

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	41.667MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	39
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3808 × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f67j60-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	11
2.0	Guidelines for Getting Started with PIC18FJ Microcontrollers	
3.0	Oscillator Configurations	
4.0	Power-Managed Modes	55
5.0	Reset	
6.0	Memory Organization	77
7.0	Flash Program Memory	105
8.0	External Memory Bus	115
9.0	8 x 8 Hardware Multiplier	127
10.0	Interrupts	129
11.0	I/O Ports	145
12.0	Timer0 Module	171
13.0	Timer1 Module	175
14.0	Timer2 Module	180
15.0	Timer3 Module	183
16.0	Timer4 Module	187
17.0	Capture/Compare/PWM (CCP) Modules	189
18.0	Enhanced Capture/Compare/PWM (ECCP) Modules	197
19.0	Ethernet Module	
20.0	Master Synchronous Serial Port (MSSP) Module	
21.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	315
22.0	10-Bit Analog-to-Digital Converter (A/D) Module	339
23.0	Comparator Module	
24.0	Comparator Voltage Reference Module	355
25.0	Special Features of the CPU	359
26.0	Instruction Set Summary	
27.0	Development Support	425
28.0	Electrical Characteristics	
29.0	Packaging Information	465
Appe	endix A: Revision History	475
Appe	endix B: Device Differences	
Index	<	477
The M	Microchip Web Site	
Custo	omer Change Notification Service	489
Custo	omer Support	
Read	ler Response	490
Produ	uct Identification System	491

Din Nama		Pin Number	Pin	Buffer	Description	
FII	n Name	TQFP	Туре	Туре	Description	
RE0/P2D		2			PORTE is a bidirectional I/O port.	
RE0 P2D			0		Digital I/O. ECCP2 PWM Output D.	
RE1/P2C RE1 P2C		1	I/O O	ST —	Digital I/O. ECCP2 PWM Output C.	
RE2/P2B RE2 P2B		64	I/O O	SТ —	Digital I/O. ECCP2 PWM Output B.	
RE3/P3C RE3 P3C		63	I/O O	ST —	Digital I/O. ECCP3 PWM Output C.	
RE4/P3B RE4 P3B		62	I/O O	ST —	Digital I/O. ECCP3 PWM Output B.	
RE5/P1C RE5 P1C		61	I/O O	ST —	Digital I/O. ECCP1 PWM Output C.	
Legend:	TTL = TTL co ST = Schmit I = Input P = Power	mpatible input t Trigger input w	ith CMOS	S levels	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)	

TABLE 1-4: PIC18F66J60/66J65/67J60 PINOUT I/O DESCRIPTIONS (CONTINUED)

Din Marra	Pin Number	Pin Buffer	Buffer	Development		
Pin Name	TQFP	Туре	Туре	Description		
				PORTD is a bidirectional I/O port.		
RD0	72	I/O	ST	Digital I/O.		
RD1	69	I/O	ST	Digital I/O.		
RD2	68	I/O	ST	Digital I/O.		
				PORTE is a bidirectional I/O port.		
RE0/P2D RE0 P2D	4	I/O O	ST —	Digital I/O. ECCP2 PWM Output D.		
RE1/P2C RE1 P2C	3	I/O O	ST —	Digital I/O. ECCP2 PWM Output C.		
RE2/P2B RE2 P2B	78	I/O O	ST —	Digital I/O. ECCP2 PWM Output B.		
RE3/P3C RE3 P3C ⁽²⁾	77	I/O O	ST —	Digital I/O. ECCP3 PWM Output C.		
RE4/P3B RE4 P3B ⁽²⁾	76	I/O O	ST —	Digital I/O. ECCP3 PWM Output B.		
RE5/P1C RE5 P1C ⁽²⁾	75	I/O O	ST —	Digital I/O. ECCP1 PWM Output C.		
RE6/P1B RE6 P1B ⁽²⁾	74	I/O O	ST —	Digital I/O. ECCP1 PWM Output B.		
RE7/ECCP2/P2A RE7 ECCP2 ⁽³⁾ P2A ⁽³⁾	73	I/O I/O O	ST ST	Digital I/O. Capture 2 input/Compare 2 output/PWM2 output. ECCP2 PWM Output A.		
Legend:TTL = TTL compatible inputCMOS= CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsAnalog= Analog inputI = InputO= OutputP = PowerOD= Open-Drain (no P diode to VDD)						

TABLE 1-5: PIC18F86J60/86J65/87J60 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2/P2A when CCP2MX Configuration bit is set.

2: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).

3: Alternate assignment for ECCP2/P2A when CCP2MX Configuration bit is cleared.

4: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).

DiaNana	Pin Number	Pin	Buffer	Description		
Pin Name	TQFP	Туре	Туре	Description		
				PORTH is a bidirectional I/O port.		
RH0/A16	99					
RH0		I/O	ST	Digital I/O.		
Alb		0	_	External Memory Address 16.		
RH1/A17	100	1/0	ст			
A17		0		External Memory Address 17.		
RH2/A18	1					
RH2		I/O	ST	Digital I/O.		
A18		0	—	External Memory Address 18.		
RH3/A19	2					
RH3		1/0	ST	Digital I/O.		
A19		0	_	External Memory Address 19.		
RH4/AN12/P3C	27	1/0	ст			
AN12		1/0	Analog	Analog Input 12.		
P3C ⁽⁵⁾		0	_	ECCP3 PWM Output C.		
RH5/AN13/P3B	26					
RH5		I/O	ST	Digital I/O.		
AN13 D2D (5)			Analog	Analog Input 13.		
	0.5	0	_			
RH6/AN14/P1C	25	1/0	ST	Digital I/O		
AN14		1	Analog	Analog Input 14.		
P1C ⁽⁵⁾		0	—	ECCP1 PWM Output C.		
RH7/AN15/P1B	24					
RH7		I/O	ST	Digital I/O.		
AN15 P1B (5)			Analog	Analog Input 15. ECCP1 PWM Output B		
	ompatible input	0		CMOS = CMOS compatible input or output		
ST = Schm	itt Trigger input v	with CM	OS levels	Analog = Analog input		
Q = Qutput						

TABLE 1-6: PIC18F96J60/96J65/97J60 PINOUT I/O DESCRIPTIONS (CONTINUED)

 P
 = Power
 OD
 = Open-Drain (no P diode to VDD)

 Note 1:
 Alternate assignment for ECCP2/P2A when CCP2MX Configuration bit is cleared (Extended Microcontroller mode).

2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX Configuration bit is set).

3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).

4: Alternate assignment for ECCP2/P2A when CCP2MX Configuration bit is cleared (Microcontroller mode).

5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).

3.7.1.1 System Clock Selection and the FOSC2 Configuration Bit

The SCS bits are cleared on all forms of Reset. In the device's default configuration, this means the primary oscillator, defined by FOSC<1:0> (that is, one of the HC or EC modes), is used as the primary clock source on device Resets.

The default clock configuration on Reset can be changed with the FOSC2 Configuration bit. This bit affects the clock source selection setting when SCS<1:0> = 00. When FOSC2 = 1 (default), the oscillator source defined by FOSC<1:0> is selected whenever SCS<1:0> = 00. When FOSC2 = 0, the INTRC oscillator is selected whenever SCS<1:0> = 00. Because the SCS bits are cleared on Reset, the FOSC2 setting also changes the default oscillator mode on Reset.

Regardless of the setting of FOSC2, INTRC will always be enabled on device power-up. It will serve as the clock source until the device has loaded its configuration values from memory. It is at this point that the FOSC Configuration bits are read and the oscillator selection of operational mode is made.

Note that either the primary clock or the internal oscillator will have two bit setting options, at any given time, depending on the setting of FOSC2.

3.7.2 OSCILLATOR TRANSITIONS

PIC18F97J60 family devices contain circuitry to prevent clock "glitches" when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Clock transitions are discussed in greater detail in **Section 4.1.2 "Entering Power-Managed Modes"**.

3.8 Effects of Power-Managed Modes on the Various Clock Sources

When PRI_IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power-managed modes, the oscillator using the OSC1 pin is disabled. The OSC1 pin (and OSC2 pin if used by the oscillator) will stop oscillating.

In secondary clock modes (SEC_RUN and SEC_IDLE), the Timer1 oscillator is operating and providing the device clock. The Timer1 oscillator may also run in all power-managed modes if required to clock Timer1 or Timer3.

In RC_RUN and RC_IDLE modes, the internal oscillator provides the device clock source. The 31 kHz INTRC output can be used directly to provide the clock and may be enabled to support various special features, regardless of the power-managed mode (see **Section 25.2 "Watchdog Timer (WDT)"** through **Section 25.5 "Fail-Safe Clock Monitor**" for more information on WDT, Fail-Safe Clock Monitor and Two-Speed Start-up).

If the Sleep mode is selected, all clock sources are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents).

Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The INTRC is required to support WDT operation. The Timer1 oscillator may be operating to support a Real-Time Clock. Other features may be operating that do not require a device clock source (i.e., MSSP slave, PSP, INTx pins and others). Peripherals that may add significant current consumption are listed in **Section 28.2 "DC Characteristics: Power-Down and Supply Current PIC18F97J60 Family (Industrial)"**

3.9 Power-up Delays

Power-up delays are controlled by two timers, so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances, and the primary clock is operating and stable. For additional information on power-up delays, see **Section 5.6 "Power-up Timer (PWRT)**".

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up (Parameter 33, Table 28-12); it is always enabled.

The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (HS modes). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

There is a delay of interval, TCSD (Parameter 38, Table 28-12), following POR, while the controller becomes ready to execute instructions.

Oscillator Mode	OSC1 Pin	OSC2 Pin
EC, ECPLL	Floating, pulled by external clock	At logic low (clock/4 output)
HS, HSPLL	Feedback inverter is disabled at quiescent voltage level	Feedback inverter is disabled at quiescent voltage level

Note: See Table 5-2 in Section 5.0 "Reset" for time-outs due to Sleep and MCLR Reset.

R/W-0	U-0	R/W-1	R/W-1	R-1	R-1	R/W-0	R/W-0		
IPEN		CM	RI	TO	PD	POR	BOR		
bit 7	bit 7 bit 0								
Legend:	Legend:								
R = Reada	ble bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	nown		
hit 7	IPEN. Interrur	ot Priority Enab	le hit						
	1 = Enable pri	iority levels on	interrupts						
	0 = Disable pr	riority levels on	interrupts (P	IC16CXXX Co	ompatibility mode	∋)			
bit 6	Unimplement	ted: Read as ')'						
bit 5	CM: Configura	ation Mismatch	Flag bit						
	1 = A Configu	uration Mismat	ch Reset has	not occurred		í o	a		
	0 = A Configu Mismatch	uration Mismate Reset occurs	ch Reset has	occurred (mu	st be set in softv	vare after a Co	nfiguration		
bit 4	RI: RESET INS	struction Flag b	, it						
	1 = The RESE	ET instruction v	as not execu	ited (set by firi	mware only)				
	0 = The RESI	ET instruction	was executed	d causing a d	evice Reset (mu	ust be set in so	oftware after a		
hit 2	Brown-ou	It Reset occurs	i) ut Elog bit						
DIL 3	1 = Set by no	Wer-up CLRWI	ut Flag bit	or SLEED inst	truction				
	0 = A WDT ti	me-out occurre	ed						
bit 2	PD: Power-Do	own Detection	Flag bit						
	1 = Set by po	ower-up or by th	ne CLRWDT in	struction					
L:1. 4	0 = Set by ex	ecution of the	SLEEP INStruc	ction					
DIT		on Reset Statu	S DIT oct occurred (eet by firmwa	re only)				
	0 = A Power-	on Reset occu	rred (must be	set in softwar	re after a Power-	on Reset occu	rs)		
bit 0	BOR: Brown-	out Reset Statu	us bit				,		
	1 = A Brown-	out Reset has	not occurred	(set by firmwa	are only)				
	0 = A Brown-	out Reset occu	irred (must be	e set in softwa	ire after a Brown	-out Reset occ	urs)		
Note 1	It is recommended	d that the \overline{DOP}	hit ha aat afte	r o Dowor on	Posst has been	datastad so th	at aubaaquant		
Note 1.	Power-on Resets	may be detect	ed.		Reset has been		al subsequent		
2:	If the on-chip volta BOR" for more int	age regulator is formation.	s disabled, \overline{B}	OR remains 'o)' at all times. So	ee Section 5.4	.1 "Detecting		
3:	Brown-out Reset i '1' by software imi	s said to have mediately after	occurred whe a Power-on I	n <mark>BOR</mark> is '0' a Reset).	nd POR is '1' (a	ssuming that \overline{P}	OR was set to		

REGISTER 5-1: RCON: RESET CONTROL REGISTER

8.7.1 8-BIT MODE TIMING

The presentation of control signals on the external memory bus is different for the various operating modes. Typical signal timing diagrams are shown in Figure 8-7 and Figure 8-8.

FIGURE 8-7: EXTERNAL MEMORY BUS TIMING FOR TBLRD (EXTENDED MICROCONTROLLER MODE)

FIGURE 8-8: EXTERNAL MEMORY BUS TIMING FOR SLEEP (EXTENDED MICROCONTROLLER MODE)

REGISTER 19-16: PHIE: PHY INTERRUPT ENABLE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
r	r	r	r	r	r	r	r	
bit 15							bit 8	
r								
R-0	R-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	
r	r	r	PLNKIE	r	r	PGEIE	r	
bit 7							bit 0	
Legend:		r = Reserved	bit					
R = Readable bit V		W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown	
bit 15-6	Reserved: W	rite as '0', igno	re on read					
bit 5	Reserved: M	aintain as '0'						
bit 4	DI NKIE: DHV Link Change Interrupt Enable bit							
bit i	1 = PHY link	change interru	nt is enabled	o bit				
	0 = PHY link	change interru	pt is disabled					
bit 3-2	Reserved: W	rite as '0', igno	re on read					
bit 1	PGEIE: PHY Global Interrupt Enable bit							
	1 = PHY inte 0 = PHY inte	rrupts are enab rrupts are disat	bled bled					
bit 0	Reserved: M	aintain as '0'						

REGISTER 19-17: PHIR: PHY INTERRUPT REQUEST (FLAG) REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
r	r	r	r	r	r	r	r	
bit 15							bit 8	
R-x	R-x	R-0	R/SC-0	R-0	R/SC-0	R-x	R-0	
r	r	r	PLNKIF	r	PGIF	r	r	
bit 7							bit 0	
Legend:	Legend: r = Reserved bit							
R = Readable	R = Readable bit SC = Self-Clearable bit			U = Unimplem	ented bit, read	as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-6	Reserved: Ig	nore on read						
bit 5	Reserved: Re	ead as '0'						
bit 4	PLNKIF: PHY	/ Link Change I	nterrupt Flag b	pit				
	1 = PHY link 0 = PHY link	status has cha status has not	nged since PH changed since	IIR was last rea PHIR was last	d; resets to '0' read	when read		
bit 3	Reserved: Re	ead as '0'						
bit 2	PGIF: PHY G	lobal Interrupt I	-lag bit					
	 1 = One or more enabled PHY interrupts have occurred since PHIR was last read; resets to '0' when read 0 = No PHY interrupts have occurred 							
bit 1	Reserved: Ig	nore on read						
bit 0	Reserved: Re	ead as '0'						

FIGURE 19-14: RECEIVE FILTERING USING AND LOGIC

20.3.1 REGISTERS

Each MSSP module has four registers for SPI mode operation. These are:

- MSSPx Control Register 1 (SSPxCON1)
- MSSPx Status Register (SSPxSTAT)
- Serial Receive/Transmit Buffer Register (SSPxBUF)
- MSSPx Shift Register (SSPxSR) Not directly accessible

SSPxCON1 and SSPxSTAT are the control and status registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower 6 bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

SSPxSR is the shift register used for shifting data in or out. SSPxBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPxSR and SSPxBUF together create a double-buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not double-buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

REGISTER 20-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0	
SMP	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF	
bit 7							bit 0	
Legend:								
R = Reada	ble bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown	
bit 7	SMP: Sample	e bit						
	<u>SPI Master m</u>	<u>node:</u>						
	1 = Input data sampled at end of data output time							
		a sampled at mi	iddle of data	output time				
	SMP must be	ode: cleared when	SPI is used i	n Slave mode				
bit 6	CKE: SPI Clo	ock Select hit(1)						
Sit 0	1 = Transmit	occurs on trans	sition from ac	tive to Idle cloc	k state			
	0 = Transmit	occurs on trans	ition from Idl	e to active cloc	k state			
bit 5	D/A: Data/Ad	ldress bit						
	Used in I ² C n	node only.						
bit 4	P: Stop bit							
	Used in I ² C n	node only. This	bit is cleared	I when the MSS	SP module is d	isabled, SSPEN	l is cleared.	
bit 3	S: Start bit							
	Used in I ² C n	node only.						
bit 2	R/W: Read/W	Vrite Information	n bit					
	Used in I ² C n	node only.						
bit 1	UA: Update A	Address bit						
	Used in I ² C n	node only						
bit 0	BF: Buffer Fu	ull Status bit (Re	eceive mode	only)				
	1 = Receive of	complete, SSP>	BUF is full					
	0 = Receive r	not complete, S	SPxBUF is e	empty				
Note 1:	Polarity of clock st	ate is set by the	e CKP bit (SS	SPxCON1<4>).				

20.4.7 BAUD RATE

In I²C Master mode, the Baud Rate Generator (BRG) reload value is placed in the lower 7 bits of the SSPxADD register (Figure 20-19). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TcY) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCLx pin will remain in its last state.

Table 20-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD.

20.4.7.1 Baud Rate and Module Interdependence

Because MSSP1 and MSSP2 are independent, they can operate simultaneously in I²C Master mode at different baud rates. This is done by using different BRG reload values for each module.

Because this mode derives its basic clock source from the system clock, any changes to the clock will affect both modules in the same proportion. It may be possible to change one or both baud rates back to a previous value by changing the BRG reload value.

FIGURE 20-19: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 20-3: I²C[™] CLOCK RATE w/BRG

Fosc	BRG Value	FscL (2 Rollovers of BRG)
41.667 MHz	19h	400 kHz ⁽¹⁾
41.667 MHz	67h	100 kHz
31.25 MHz	13h	400 kHz ⁽¹⁾
31.25 MHz	4Dh	100 kHz
20.833 MHz	09h	400 kHz ⁽¹⁾
20.833 MHz	33h	100 kHz

Note 1: The I²C[™] interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

20.4.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDAx pin after the falling edge of SCLx is asserted (see data hold time specification Parameter 106). SCLx is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCLx is released high (see data setup time specification Parameter 107). When the SCLx pin is released high, it is held that way for TBRG. The data on the SDAx pin must remain stable for that duration and some hold time after the next falling edge of SCLx. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDAx. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared; if not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCLx low and SDAx unchanged (Figure 20-23).

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCLx until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will deassert the SDAx pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDAx pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPxCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCLx low and allowing SDAx to float.

20.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPxSTAT<0>) is set when the CPU writes to SSPxBUF, and is cleared when all 8 bits are shifted out.

20.4.10.2 WCOL Status Flag

If the user writes to the SSPxBUF when a transmit is already in progress (i.e., SSPxSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur) after 2 TcY after the SSPxBUF write. If SSPxBUF is rewritten within 2 TcY, the WCOL bit is set and SSPxBUF is updated. This may result in a corrupted transfer. The user should verify that the WCOL is clear after each write to SSPxBUF to ensure the transfer is correct. In all cases, WCOL must be cleared in software.

20.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPxCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$ and is set when the slave does not Acknowledge $(\overline{ACK} = 1)$. A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

20.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN (SSPxCON2<3>).

Note:	The MSSP module must be in an Idle
	state before the RCEN bit is set or the
	RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover. The state of the SCLx pin changes (high-to-low/low-to-high) and data is shifted into the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCLx low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable bit, ACKEN (SSPxCON2<4>).

20.4.11.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.

20.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.

20.4.11.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

20.4.14 SLEEP OPERATION

While in Sleep mode, the I²C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

20.4.15 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

20.4.16 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit (SSPxSTAT<4>) is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the MSSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed in hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- · A Start Condition
- · A Repeated Start Condition
- An Acknowledge Condition

20.4.17 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDAx pin, arbitration takes place when the master outputs a '1' on SDAx, by letting SDAx float high and another master asserts a '0'. When the SCLx pin floats high, data should be stable. If the expected data on SDAx is a '1' and the data sampled on the SDAx pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF and reset the I²C port to its Idle state (Figure 20-27).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDAx and SCLx lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDAx and SCLx lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDAx and SCLx pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 20-27: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

		SYNC = 0, BRG16 = 0, BRGH = 0												
BAUD	Fosc = 41.667 MHz			Fosc = 31.25 MHz			Fosc = 25.000 MHz			Fosc = 20.833 MHz				
RATE (K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)		
0.3	_	_	_		_	_	_	_	_	—	_			
1.2	—	—	—	—	—	—	—	—	—	1.271	5.96	255		
2.4	2.543	5.96	255	2.405	0.22	202	2.396	-0.15	162	2.393	-0.27	135		
9.6	9.574	-0.27	67	9.574	-0.27	50	9.527	-0.76	40	9.574	-0.27	33		
19.2	19.148	-0.27	33	19.531	1.73	24	19.531	1.73	19	19.147	-0.27	16		
57.6	59.186	2.75	10	61.035	5.96	7	55.804	-3.12	6	54.253	-5.81	5		
115.2	108.508	-5.81	5	122.070	5.96	3	130.208	13.03	2	108.505	-5.81	2		

	SYNC = 0, BRG16 = 0, BRGH = 0										
BAUD	Fosc	= 13.88	9 MHz	Fos	c = 6.250	MHz	Fosc = 4.167 MHz				
RATE (K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)		
0.3	_	_	_	—	_	_	0.300	0.01	216		
1.2	1.198	-0.08	180	1.206	0.47	80	1.206	0.48	53		
2.4	2.411	0.47	89	2.382	-0.76	40	2.411	0.48	26		
9.6	9.435	-1.71	22	9.766	1.73	9	9.301	-3.11	6		
19.2	19.279	2.75	10	19.531	1.73	4	21.703	13.04	2		
57.6	54.254	-5.81	3	48.828	-15.23	1	65.109	13.04	0		
115.2	108.508	-5.81	1	97.656	-15.23	0	65.109	-43.48	0		

		SYNC = 0, BRG16 = 0, BRGH = 1												
BAUD	Fosc = 41.667 MHz			Fosc = 31.25 MHz			Fosc = 25.000 MHz			Fosc = 20.833 MHz				
RATE (K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)		
0.3			_						_		_			
1.2	—		—	—	—	—	—	—	—	—	—	—		
2.4	_	_	_	_	_	_	_	_	_	—	_	_		
9.6	10.172	5.96	255	9.621	0.22	202	9.586	-0.15	162	9.573	-0.27	135		
19.2	19.148	-0.27	135	19.148	-0.27	101	19.290	0.47	80	19.147	-0.27	67		
57.6	57.871	0.47	44	57.445	-0.27	33	57.870	0.47	26	56.611	-1.72	22		
115.2	113.226	-1.71	22	114.890	-0.27	16	111.607	-3.12	13	118.369	2.75	10		

			S	1					
BAUD	Fosc	= 13.88	9 MHz	Fos	c = 6.250) MHz	Fosc = 4.167 MHz		
RATE (K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)
0.3		_	_	_		_	_	_	_
1.2	—	_	_	—		—	1.200	0.01	216
2.4	—	_	_	2.396	-0.15	162	2.389	-0.44	108
9.6	9.645	0.47	89	9.527	-0.76	40	9.645	0.48	26
19.2	19.290	0.47	44	19.531	1.73	19	18.603	-3.11	13
57.6	57.871	0.47	14	55.804	-3.12	6	52.088	-9.57	4
115.2	108.508	-5.81	7	130.208.	13.03	2	130.219	13.04	1

 $\ensuremath{\textcircled{}^{\circ}}$ 2011 Microchip Technology Inc.

22.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 22-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor, CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note: When the conversion is started, the holding capacitor is disconnected from the input pin.

To calculate the minimum acquisition time, Equation 22-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Equation 22-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

Chold	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$3V \rightarrow Rss = 2 k\Omega$
Temperature	=	85°C (system max.)

EQUATION 22-1: ACQUISITION TIME

TACQ =	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
=	TAMP + TC + TCOFF

EQUATION 22-2: A/D MINIMUM CHARGING TIME

VHOLD	=	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{TC/CHOLD}(\text{RIC} + \text{Rss} + \text{Rs}))})$
or		
TC	=	-(CHOLD)(RIC + RSS + RS) ln(1/2048)

EQUATION 22-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ture c	oefficient is only required for temperatures $> 25^{\circ}$ C. Below 25° C, TCOFF = 0 ms.
ТС	=	-(Chold)(Ric + Rss + Rs) $\ln(1/2048) \ \mu s$ -(25 pF) (1 k Ω + 2 k Ω + 2.5 k Ω) ln(0.0004883) μs 1.05 μs
TACQ	=	0.2 μs + 1 μs + 1.2 μs 2.4 μs

NOTES:

25.4 Two-Speed Start-up

The Two-Speed Start-up feature helps to minimize the latency period, from oscillator start-up to code execution, by allowing the microcontroller to use the INTRC oscillator as a clock source until the primary clock source is available. It is enabled by setting the IESO Configuration bit.

Two-Speed Start-up should be enabled only if the primary oscillator mode is HS or HSPLL (Crystal-Based) modes. Since the EC and ECPLL modes do not require an Oscillator Start-up Timer delay, Two-Speed Start-up should be disabled.

When enabled, Resets and wake-ups from Sleep mode cause the device to configure itself to run from the internal oscillator block as the clock source, following the time-out of the Power-up Timer after a Power-on Reset is enabled. This allows almost immediate code execution while the primary oscillator starts and the OST is running. Once the OST times out, the device automatically switches to PRI_RUN mode. In all other power-managed modes, Two-Speed Start-up is not used. The device will be clocked by the currently selected clock source until the primary clock source becomes available. The setting of the IESO bit is ignored.

25.4.1 SPECIAL CONSIDERATIONS FOR USING TWO-SPEED START-UP

While using the INTRC oscillator in Two-Speed Start-up, the device still obeys the normal command sequences for entering power-managed modes, including serial SLEEP instructions (refer to **Section 4.1.4 "Multiple Sleep Commands"**). In practice, this means that user code can change the SCS<1:0> bit settings, or issue SLEEP instructions, before the OST times out. This would allow an application to briefly wake-up, perform routine "housekeeping" tasks and return to Sleep before the device starts to operate from the primary oscillator.

User code can also check if the primary clock source is currently providing the device clocking by checking the status of the OSTS bit (OSCCON<3>). If the bit is set, the primary oscillator is providing the clock. Otherwise, the internal oscillator block is providing the clock during wake-up from Reset or Sleep mode.

FIGURE 25-3: TIMING TRANSITION FOR TWO-SPEED START-UP (INTRC TO HSPLL)

BNC	:	Branch if N	lot Carry		BNN		Branch if N	lot Negative			
Synta	ax:	BNC n			Synta	X:	BNN n				
Oper	rands:	$-128 \le n \le 127$			Opera	ands:	-128 ≤ n ≤ 127				
Oper	Operation: if Carry bit is '0', (PC) + 2 + 2n \rightarrow PC		Opera	ation:	if Negative bit is '0', (PC) + 2 + 2n \rightarrow PC						
Statu	is Affected:	None			Statu	s Affected:	None				
Enco	oding:	1110	0011 nnr	nn nnnn	Enco	ding:	1110	0111 nr	inn nnnn		
Desc	cription:	If the Carry will branch.	bit is '0', then	the program	Desc	ription:	If the Negat program wi	tive bit is '0', t Il branch.	then the		
		The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.					The 2's con added to the incrementer instruction, PC + 2 + 2r two-cycle in	nplement nun e PC. Since the d to fetch the the new addr n. This instruc- nstruction.	nber '2n' is ne PC will have next ress will be ction is then a		
Words: 1			Word	s:	1						
Cycle	es:	1(2)			Cycle	s:	1(2)				
Q C If Ju	ycle Activity:				Q Cy If Ju	/cle Activity: mp:					
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4		
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC		
	No	No	No	No		No	No	No	No		
	operation	operation	operation	operation		operation	operation	operation	operation		
lf No	o Jump:				lf No	Jump:					
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4		
	Decode	Read literal	Process	No		Decode	Read literal	Process	No		
		'n'	Data	operation	J		'n'	Data	operation		
Exan	Example: HERE BNC Jump			Exam	iple:	HERE	BNN Jum	²			
Before Instruction				I	Before Instruc	tion					
	PC	= ad	dress (HERE)		PC	= ad	dress (HERE	:)		
	After Instructio	on				Atter Instructio	on vo – O				
	ir Carry PC	= 0; = ad	dress (Jump))		ii Negati PC	ve = 0; = ad	dress (Juma)		
	If Carry	= 1;	<u></u>			If Negati	ve = 1;		·		
	PC	= ad	aress (HERE	+ 2)		PC = address (HERE + 2)					

DEC	FSZ	Decrement	Decrement f, Skip if 0							
Synta	ax:	DECFSZ f	DECFSZ f {,d {,a}}							
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Oper	ation:	(f) – 1 \rightarrow de skip if resul	est, t = 0							
Statu	s Affected:	None								
Enco	ding:	0010	11da ffi	ff ffff						
Desc	ription:	The conten decremente placed in W placed back	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default).							
		If the result which is alro and a NOP i it a two-cyc	If the result is '0', the next instruction which is already fetched is discarded and a \mathbb{NOP} is executed instead, making it a two-cycle instruction.							
		If 'a' is '0', tl If 'a' is '1', tl GPR bank (ne Access Bai ne BSR is use (default).	nk is selected. d to select the						
		If 'a' is '0' a set is enabl in Indexed I mode when Section 26 Bit-Oriente Literal Offs	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details							
Word	ls:	1	1							
Cycle	es:	1(2) Note: 3 cy by a	1(2) Note: 3 cycles if skip and followed by a 2-word instruction.							
QC	vcle Activitv:	, , , ,								
	Q1	Q2	Q3	Q4						
	Decode	Read	Process	Write to						
lfsk	in [.]	register i	Dala	uesunation						
non	Q1	Q2	Q3	Q4						
	No	No	No	No						
	operation	operation	operation	operation						
lf sk	ip and followe	d by 2-word in	struction:							
I	Q1	Q2	Q3	Q4						
	N0 operation	No	N0 operation	No						
	No	No	No	No						
	operation	operation	operation	operation						
<u>Exan</u>	nple:	HERE	DECFSZ CNT, 1, 1 GOTO LOOP							
	Before Instruc PC After Instructio CNT	ction = Address on = CNT – 1	on = Address (HERE) = CNT-1							
	If CNT PC	= 0; = Address	G (CONTINUE	E)						
	If CNT PC	≠ 0; = Address	6 (HERE + 2	2)						

DCFSNZ		Decrement	Decrement f, Skip if Not 0		
Syntax:		DCFSNZ	f {,d {,a}}		
Operands:		$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$		
Operation:		(f) – 1 \rightarrow de skip if result	$(f) - 1 \rightarrow dest,$ skip if result $\neq 0$		
Status Affected:		None	None		
Encoding:		0100	11da fff	f ffff	
Description:		The content decremente placed in W placed back	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default).		
		If the result instruction v discarded a instead, ma instruction.	If the result is not '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction.		
		lf 'a' is '0', th If 'a' is '1', th GPR bank (If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).		
		If 'a' is '0' a set is enabl in Indexed I mode when Section 26 Bit-Oriente Literal Offs	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.		
Word	ls:	1			
Cycles:		1(2) Note: 3 c by a	1(2) Note: 3 cycles if skip and followed by a 2-word instruction.		
QC		02	03	04	
	Decode	Read	Process	Write to	
	20000	register 'f'	Data	destination	
If skip:					
	Q1	Q2	Q3	Q4	
	No	No	No	No	
If skip and followed by 2-word instruction:					
ii on	Q1	Q2	Q3	Q4	
	No	No	No	No	
	operation	operation	operation	operation	
	No operation	No operation	No operation	No operation	
Example:		HERE I	HERE DCFSNZ TEMP, 1, 0 ZERO :		
		NZERO	NZERO :		
	Before Instruc TEMP	tion =	?		
Atter Instruction		n –			
		=	1 EMP - 1, 0;		
PC If TEMP PC		= ≠ =	Address (ZERO) 0; Address (NZERO)		

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B