

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	41.667MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	39
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3808 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f67j60t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.3.6 STATUS REGISTER

The STATUS register, shown in Register 6-3, contains the arithmetic status of the ALU. The STATUS register can be the operand for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, then the write to these five bits is disabled.

These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. For example, CLRF STATUS will set the Z bit but leave the other bits unchanged. The STATUS

register then reads back as '000u uluu'. It is recommended, therefore, that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register.

For other instructions not affecting any Status bits, see the instruction set summaries in Table 26-2 and Table 26-3.

Note: The C and DC bits operate as a Borrow and Digit Borrow bit respectively, in subtraction.

REGISTER 6-3: STATUS REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	_	N	OV	Z	DC ⁽¹⁾	C ⁽²⁾
oit 7							bit
Legend:							
R = Read	dable bit	W = Writable	e bit	U = Unimplen	nented bit, rea	ıd as '0'	
-n = Valu	e at POR	'1' = Bit is se	t	'0' = Bit is cle		x = Bit is unkr	nown
bit 7-5	Unimpleme	nted: Read as	' ∩'				
oit 4	N: Negative		0				
511 4	0	ed for signed a	rithmetic (2's	complement). It	indicates whe	ther the result w	vas negative
	1 = Result w 0 = Result w	•					
bit 3	which cause	ed for signed a s the sign bit (b	oit 7 of the resu	ult) to change s	tate.	verflow of the 7-	bit magnitude
	1 = Overflow 0 = No overf		igned arithme	tic (in this arithn	netic operatior	ו)	
bit 2	Z: Zero bit						
		It of an arithme It of an arithme		eration is zero eration is non-z	ero		
bit 1	0	rry/ <mark>Borrow</mark> bit ⁽¹ ADDLW, SUBLW		structions:			
		out from the 4th -out from the 4		of the result oc t of the result	curred		
bit 0	C: Carry/Bor						
		DDLW, SUBLW	and SUBWF ins	structions:			
				bit of the result t bit of the resul			
Note 1:	For Borrow, the po operand. For rotat						
2:	For Borrow, the po operand. For rotal source register.	plarity is revers	ed. A subtracti	on is executed	by adding the	2's complement	of the second

6.6.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of Indirect Addressing using the FSR2 register pair and its associated file operands. Under the proper conditions, instructions that use the Access Bank – that is, most bit-oriented and byte-oriented instructions – can invoke a form of Indexed Addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset or Indexed Literal Offset mode.

When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0); and
- The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in Direct Addressing) or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

6.6.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use Direct Addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions, or almost half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions are not affected if they use the Access Bank (Access RAM bit is '1') or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled is shown in Figure 6-10.

Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 26.2.1** "Extended Instruction Syntax".

The CCPRxH register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation.

When the CCPRxH and 2-bit latch match TMR2 (TMR4), concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 (TMR4) prescaler, the CCPx pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by Equation 17-3:

EQUATION 17-3:

PWM Resolution (max) =
$$\frac{\log(\frac{Fosc}{FPWM})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCPx pin will not be cleared.

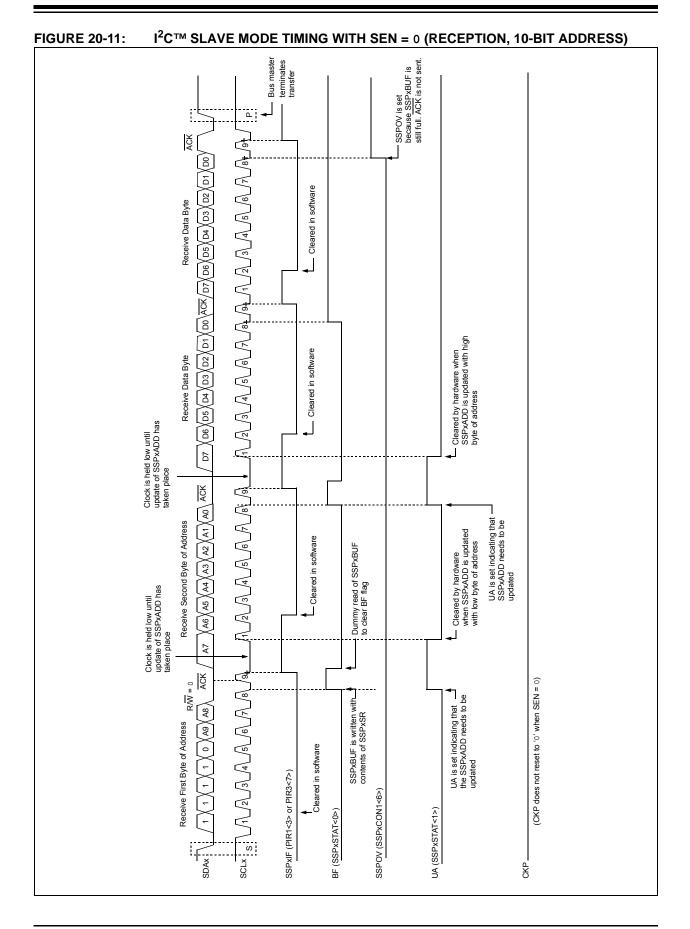
17.4.3 SETUP FOR PWM OPERATION

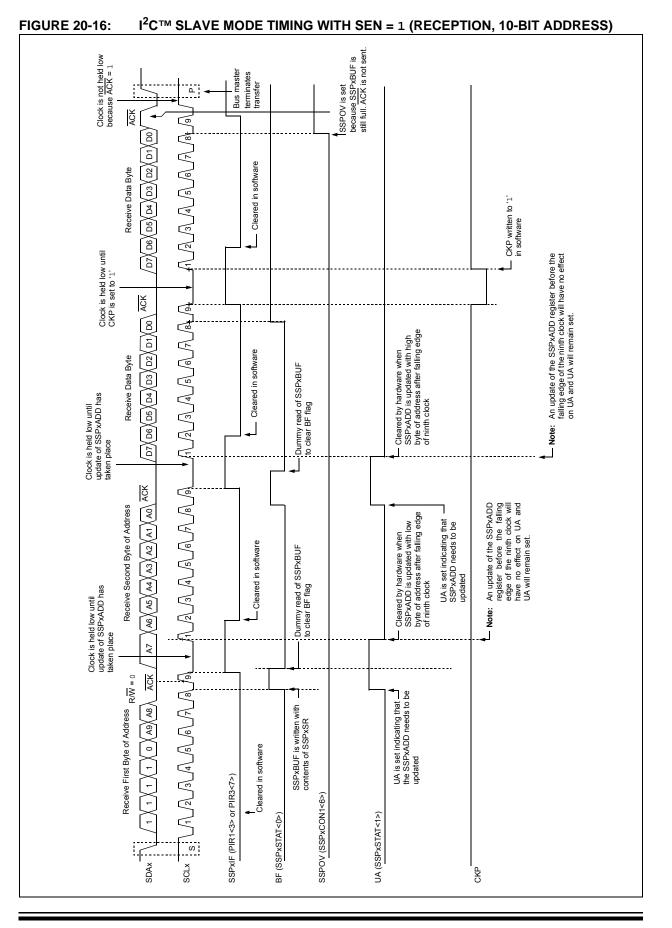
The following steps should be taken when configuring the CCPx module for PWM operation:

- 1. Set the PWM period by writing to the PR2 (PR4) register.
- 2. Set the PWM duty cycle by writing to the CCPRxL register and CCPxCON<5:4> bits.
- 3. Make the CCPx pin an output by clearing the appropriate TRIS bit.
- 4. Set the TMR2 (TMR4) prescale value, then enable Timer2 (Timer4) by writing to T2CON (T4CON).
- 5. Configure the CCPx module for PWM operation.

TABLE 17-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	10	10	10	8	7	6.58


REGISTER 19-12: PHSTAT2: PHYSICAL LAYER STATUS REGISTER 2


U-0	U-0	R-0	R-0	R-0	R-0	R-x	U-0					
	—	TXSTAT	RXSTAT	COLSTAT	LSTAT	r						
oit 15						-	bit					
U-0	U-0	R-0	U-0	U-0 U-0 U-0								
—		r	—	_	_		_					
bit 7							bit (
Legend:		r = Reserved	bit									
R = Readab	ole bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'						
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	nown					
bit 12	0 = PHY is RXSTAT: PH 1 = PHY is 0 = PHY is	transmitting data not transmitting HY Receive Statu receiving data not receiving data	data ıs bit a									
bit 11 bit 10	1 = A collisi 0 = A collisi LSTAT: PHY 1 = Link is u		PHY is both tra g	insmitting and re	eceiving while	in Half-Duplex	mode)					
bit 9		0 = Link is down Reserved: Ignore on read										
	Unimplomo	nted: Read as '	ı'									
bit 8-6	Ommpleme	meu. Reau as	5									
bit 8-6 bit 5	-	gnore on read										

REGISTER 19-15: EIR: ETHERNET INTERRUPT REQUEST (FLAG) REGISTER

U-0	R-0	R/C-0	R-0	R/C-0	U-0	R/C-0	R/C-0
—	PKTIF	DMAIF	LINKIF	TXIF	—	TXERIF	RXERIF
bit 7							bit 0

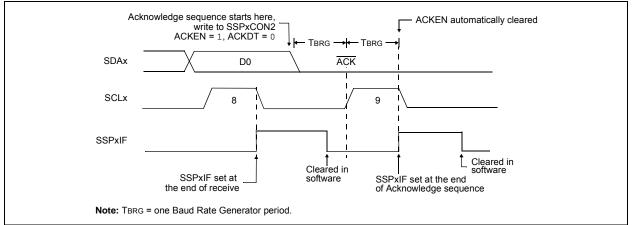
Legend:								
R = Reada	able bit	C = Clearable bit	U = Unimplemented bit, read as '0'					
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7	Unimple	mented: Read as '0'						
bit 6	PKTIF: R	eceive Packet Pending Inter	rupt Flag bit					
	1 = Rece decre	•	more unprocessed packets;	cleared only when EPKTCNT i				
bit 5	DMAIF:	DMA Interrupt Flag bit						
		copy or checksum calculation MA interrupt is pending	on has completed					
bit 4	LINKIF: L	ink Change Interrupt Flag b	it					
		reports that the link status h status has not changed	as changed; read PHIR regis	ter to clear				
bit 3	1 = Tran	nsmit Interrupt Flag bit smit request has ended ansmit interrupt is pending						
bit 2	Unimple	mented: Read as '0'						
bit 1	TXERIF:	Transmit Error Interrupt Flag	ı bit					
		nsmit error has occurred						
	0 = No tr	ansmit error has occurred						
bit 0	RXERIF:	Receive Error Interrupt Flag	bit					
	•	cket was aborted because the ceive error interrupt is pend	•	e, or a buffer overrun has occurre				

20.4.12 ACKNOWLEDGE SEQUENCE TIMING

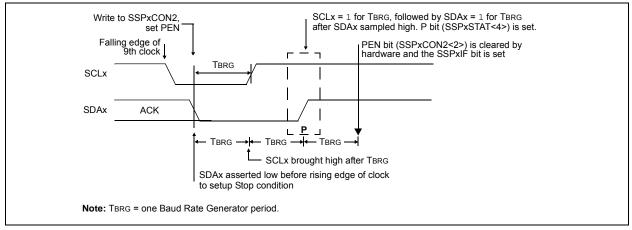
An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit. ACKEN (SSPxCON2<4>). When this bit is set, the SCLx pin is pulled low and the contents of the Acknowledge data bit are presented on the SDAx pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCLx pin is deasserted (pulled high). When the SCLx pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCLx pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 20-25).

20.4.12.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).


20.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPxCON2<2>). At the end of a receive/transmit, the SCLx line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDAx line low. When the SDAx line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCLx pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDAx pin will be deasserted. When the SDAx pin is sampled high while SCLx is high, the P bit (SSPxSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 20-26).


20.4.13.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 20-25: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 20-26: STOP CONDITION RECEIVE OR TRANSMIT MODE

21.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of two serial I/O modules. (Generically, the EUSART is also known as a Serial Communications Interface or SCI.) The EUSART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The Enhanced USART module implements additional features, including automatic baud rate detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These features make it ideally suited for use in Local Interconnect Network bus (LIN/J2602 bus) systems.

The 64-pin devices of the PIC18F97J60 family are equipped with one EUSART module, referred to as EUSART1. The 80-pin and 100-pin devices each have two independent EUSART modules, referred to as EUSART1 and EUSART2. They can be configured in the following modes:

- Asynchronous (full-duplex) with:
 - Auto-Wake-up on Character Reception
 - Auto-Baud Calibration
- 12-Bit Break Character Transmission
- Synchronous Master (half-duplex) with Selectable Clock Polarity
- Synchronous Slave (half-duplex) with Selectable Clock Polarity

The pins of EUSART1 and EUSART2 are multiplexed with the functions of PORTC (RC6/TX1/CK1 and RC7/RX1/DT1) and PORTG (RG1/TX2/CK2 and RG2/RX2/DT2), respectively. In order to configure these pins as an EUSART:

- For EUSART1:
 - SPEN bit (RCSTA1<7>) must be set (= 1)
 - TRISC<7> bit must be set (= 1)
 - TRISC<6> bit must be cleared (= 0) for Asynchronous and Synchronous Master modes
 - TRISC<6> bit must be set (= 1) for Synchronous Slave mode
- For EUSART2:
 - SPEN bit (RCSTA2<7>) must be set (= 1)
 - TRISG<2> bit must be set (= 1)
 - TRISG<1> bit must be cleared (= 0) for Asynchronous and Synchronous Master modes
 - TRISG<1> bit must be set (= 1) for Synchronous Slave mode

Note: The EUSARTx control will automatically reconfigure the pin from input to output as needed.

The operation of each Enhanced USART module is controlled through three registers:

- Transmit Status and Control (TXSTAx)
- Receive Status and Control (RCSTAx)
- Baud Rate Control (BAUDCONx)

These are detailed on the following pages in Register 21-1, Register 21-2 and Register 21-3, respectively.

Note: Throughout this section, references to register and bit names that may be associated with a specific EUSART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "RCSTAx" might refer to the Receive Status register for either EUSART1 or EUSART2.

					SYNC	= 0, BRG1	6 = 0, BRG	6 H = 0				
BAUD	BAUD Fosc = 41.667 MHz		Fosc = 31.25 MHz			Fosc = 25.000 MHz			Fosc	Fosc = 20.833 MHz		
RATE (K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	Value		Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)
0.3	—	_	_	—			_	_	_	_		_
1.2	_	_	_	_	_	_	—	_	_	1.271	5.96	255
2.4	2.543	5.96	255	2.405	0.22	202	2.396	-0.15	162	2.393	-0.27	135
9.6	9.574	-0.27	67	9.574	-0.27	50	9.527	-0.76	40	9.574	-0.27	33
19.2	19.148	-0.27	33	19.531	1.73	24	19.531	1.73	19	19.147	-0.27	16
57.6	59.186	2.75	10	61.035	5.96	7	55.804	-3.12	6	54.253	-5.81	5
115.2	108.508	-5.81	5	122.070	5.96	3	130.208	13.03	2	108.505	-5.81	2

		SYNC = 0, BRG16 = 0, BRGH = 0													
BAUD	Fosc	= 13.88	9 MHz	Fos	c = 6.250	MHz	Fos	c = 4.167	' MHz						
RATE (K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)						
0.3	_				_	_	0.300	0.01	216						
1.2	1.198	-0.08	180	1.206	0.47	80	1.206	0.48	53						
2.4	2.411	0.47	89	2.382	-0.76	40	2.411	0.48	26						
9.6	9.435	-1.71	22	9.766	1.73	9	9.301	-3.11	6						
19.2	19.279	2.75	10	19.531	1.73	4	21.703	13.04	2						
57.6	54.254	-5.81	3	48.828	-15.23	1	65.109	13.04	0						
115.2	108.508	-5.81	1	97.656	-15.23	0	65.109	-43.48	0						

					SYNC	= 0, BRG1	6 = 0, BRG	H = 1					
BAUD	Fosc	Fosc = 41.667 MHz			Fosc = 31.25 MHz			Fosc = 25.000 MHz			Fosc = 20.833 MHz		
RATE (K)	Actual Rate (K)	Value Value		Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	% Error	SPBRG Value (decimal)				
0.3	_	_		_				_		_	_	_	
1.2	—	—	—	—	—	—	—	—	—	—	—	—	
2.4	—	_	_	_	_	_	—	_	_	—	_	_	
9.6	10.172	5.96	255	9.621	0.22	202	9.586	-0.15	162	9.573	-0.27	135	
19.2	19.148	-0.27	135	19.148	-0.27	101	19.290	0.47	80	19.147	-0.27	67	
57.6	57.871	0.47	44	57.445	-0.27	33	57.870	0.47	26	56.611	-1.72	22	
115.2	113.226	-1.71	22	114.890	-0.27	16	111.607	-3.12	13	118.369	2.75	10	

		SYNC = 0, BRG16 = 0, BRGH = 1												
BAUD	Fosc	= 13.88	9 MHz	Fos	c = 6.250) MHz	Foso	c = 4.167	' MHz					
RATE (K)	Actual Rate (K)	% Error	SPBRG Value (decimal)	Actual Rate (K)	Value		Actual Rate (K)	% Error	SPBRG Value (decimal)					
0.3		_	_	_		_		_	_					
1.2	—	—	—	—		—	1.200	0.01	216					
2.4	—	—	—	2.396	-0.15	162	2.389	-0.44	108					
9.6	9.645	0.47	89	9.527	-0.76	40	9.645	0.48	26					
19.2	19.290	0.47	44	19.531	1.73	19	18.603	-3.11	13					
57.6	57.871	0.47	14	55.804	-3.12	6	52.088	-9.57	4					
115.2	108.508	-5.81	7	130.208.	13.03	2	130.219	13.04	1					

© 2011 Microchip Technology Inc.

21.2.5 BREAK CHARACTER SEQUENCE

The EUSARTx module has the capability of sending the special Break character sequences that are required by the LIN/J2602 bus standard. The Break character transmit consists of a Start bit, followed by twelve '0' bits and a Stop bit. The Frame Break character is sent whenever the SENDB and TXEN bits (TXSTAx<3> and TXSTAx<5>) are set while the Transmit Shift Register (TSR) is loaded with data. Note that the value of data written to TXREGx will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN/J2602 support specification).

Note that the data value written to the TXREGx for the Break character is ignored. The write simply serves the purpose of initiating the proper sequence.

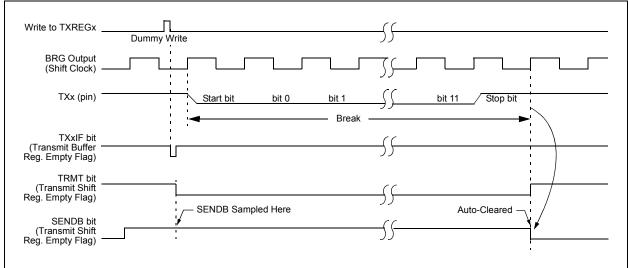
The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 21-10 for the timing of the Break character sequence.

21.2.5.1 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte. This sequence is typical of a LIN/J2602 bus master.

- 1. Configure the EUSARTx for the desired mode.
- 2. Set the TXEN and SENDB bits to set up the Break character.
- 3. Load the TXREGx with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREGx to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware. The Sync character now transmits in the preconfigured mode.

When the TXREGx becomes empty, as indicated by the TXxIF, the next data byte can be written to TXREGx.


21.2.6 RECEIVING A BREAK CHARACTER

The Enhanced USARTx module can receive a Break character in two ways.

The first method forces configuration of the baud rate at a frequency of 9/13 the typical speed. This allows for the Stop bit transition to be at the correct sampling location (13 bits for Break versus Start bit, and 8 data bits for typical data).

The second method uses the auto-wake-up feature described in **Section 21.2.4** "**Auto-Wake-up on Sync Break Character**". By enabling this feature, the EUSARTx will sample the next two transitions on RXx/DTx, cause an RCxIF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Rate Detect feature. For both methods, the user can set the ABDEN bit once the TXxIF interrupt is observed.

FIGURE 21-10: SEND BREAK CHARACTER SEQUENCE

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM		ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	ADFM: A/D R 1 = Right justi 0 = Left justifie	fied	Select bit				
bit 6	Unimplement	t ed: Read as '	0'				
bit 5-3	ACQT<2:0>: . 111 = 20 TAD 110 = 16 TAD 101 = 12 TAD 100 = 8 TAD 011 = 6 TAD 010 = 4 TAD 001 = 2 TAD 000 = 0 TAD ⁽¹⁾						
bit 2-0	ADCS<2:0>: / 111 = FRC (cl 110 = Fosc/6 101 = Fosc/1 100 = Fosc/4 011 = FRC (cl 010 = Fosc/3 001 = Fosc/8 000 = Fosc/2	ock derived fro 4 6 ock derived fro 2	om A/D RC os	scillator) ⁽¹⁾			

REGISTER 22-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

TABLE 26-1: OPCODE FIELD DESCRIPTIONS

Field	Description
a	RAM access bit:
	a = 0: RAM location in Access RAM (BSR register is ignored)
	a = 1: RAM bank is specified by BSR register
bbb	Bit address within an 8-bit file register (0 to 7).
BSR	Bank Select Register. Used to select the current RAM bank.
C, DC, Z, OV, N	ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.
d	Destination select bit:
	d = 0: store result in WREG
-	d = 1: store result in file register f
dest	Destination: either the WREG register or the specified register file location.
f	8-bit Register file address (00h to FFh), or 2-bit FSR designator (0h to 3h).
fs	12-bit Register file address (000h to FFFh). This is the source address.
f _d	12-bit Register file address (000h to FFFh). This is the destination address.
GIE	Global Interrupt Enable bit.
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).
label	Label name.
mm	The mode of the TBLPTR register for the table read and table write instructions. Only used with table read and table write instructions:
*	No Change to register (such as TBLPTR with table reads and writes)
*+	Post-Increment register (such as TBLPTR with table reads and writes)
*_	Post-Decrement register (such as TBLPTR with table reads and writes)
+*	Pre-Increment register (such as TBLPTR with table reads and writes)
	The relative address (2's complement number) for relative branch instructions or the direct address for
n	Call/Branch and Return instructions.
PC	Program Counter.
PCL	Program Counter Low Byte.
PCH	Program Counter High Byte.
PCLATH	Program Counter High Byte Latch.
PCLATU	Program Counter Upper Byte Latch.
PD	Power-Down bit.
PRODH	Product of Multiply High Byte.
PRODL	Product of Multiply Low Byte.
s	Fast Call/Return mode select bit:
5	s = 0: do not update into/from shadow registers
	s = 1: certain registers loaded into/from shadow registers (Fast mode)
TBLPTR	21-bit Table Pointer (points to a program memory location).
TABLAT	8-bit Table Latch.
TO	Time-out bit.
TOS	Top-of-Stack.
u	Unused or Unchanged.
WDT	Watchdog Timer.
WREG	Working register (accumulator).
х	Don't care ('0' or '1'). The assembler will generate code with $x = 0$. It is the recommended form of use for
	compatibility with all Microchip software tools.
Zs	7-bit offset value for indirect addressing of register files (source).
zd	7-bit offset value for indirect addressing of register files (destination).
{ }	Optional argument.
[text]	Indicates an indexed address.
(text)	The contents of text.
[expr] <n></n>	Specifies bit n of the register indicated by the pointer expr.
\rightarrow	Assigned to.
< >	Register bit field.
E	In the set of.
italics	User-defined term (font is Courier New).

BNC	Branch if N	lot Carry		BNN	Branch	if Not Negati	ve	
Syntax:	BNC n			Syntax:	BNN n			
Operands:	-128 ≤ n ≤ ′	127		Operands:	-128 ≤ n	≤ 127		
Operation:	if Carry bit i (PC) + 2 + 2	,		Operation:	0	ve bit is '0', + 2n \rightarrow PC		
Status Affected:	None			Status Affecte	ed: None			
Encoding:	1110	0011 nn	nn nnnn	Encoding:	1110	0111	nnnn	nnnn
Description:	If the Carry will branch.	bit is '0', then	the program	Description:		gative bit is 'o will branch.)', then t	the
	added to th incremente instruction,	d to fetch the i the new addre n. This instruct	e PC will have next ess will be		added to increme instructio PC + 2 +	complement r the PC. Sinc nted to fetch f on, the new a - 2n. This inst e instruction.	e the PC he next ddress v	C will have will be
Words:	1			Words:	1			
Cycles:	1(2)			Cycles:	1(2)			
Q Cycle Activity: If Jump:				Q Cycle Act If Jump:	vity:			
Q1	Q2	Q3	Q4	Q^	Q2	Q3		Q4
Decode	Read literal 'n'	Process Data	Write to PC	Deco	de Read liter 'n'	al Process Data	s V	Vrite to PC
No	No	No	No	No	No	No		No
operation	operation	operation	operation	opera	ion operation	operatio	n o	peration
If No Jump:			.	If No Jump:				
Q1	Q2	Q3	Q4	Q'		Q3		Q4 No
Decode	Read literal 'n'	Process Data	No operation	Deco	de Read liter 'n'	al Process Data	-	peration
Example:	HERE	BNC Jump		Example:	HERE	BNN J1	ump	
Before Instruc PC After Instructi If Carry	= ad on = 0;	dress (HERE		PC After Ins	truction legative =	address (HE		
PC If Carry PC	= 1;	dress (Jump dress (HERE		lf N	PC = legative = PC =	address (Ju 1; address (HI	-	2)

Move W to f MOVWF f {,a}

MOVWF

Syntax:

MOV	LW	Move Literal to W					
Synta	ax:	MOVLW	k				
Oper	ands:	$0 \le k \le 25$	5				
Oper	ation:	$k\toW$					
Statu	s Affected:	None					
Enco	ding:	0000	1110	kkkk	kkkk		
Description:		The eight-	The eight-bit literal 'k' is loaded into W.				
Word	ls:	1					
Cycle	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3	5	Q4		
	Decode	Read literal 'k'	Proce Data		Write to W		
Exan	nple:	MOVLW	5Ah				

After Instruction W

=

5Ah

Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	5			
Operation:	$(W) \to f$				
Status Affected:	None				
Encoding:	0110	111a	ffff	ffff	
Description:	Move data from W to register 'f'. Location 'f' can be anywhere in the 256-byte bank.				
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).				
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		Q4	
Decode	Read	Proce		Write	
	register 'f'	Data	a re	gister 'f'	
Example:	Example: MOVWF REG, 0				
Before Instruct					
W REG	= 4Fh = FFh				
NEO I					

4Fh 4Fh

= =

After Instruction W REG

TBLRD *+ ;

Table Read (Continued)

TBL	RD	Table Read					
Synta	ax:	TBLRD (*; *	'+; *·	-; +*)			
Oper	ands:	None					
Oper	ation:	if TBLRD*, (Prog Mem (TBLPTR)) \rightarrow TABLAT; TBLPTR – No Change if TBLRD*+, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) + 1 \rightarrow TBLPTR if TBLRD*-, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) – 1 \rightarrow TBLPTR if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR; (Prog Mem (TBLPTR)) \rightarrow TABLAT					
Statu	s Affected:	None					
Enco	ding:	0000	00	000	000	00	10nn nn=0 * =1 *+ =2 *- =3 +*
Desc	Description: This instruction is used to read the contents of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used. The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-Mbyte address range.					dress the I Table pints to 7. TBLPTR	
		TBLPTR[C)] = (Pr	ogram	Merr	ant Byte of lory Word
		TBLPTR[C)] = 1				nt Byte of lory Word
		The TBLRD i of TBLPTR a				nodify	the value
		no change	е				
		 post-incre 	emer	nt			
		 post-decr 	eme	ent			
		 pre-increr 	nent	t			
Word	ls:	1					
Cycle	es:	2					
QC	vcle Activity						
	Q1	Q2		C	13		Q4
	Decode	No		N	0		No
		operation		opera			peration
	No operation	No operatio (Read Progra Memory)		N opera			operation (Write ABLAT)

Before Instruction TABLAT TBLPTR MEMORY(00A356h) After Instruction	= = =	55h 00A356h 34h
TABLAT TBLPTR	= =	34h 00A357h
Example 2: TBLRD	+* ;	
Before Instruction		
TABLAT	=	AAh
TBLPTR MEMORY(01A357h)	_	01A357h 12h
MEMORY(01A358h)	=	34h
After Instruction		
TABLAT	=	34h
TBLPTR	=	01A358h

TBLRD

Example 1:

© 2011 Microchip Technology Inc.

TSTFS	Z	Test f, Skip	o if O			
Syntax		TSTFSZ f {	,a}			
Operan	ids:	0 ≤ f ≤ 255 a ∈ [0,1]				
Operati	ion:	skip if f = 0				
Status /	Affected:	None				
Encodi	ng:	0110	011a fff	f ffff		
Description:		during the o	If 'f' = 0, the next instruction fetched during the current instruction execution is discarded and a NOP is executed, making this a two-cycle instruction.			
			he Access Bar he BSR is used (default).			
		set is enabl in Indexed I mode when Section 26 Bit-Oriente	nd the extende ed, this instruc Literal Offset A ever f ≤ 95 (5F .2.3 "Byte-Ori d Instructions set Mode" for	tion operates ddressing h). See ented and s in Indexed		
Words:		1				
Cycles:		•	vcles if skip and a 2-word instru			
Q Cyc	le Activity: Q1	Q2	Q3	Q4		
	Decode	Read	Process	No		
		register 'f'	Data	operation		
If skip:						
	Q1	Q2	Q3	Q4		
	No operation	No operation	No operation	No operation		
		d by 2-word in:		operation		
	Q1	Q2	Q3	Q4		
	No	No	No	No		
	operation	operation	operation	operation		
	No	No	No	No		
	operation	operation	operation	operation		
<u>Exampl</u>	l <u>e:</u>	NZERO	FSTFSZ CNT :	, 1		
Be	efore Instruc	tion				
	PC	= Ad	dress (HERE))		
Af	ter Instructio		h			
	If CNT PC If CNT	= 00 = Ad ≠ 00	dress (ZERO))		
	PC		dress (NZERG))		

XORLW	Exclusive	Exclusive OR Literal with W				
Syntax:	XORLW	k				
Operands:	$0 \le k \le 25$	55				
Operation:	(W) .XOR	$k \to W$				
Status Affected:	N, Z					
Encoding:	0000	1010	kkkk	kkkk		
Description:	The conte the 8-bit li in W.			Red with Ilt is placed		
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read literal 'k'	Proce Data		Write to W		
Example:	XORLW	0AFh				
Before Instruc W After Instructio	= B5h					

W

=

1Ah

© 2011 Microchip Technology Inc.

26.2.2 EXTENDED INSTRUCTION SET

ADD	FSR	Add Literal to FSR				
Synta	ax:	ADDFSR	f, k			
Oper	ands:	$0 \le k \le 63$	$0 \le k \le 63$			
		f ∈ [0, 1, 2]				
Operation: $FSR(f) + k \rightarrow FSR(f)$						
Statu	s Affected:	None	None			
Enco	ding:	1110	1000	ffkk	kkkk	
Desc	ription:	The 6-bit	The 6-bit literal 'k' is added to the			
		contents of	contents of the FSR specified by 'f'.			
Word	ls:	1	1			
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3		Q4	
	Decode	Read	Proces	ss V	Vrite to	
		literal 'k'	Data		FSR	

Example: ADDFSR 2, 23h

Before Instru					
FSR2	=	03FFh			
After Instruction					
FSR2	=	0422h			

ADDULNK Add Literal to FSR2 and Return				eturn		
Synta	ax:	ADDULNK	K k			
Oper	ands:	$0 \leq k \leq 63$				
Oper	ation:	FSR2 + k	$FSR2 + k \rightarrow FSR2$,			
		$(TOS) \rightarrow F$	ъС			
Statu	s Affected:	None				
Enco	ding:	1110	1000 1	l1kk	kkkk	
Desc	ription:	contents o	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS.			
	The instruction takes two cycles to execute; a NOP is performed during the second cycle.					
	This may be thought of as a specia case of the ADDFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.				ion,	
Word	ls:	1				
Cycle	es:	2				
QC	ycle Activity:					
	Q1	Q2	Q3		Q4	
	Decode	Read literal 'k'	Process Data	; V	Vrite to FSR	
	No	No	No		No	
	Operation	Operation	Operation	n O	peration	
<u>Exan</u>	Example: ADDULNK 23h					

<u>xample:</u>	AD	DULNK	23
Before Instructi	ion		
FSR2	=	03FFh	
PC	=	0100h	
After Instruction	n		
FSR2	=	0422h	
PC	=	(TOS)	

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction format then becomes: {label} instruction argument(s).

TABLE 28-2: COMPARATOR SPECIFICATIONS

Operating Conditions: $3.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)								
Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments	
D300	VIOFF	Input Offset Voltage*	_	±5.0	±25	mV		
D301	VICM	Input Common-Mode Voltage*	0	—	AVDD - 1.5	V		
D302	CMRR	Common-Mode Rejection Ratio*	55	—	—	dB		
300	TRESP	Response Time ^{(1)*}		150	400	ns		
301	Тмс2о∨	Comparator Mode Change to Output Valid*	_	—	10	μS		

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (AVDD – 1.5)/2, while the other input transitions from Vss to AVDD.

TABLE 28-3: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: $3.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)								
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments	
D310	VRES	Resolution	VDD/24	_	VDD/32	LSb		
D311	VRAA	Absolute Accuracy	—	_	1/2	LSb		
D312	VRur	Unit Resistor Value (R)	—	2k	_	Ω		
310	TSET	Settling Time ⁽¹⁾	—	_	10	μS		

Note 1: Settling time measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'.

TABLE 28-4: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating Conditions: -40°C \leq TA \leq +85°C (unless otherwise stated)							
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
	Vrgout	Regulator Output Voltage		2.5	_	V	
	Cf	External Filter Capacitor Value	1	10	_	μF	Capacitor must be low series resistance

NOTES: