

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	41.667MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	55
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	3808 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 15x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f86j65t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Marra	Pin Number	Pin	Buffer	Description				
Pin Name	TQFP	Туре	Туре	Description				
				PORTD is a bidirectional I/O port.				
RD0	72	I/O	ST	Digital I/O.				
RD1	69	I/O	ST	Digital I/O.				
RD2	68	I/O	ST	Digital I/O.				
				PORTE is a bidirectional I/O port.				
RE0/P2D RE0 P2D	4	I/O O	ST —	Digital I/O. ECCP2 PWM Output D.				
RE1/P2C RE1 P2C	3	I/O O	ST —	Digital I/O. ECCP2 PWM Output C.				
RE2/P2B RE2 P2B	78	I/O O	ST —	Digital I/O. ECCP2 PWM Output B.				
RE3/P3C RE3 P3C ⁽²⁾	77	I/O O	ST —	Digital I/O. ECCP3 PWM Output C.				
RE4/P3B RE4 P3B ⁽²⁾	76	I/O O	ST —	Digital I/O. ECCP3 PWM Output B.				
RE5/P1C RE5 P1C ⁽²⁾	75	I/O O	ST —	Digital I/O. ECCP1 PWM Output C.				
RE6/P1B RE6 P1B ⁽²⁾	74	I/O O	ST —	Digital I/O. ECCP1 PWM Output B.				
RE7/ECCP2/P2A RE7 ECCP2 ⁽³⁾ P2A ⁽³⁾	73	I/O I/O O	ST ST	Digital I/O. Capture 2 input/Compare 2 output/PWM2 output. ECCP2 PWM Output A.				
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input I = Input O = Output P = Power OD = Open-Drain (no P diode to Vop)								

TABLE 1-5: PIC18F86J60/86J65/87J60 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2/P2A when CCP2MX Configuration bit is set.

2: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).

3: Alternate assignment for ECCP2/P2A when CCP2MX Configuration bit is cleared.

4: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).

Dia Norra	Pin Number	Pin	Buffer	Description				
Pin Name	TQFP	Туре	Туре	Description				
				PORTC is a bidirectional I/O port.				
RC0/T10S0/T13CKI RC0 T10S0 T13CKI	44	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.				
RC1/T1OSI/ECCP2/P2A RC1 T1OSI ECCP2 ⁽²⁾ P2A ⁽²⁾	43	I/O I I/O O	ST CMOS ST —	Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output. ECCP2 PWM Output A.				
RC2/ECCP1/P1A RC2 ECCP1 P1A	53	I/O I/O O	ST ST	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. ECCP1 PWM Output A.				
RC3/SCK1/SCL1 RC3 SCK1 SCL1	54	1/0 1/0 1/0	ST ST ST	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.				
RC4/SDI1/SDA1 RC4 SDI1 SDA1	55	I/O I I/O	ST ST ST	Digital I/O. SPI data in. I ² C data I/O.				
RC5/SDO1 RC5 SDO1	56	I/O O	ST —	Digital I/O. SPI data out.				
RC6/TX1/CK1 RC6 TX1 CK1	45	I/O O I/O	ST — ST	Digital I/O. EUSART1 asynchronous transmit. EUSART1 synchronous clock (see related RX1/DT1 pin).				
RC7/RX1/DT1 RC7 RX1 DT1	46	I/O I I/O	ST ST ST	Digital I/O. EUSART1 asynchronous receive. EUSART1 synchronous data (see related TX1/CK1 pin).				
-egend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input I = Input O = Output P = Power OD = Open-Drain (no P diode to VDD)								

TABLE 1-6: PIC18F96J60/96J65/97J60 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for ECCP2/P2A when CCP2MX Configuration bit is cleared (Extended Microcontroller mode).

2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX Configuration bit is set).

3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).

4: Alternate assignment for ECCP2/P2A when CCP2MX Configuration bit is cleared (Microcontroller mode).

5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).

4.4.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator. This mode allows for controllable power conservation during Idle periods.

From RC_RUN mode, RC_IDLE mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then clear the SCS bits and execute SLEEP. When the clock source is switched to the INTRC, the primary oscillator is shut down and the OSTS bit is cleared.

When a wake event occurs, the peripherals continue to be clocked from the INTRC. After a delay of TCSD following the wake event, the CPU begins executing code being clocked by the INTRC. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

4.5 Exiting Idle and Sleep Modes

An exit from Sleep mode, or any of the Idle modes, is triggered by an interrupt, a Reset or a WDT time-out. This section discusses the triggers that cause exits from power-managed modes. The clocking subsystem actions are discussed in each of the power-managed modes sections (see Section 4.2 "Run Modes", Section 4.3 "Sleep Mode" and Section 4.4 "Idle Modes").

4.5.1 EXIT BY INTERRUPT

Any of the available interrupt sources can cause the device to exit from an Idle mode, or the Sleep mode, to a Run mode. To enable this functionality, an interrupt source must be enabled by setting its enable bit in one of the INTCON or PIE registers. The exit sequence is initiated when the corresponding interrupt flag bit is set.

On all exits from Idle or Sleep modes by interrupt, code execution branches to the interrupt vector if the GIE/GIEH bit (INTCON<7>) is set. Otherwise, code execution continues or resumes without branching (see Section 10.0 "Interrupts").

A fixed delay of interval, TCSD, following the wake event is required when leaving the Sleep and Idle modes. This delay is required for the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

4.5.2 EXIT BY WDT TIME-OUT

A WDT time-out will cause different actions depending on which power-managed mode the device is in when the time-out occurs.

If the device is not executing code (all Idle modes and Sleep mode), the time-out will result in an exit from the power-managed mode (see Section 4.2 "Run Modes" and Section 4.3 "Sleep Mode"). If the device is executing code (all Run modes), the time-out will result in a WDT Reset (see Section 25.2 "Watchdog Timer (WDT)").

The WDT timer and postscaler are cleared by one of the following events:

- Executing a **SLEEP** or **CLRWDT** instruction
- The loss of a currently selected clock source (if the Fail-Safe Clock Monitor is enabled)
- 4.5.3 EXIT BY RESET

Exiting an Idle or Sleep mode by Reset automatically forces the device to run from the INTRC.

4.5.4 EXIT WITHOUT AN OSCILLATOR START-UP TIMER DELAY

Certain exits from power-managed modes do not invoke the OST at all. There are two cases:

- PRI_IDLE mode, where the primary clock source is not stopped
- The primary clock source is either the EC or ECPLL mode

In these instances, the primary clock source either does not require an oscillator start-up delay, since it is already running (PRI_IDLE), or normally does not require an oscillator start-up delay (EC). However, a fixed delay of interval, TCSD, following the wake event is still required when leaving the Sleep and Idle modes to allow the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

5.2 Master Clear (MCLR)

The MCLR pin provides a method for triggering a hard external Reset of the device. A Reset is generated by holding the pin low. PIC18 extended microcontroller devices have a noise filter in the MCLR Reset path which detects and ignores small pulses.

The $\overline{\text{MCLR}}$ pin is not driven low by any internal Resets, including the WDT.

5.3 Power-on Reset (POR)

A Power-on Reset condition is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.

To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (Parameter D004). For a slow rise time, see Figure 5-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

POR events are captured by the \overrightarrow{POR} bit (RCON<1>). The state of the bit is set to '0' whenever a Power-on Reset occurs; it does not change for any other Reset event. \overrightarrow{POR} is not reset to '1' by any hardware event. To capture multiple events, the user manually resets the bit to '1' in software following any Power-on Reset.

5.4 Brown-out Reset (BOR)

The PIC18F97J60 family of devices incorporates a simple BOR function when the internal regulator is enabled (ENVREG pin is tied to VDD). Any drop of VDD below VBOR (Parameter D005), for greater than time, TBOR (Parameter 35), will reset the device. A Reset may or may not occur if VDD falls below VBOR for less than TBOR. The chip will remain in Brown-out Reset until VDD rises above VBOR.

Once a BOR has occurred, the Power-up Timer will keep the chip in Reset for TPWRT (Parameter 33). If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above VBOR, the Power-up Timer will execute the additional time delay.

FIGURE 5-2:

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- lote 1: External Power-on Reset circuit is required only if the VDD power-up slope is too slow. The diode, D, helps discharge the capacitor quickly when VDD powers down.
 - 2: $R < 40 \text{ k}\Omega$ is recommended to make sure that the voltage drop across R does not violate the device's electrical specification.
 - 3: $R1 \ge 1 \ k\Omega$ will limit any current flowing into \overline{MCLR} from external capacitor, C, in the event of \overline{MCLR} /VPP pin breakdown, due to Electrostatic Discharge (ESD), or Electrical Overstress (EOS).

5.4.1 DETECTING BOR

The BOR bit always resets to '0' on any Brown-out Reset or Power-on Reset event. This makes it difficult to determine if a Brown-out Reset event has occurred just by reading the state of BOR alone. A more reliable method is to simultaneously check the state of both POR and BOR. This assumes that the POR bit is reset to '1' in software immediately after any Power-on Reset event. If BOR is '0' while POR is '1', it can be reliably assumed that a Brown-out Reset event has occurred.

If the voltage regulator is disabled, Brown-out Reset functionality is disabled. In this case, the $\overline{\text{BOR}}$ bit cannot be used to determine a Brown-out Reset event. The $\overline{\text{BOR}}$ bit is still cleared by a Power-on Reset event.

5.5 Configuration Mismatch (CM)

The Configuration Mismatch (CM) Reset is designed to detect and attempt to recover from random, memory corrupting events. These include Electrostatic Discharge (ESD) events which can cause widespread single-bit changes throughout the device and result in catastrophic failure.

In PIC18FXXJ Flash devices, the device Configuration registers (located in the configuration memory space) are continuously monitored during operation by comparing their values to complimentary shadow registers. If a mismatch is detected between the two sets of registers, a CM Reset automatically occurs. These events are captured by the \overline{CM} bit (RCON<5>). The state of the bit is set to '0' whenever a CM event occurs; it does not change for any other Reset event.

5.7 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up since this is viewed as the resumption of normal operation. Status bits from the RCON register (CM, RI,

TO, PD, POR and BOR) are set or cleared differently in different Reset situations, as indicated in Table 5-1. These bits are used in software to determine the nature of the Reset.

Table 5-2 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets, and WDT wake-ups.

TABLE 5-1:	STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
	RCON REGISTER

Condition	Program			STKPTR Register					
Condition	Counter ⁽¹⁾	СМ	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	1	1	1	1	0	0	0	0
RESET Instruction	0000h	u	0	u	u	u	u	u	u
Brown-out Reset	0000h	1	1	1	1	u	0	u	u
Configuration Mismatch Reset	0000h	0	u	u	u	u	u	u	u
MCLR during power-managed Run modes	0000h	u	u	1	u	u	u	u	u
MCLR during power-managed Idle modes and Sleep mode	0000h	u	u	1	0	u	u	u	u
MCLR during full-power execution	0000h	u	u	u	u	u	u	u	u
Stack Full Reset (STVREN = 1)	0000h	u	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)	0000h	u	u	u	u	u	u	u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	u	u	u	u	u	u	u	1
WDT time-out during full power or power-managed Run modes	0000h	u	u	0	u	u	u	u	u
WDT time-out during power-managed Idle or Sleep modes	PC + 2	u	u	0	0	u	u	u	u
Interrupt exit from power-managed modes	PC + 2	u	u	u	0	u	u	u	u

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt, and the GIEH or GIEL bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

Register	A	pplicable Device	25	Power-on Reset, Brown-out Reset	MCLR Reset, WDT Reset, RESET Instruction, Stack Resets, CM Reset	Wake-up via WDT or Interrupt
MAIPGH	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	-000 0000	-000 0000	-uuu uuuu
MAIPGL	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	-000 0000	-000 0000	-uuu uuuu
MABBIPG	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	-000 0000	-000 0000	-uuu uuuu
MACON4	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	-00000	-00000	-uuuuu
MACON3	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
MACON1	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0 0000	0 0000	u uuuu
EPAUSH	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0001 0000	0001 0000	000u uuuu
EPAUSL	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
EFLOCON	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	000	000	uuu
MISTAT	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000	0000	uuuu
MAADR2	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
MAADR1	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
MAADR4	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
MAADR3	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
MAADR6	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
MAADR5	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

4: See Table 5-1 for Reset value for specific condition.

					0101010		., (00111		1	
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Values on POR, BOR	Details on Page:
ESTAT	—	BUFER	-	r	—	RXBUSY	TXABRT	PHYRDY	-0-0 -000	73, 228
EIE	_	PKTIE	DMAIE	LINKIE	TXIE	_	TXERIE	RXERIE	-000 0-00	73, 240
EDMACSH	DMA Check	sum Register I	High Byte	•	•				0000 0000	73, 265
EDMACSL	DMA Check	sum Register I	_ow Byte						0000 0000	73, 265
EDMADSTH	_	—	—	DMA Destina	tion Register H	ligh Byte			0 0000	73, 265
EDMADSTL	DMA Destin	ation Register	Low Byte						0000 0000	73, 265
EDMANDH	_	_	_	DMA End Re	gister High By	te			0 0000	73, 265
EDMANDL	DMA End R	egister Low By	rte						0000 0000	73, 265
EDMASTH	_	_	_	DMA Start Re	egister High By	/te			0 0000	73, 265
EDMASTL	DMA Start R	Register Low B	yte						0000 0000	73, 265
ERXWRPTH	_	_	_	Receive Buffe	er Write Pointe	r High Byte			0 0000	73, 225
ERXWRPTL	Receive Buf	fer Write Point	er Low Byte						0000 0000	73, 225
ERXRDPTH	_	_	_	Receive Buffe	er Read Pointe	er High Byte			0 0101	73, 225
ERXRDPTL	Receive Buf	fer Read Point	er Low Byte						1111 1010	73, 225
ERXNDH	_	_	_	Receive End	Register High	Byte			1 1111	73, 225
ERXNDL	Receive End	d Register Low	Byte						1111 1111	73, 225
ERXSTH	_	_	_	Receive Start	Register High	Byte			0 0101	73, 225
ERXSTL	Receive Sta	rt Register Lov	v Byte						1111 1010	73, 225
ETXNDH	—	_	_	Transmit End	Register High	Byte			0 0000	74, 226
ETXNDL	Transmit En	d Register Lov	v Byte						0000 0000	74, 226
ETXSTH	_	—		Transmit Star	t Register Higl	n Byte			0 0000	74, 226
ETXSTL	Transmit Sta	art Register Lov	w Byte						0000 0000	74, 226
EWRPTH	_	—		Buffer Write F	Pointer High B	yte			0 0000	74, 223
EWRPTL	Buffer Write	Pointer Low B	yte						0000 0000	74, 223
EPKTCNT	Ethernet Pa	cket Count Re	gister						0000 0000	74, 252
ERXFCON	UCEN	ANDOR	CRCEN	PMEN	MPEN	HTEN	MCEN	BCEN	1010 0001	74, 260
EPMOH	_	—		Pattern Match	n Offset Regis	ter High Byte			0 0000	74, 263
EPMOL	Pattern Mate	ch Offset Regis	ster Low Byte						0000 0000	74, 263
EPMCSH	Pattern Mate	ch Checksum I	Register High	Byte					0000 0000	74, 263
EPMCSL	Pattern Mate	ch Checksum I	Register Low I	Byte					0000 0000	74, 263
EPMM7	Pattern Mate	ch Mask Regis	ter Byte 7						0000 0000	74, 263
EPMM6	Pattern Mate	ch Mask Regis	ter Byte 6						0000 0000	74, 263
EPMM5	Pattern Mate	ch Mask Regis	ter Byte 5						0000 0000	74, 263
EPMM4	Pattern Mate	ch Mask Regis	ter Byte 4						0000 0000	74, 263
EPMM3	Pattern Mate	ch Mask Regis	ter Byte 3						0000 0000	74, 263
EPMM2	Pattern Mate	ch Mask Regis	ter Byte 2						0000 0000	74, 263
EPMM1	Pattern Mate	ch Mask Regis	ter Byte 1						0000 0000	74, 263
EPMM0	Pattern Mate	ch Mask Regis	ter Byte 0						0000 0000	74, 263

TABLE 6-5: REGISTER FILE SUMMARY (PIC18F97J60 FAMILY) (CONTINUED)

Legend: x = unknown; u = unchanged; - = unimplemented, read as '0'; q = value depends on condition; r = reserved bit, do not modify. Shaded cells are unimplemented, read as '0'.

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.

2: Bit 21 of the PC is only available in Serial Programming modes.

3: Reset value is '0' when Two-Speed Start-up is enabled and '1' if disabled.

4: Alternate names and definitions for these bits when the MSSP module is operating in I^2C^{TM} Slave mode.

5: These bits and/or registers are only available in 100-pin devices; otherwise, they are unimplemented and read as '0'. Reset values shown apply only to 100-pin devices.

6: These bits and/or registers are only available in 80-pin and 100-pin devices. In 64-pin devices, they are unimplemented and read as '0'. Reset values are shown for 100-pin devices.

7: In Microcontroller mode, the bits in this register are unwritable and read as '0'.

8: PLLEN is only available when either ECPLL or HSPLL Oscillator mode is selected; otherwise, read as '0'.

9: Implemented in 100-pin devices in Microcontroller mode only.

11.5 PORTD, TRISD and LATD Registers

PORTD is implemented as a bidirectional port in two ways:

- 64-pin and 80-pin devices: 3 bits (RD<2:0>)
- 100-pin devices: 8 bits (RD<7:0>)

The corresponding Data Direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin). All pins on PORTD are digital only and tolerate voltages up to 5.5V.

The Output Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note: These pins are configured as digital inputs on any device Reset.

On 100-pin devices, PORTD is multiplexed with the system bus as part of the external memory interface. I/O port and other functions are only available when the interface is disabled by setting the EBDIS bit (MEMCON<7>). When the interface is enabled, PORTD is the low-order byte of the multiplexed address/data bus (AD<7:0>). The TRISD bits are also overridden.

Each of the PORTD pins has a weak internal pull-up. A single control bit can turn on all of the pull-ups. This is performed by setting the RDPU bit (LATA<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on all device Resets.

On 100-pin devices, PORTD can also be configured to function as an 8-bit wide, parallel microprocessor port by setting the PSPMODE control bit (PSPCON<4>). In this mode, parallel port data takes priority over other digital I/O (but not the external memory interface). When the parallel port is active, the input buffers are TTL. For more information, refer to **Section 11.11** "**Parallel Slave Port (PSP)**".

EXAMPLE '	11-4:	INITIALIZING PORTE)

CLRF	PORTD	; Initialize PORTD by
		; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs

12.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable. Its value is set by the PSA and T0PS<2:0> bits (T0CON<3:0>) which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When it is assigned, prescale values from 1:2 through 1:256, in power-of-2 increments, are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note:	Writing to TMR0 when the prescaler is
	assigned to Timer0 will clear the prescaler
	count but will not change the prescaler
	assignment.

12.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

12.4 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit (INTCON<5>). Before re-enabling the interrupt, the TMR0IF bit must be cleared in software by the Interrupt Service Routine.

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:		
TMR0L	DL Timer0 Register Low Byte										
TMR0H	Timer0 Register High Byte										
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	69		
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	69		
T0CON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	70		
TRISA	—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	71		

 TABLE 12-1:
 REGISTERS ASSOCIATED WITH TIMER0

Legend: — = unimplemented, read as '0'. Shaded cells are not used by Timer0.

REGISTER 18-3: ECCP1AS: ECCP1 AUTO-SHUTDOWN CONFIGURATION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ECCP1ASE	ECCP1AS2	ECCP1AS1	ECCP1AS0	PSS1AC1	PSS1AC0	PSS1BD1	PSS1BD0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	ECCP1ASE:	ECCP1 Auto-S	Shutdown Ever	nt Status bit			
	0 = ECCP1 or	utputs are ope	rating				
	1 = A shutdov	vn event has o	ccurred; ECC	P1 outputs are	in shutdown st	ate	
bit 6-4	ECCP1AS<2:	:0>: ECCP1 A	uto-Shutdown	Source Select	bits		
	000 = Auto-s	hutdown is dis	abled				
	001 = Compa	arator 1 output					
	010 = Compa	arator 2 output	or 0				
	100 = FITO	Comparator	01 2				
	101 = FLT0 c	or Comparator	1				
	110 = FLTO c	or Comparator	2				
	111 = FLT0 c	or Comparator	1 or Comparat	tor 2			
bit 3-2	PSS1AC<1:0	>: A and C Pin	s Shutdown S	tate Control bi	ts		
	00 = Drive A a	and C pins to '	D'				
	01 = Drive A a	and C pins to '	1'				
	1x = A and C	pins tri-state					
bit 1-0	PSS1BD<1:0	>: B and D Pin	s Shutdown S	tate Control bi	ts		
	00 = Drive B a	and D pins to '	0'				
	01 = Drive B	and D pins to "	1′				
	TX = P and D	pins tri-state					

Bit	Field	Description
55-52	Zero	0
51	Transmit VLAN Tagged Frame	Frame's length/type field contained 8100h which is the VLAN protocol identifier.
50	Backpressure Applied	Reserved, do not use.
49	Transmit Pause Control Frame	The frame transmitted was a control frame with a valid pause opcode.
48	Transmit Control Frame	The frame transmitted was a control frame.
47-32	Total Bytes Transmitted on Wire	Total bytes transmitted on the wire for the current packet, including all bytes from collided attempts.
31	Transmit Underrun	The transmission was aborted due to insufficient buffer memory bandwidth to sustain the 10 Mbit/s transmit rate.
30	Transmit Giant	Byte count for frame was greater than the MAMXFL registers.
29	Transmit Late Collision	Collision occurred after 64 bytes had already been transmitted.
28	Transmit Excessive Collision	Packet was aborted after the number of collisions exceeded 15, the retransmission maximum.
27	Transmit Excessive Defer	Packet was deferred in excess of 24,287 bit times (2.4287 ms), due to a continuously occupied medium.
26	Transmit Packet Defer	Packet was deferred for at least one attempt, but less than an excessive defer.
25	Transmit Broadcast	Packet's destination address was a Broadcast address.
24	Transmit Multicast	Packet's destination address was a Multicast address.
23	Transmit Done	Transmission of the packet was completed successfully.
22	Transmit Length Out of Range	Indicates that frame type/length field was larger than 1500 bytes (type field).
21	Transmit Length Check Error	Indicates that the frame length field value in the packet does not match the actual data byte length and is not a type field. The FRMLNEN bit (MACON3<1>) must be set to get this error.
20	Transmit CRC Error	The attached CRC in the packet did not match the internally generated CRC.
19-16	Transmit Collision Count	Number of collisions the current packet incurred during transmission attempts. It applies to successfully transmitted packets, and as such, will not show the possible maximum count of 16 collisions.
15-0	Transmit Byte Count	Total bytes in frame, not counting collided bytes.

TABLE 19-4: TRANSMIT STATUS VECTORS

20.4.3.3 Reception

When the R/W bit of the address byte is clear and an address match occurs, the R/W bit of the SSPxSTAT register is cleared. The received address is loaded into the SSPxBUF register and the SDAx line is held low (ACK).

When the address byte overflow condition exists, then the no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit, BF (SSPxSTAT<0>), is set, or bit, SSPOV (SSPxCON1<6>), is set.

An MSSP interrupt is generated for each data transfer byte. The interrupt flag bit, SSPxIF, must be cleared in software. The SSPxSTAT register is used to determine the status of the byte.

If SEN is enabled (SSPxCON2<0> = 1), SCKx/SCLx (RC3 or RD6) will be held low (clock stretch) following each data transfer. The clock must be released by setting bit, CKP (SSPxCON1<4>). See **Section 20.4.4** "**Clock Stretching**" for more details.

20.4.3.4 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register. The ACK pulse will be sent on the ninth bit and pin RC3 or RD6 is held low, regardless of SEN (see **Section 20.4.4** "**Clock Stretching**" for more details). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPxBUF register which also loads the SSPxSR register. Then, pin, RC3 or RD6, should be enabled by setting bit, CKP (SSPxCON1<4>). The eight data bits are shifted out on the falling edge of the SCLx input. This ensures that the SDAx signal is valid during the SCLx high time (Figure 20-10).

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCLx input pulse. If the SDAx line is high (not ACK), then the data transfer is complete. In this case, when the ACK is latched by the slave, the slave logic is reset (resets SSPxSTAT register) and the slave monitors for another occurrence of the Start bit. If the SDAx line was low (ACK), the next transmit data must be loaded into the SSPxBUF register. Again, pin, RC3 or RD6, must be enabled by setting bit, CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared in software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

EQUATION 21-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG: Desired Baud Rate = Fosc/(64 ([SPBRGHx:SPBRGx] + 1)) Solving for SPBRGHx:SPBRGx: X = ((Fosc/Desired Baud Rate)/64) - 1 = ((16000000/9600)/64) - 1 = [25.042] = 25Calculated Baud Rate=16000000/(64 (25 + 1))

= 9615

Error = (Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate (0.015 - 0.000)/0.000 = 0.160

= (9615 - 9600)/9600 = 0.16%

TABLE 21-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	71
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	71
BAUDCONx	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	72
SPBRGHx	EUSARTx Baud Rate Generator Register High Byte								72
SPBRGx	EUSARTx Baud Rate Generator Register Low Byte								72

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

23.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 23-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this

range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

TABLE 23-1: REGISTERS ASSOCIATED WITH COMPARATOR MODU

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	69
PIR2	OSCFIF	CMIF	ETHIF	r	BCL1IF	—	TMR3IF	CCP2IF	71
PIE2	OSCFIE	CMIE	ETHIE	r	BCL1IE	—	TMR3IE	CCP2IE	71
IPR2	OSCFIP	CMIP	ETHIP	r	BCL1IP	_	TMR3IP	CCP2IP	71
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	70
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	70
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	72
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	71

Legend: — = unimplemented, read as '0', r = reserved. Shaded cells are not used by the comparator module.

IORI	W	Inclusive	Inclusive OR Literal with W						
Synt	ax:	IORLW k	IORLW k						
Oper	rands:	$0 \le k \le 25$	5						
Oper	ration:	(W) .OR. k	$x \rightarrow W$						
Statu	is Affected:	N, Z							
Enco	oding:	0000	1001	kkk	k	kkkk			
Desc	cription:	The conte eight-bit lit in W.	The contents of W are ORed with the eight-bit literal 'k'. The result is placed in W.						
Word	ds:	1	1						
Cycle	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3	3	Q4				
	Decode	Read literal 'k'	Proce Data	ess a	ss Write				
Exar	<u>nple:</u>	IORLW	35h						
Before Instruction W = 9Ah After Instruction									

W

=

BFh

Syntax:	IORWF	f {,d {,a}}					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Operation:	(W) .OR. (1	$f) \rightarrow \text{dest}$					
Status Affected:	N, Z						
Encoding:	0001	00da	ffff	ffff			
Description:	Inclusive C '0', the res the result is (default).	OR W with ult is plac s placed l	i register ' ed in W. I back in reg	f'. If 'd' is f 'd' is '1', gister 'f'			
	If 'a' is '0', If 'a' is '1', GPR bank	the Acces the BSR i (default).	ss Bank is s used to	selected. select the			
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	1	Q4			
Decode	Read register 'f'	Proce Data	ss V a de	Vrite to stination			
Example: IORWF RESULT, 0, 1							

Inclusive OR W with f

Before Instruction	
RESULT =	13h
W =	91h
After Instruction	
RESULT =	13h
W =	93h

IORWF

DS39762F-page 398

26.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, the PIC18F97J60 family of devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment Indirect and Indexed Addressing operations and the implementation of Indexed Literal Offset Addressing for many of the standard PIC18 instructions.

The additional features of the extended instruction set are enabled by default on unprogrammed devices. Users must properly set or clear the XINST Configuration bit during programming to enable or disable these features.

The instructions in the extended set can all be classified as literal operations, which either manipulate the File Select Registers, or use them for Indexed Addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize reentrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- Dynamic allocation and deallocation of software stack space when entering and leaving subroutines
- Function Pointer invocation
- Software Stack Pointer manipulation
- Manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 26-3. Detailed descriptions are provided in **Section 26.2.2 "Extended Instruction Set**". The opcode field descriptions in Table 26-1 (page 376) apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.

26.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of Indexed Addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. The MPASM[™] Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in byte-oriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 26.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{ }").

Mnemonic, Operands		Description	Cuolos	16-E	Bit Instru	Status		
		Description	Cycles	MSb			LSb	Affected
ADDFSR	f, k	Add Literal to FSR	1	1110	1000	ffkk	kkkk	None
ADDULNK	k	Add Literal to FSR2 and Return	2	1110	1000	11kk	kkkk	None
CALLW		Call Subroutine using WREG	2	0000	0000	0001	0100	None
MOVSF	z _s , f _d	Move z _s (source) to 1st word	2	1110	1011	0zzz	ZZZZ	None
		f _d (destination) 2nd word		1111	ffff	ffff	ffff	
MOVSS	z _s , z _d	Move z _s (source) to 1st word	2	1110	1011	lzzz	ZZZZ	None
		z _d (destination) 2nd word		1111	xxxx	XZZZ	ZZZZ	
PUSHL	k	Store Literal at FSR2,	1	1110	1010	kkkk	kkkk	None
		Decrement FSR2						
SUBFSR	f, k	Subtract Literal from FSR	1	1110	1001	ffkk	kkkk	None
SUBULNK	k	Subtract Literal from FSR2 and	2	1110	1001	11kk	kkkk	None
		Return						

TABLE 26-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

28.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 28-5 apply to all timing specifications unless otherwise noted. Figure 28-3 specifies the load conditions for the timing specifications.

TABLE 28-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)						
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
AC CHARACTERISTICS	Operating voltage VDD range as described in DC spec Section 28.1 "DC						
	Characteristics: Supply Voltage, PIC18F97J60 Family (Industrial)" and						
	Section 28.3 "DC Characteristics: PIC18F97J60 Family (Industrial)".						

FIGURE 28-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 28-24: EUSARTx SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions
120	TCKH2DTV	SYNC XMIT (MASTER and SLAVE) Clock High to Data Out Valid	_	40	ns	
121	TCKRF	Clock Out Rise Time and Fall Time (Master mode)	_	20	ns	
122	TDTRF	Data Out Rise Time and Fall Time	_	20	ns	

FIGURE 28-20: EUSARTx SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 28-25: EUSARTx SYNCHRONOUS RECEIVE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TDTV2CKL	SYNC RCV (MASTER and SLAVE) Data Hold before CKx \downarrow (DTx hold time)	10	_	ns	
126	TCKL2DTL	Data Hold after CKx \downarrow (DTx hold time)	15	_	ns	

NOTES:

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIM	ETERS				
Dimension	MIN	NOM	MAX			
Contact Pitch	E	0.50 BSC				
Contact Pad Spacing	C1		13.40			
Contact Pad Spacing	C2		13.40			
Contact Pad Width (X80)	X1			0.30		
Contact Pad Length (X80)	Y1			1.50		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092A