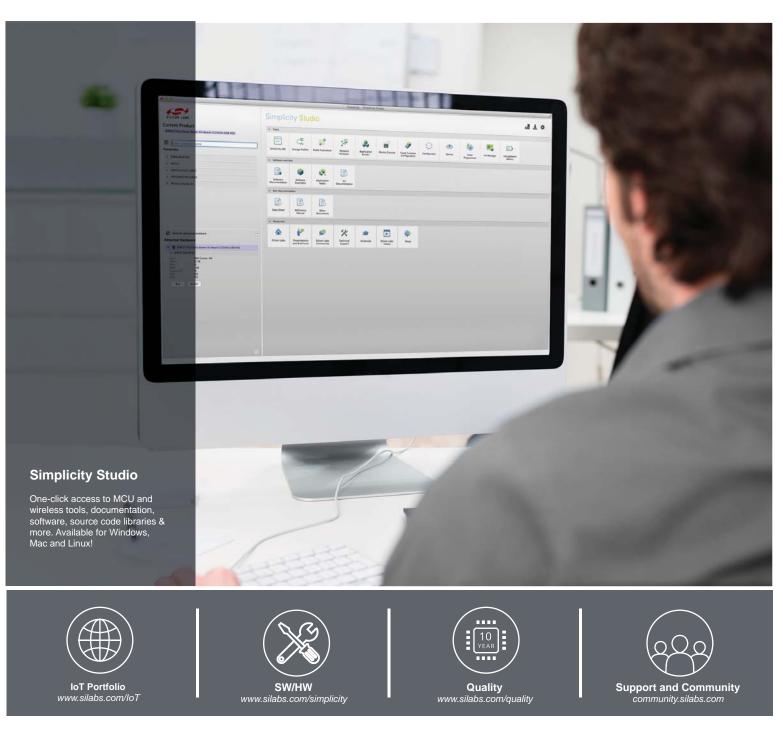


26. C2 Interface

C8051F41x devices include an on-chip Silicon Laboratories 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.


26.1. C2 Interface Registers

The following describes the C2 registers necessary to perform Flash programming functions through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.



C2 Register Definition 26.1. C2ADD: C2 Address

C2 Register Definition 26.2. DEVICEID: C2 Device ID

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific to result in significant personal injury or death. Silicon Laboratories products are generally not intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com