

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	41.667MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	55
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3808 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 15x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f87j60-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DiaNana	Pin Number	Pin	Buffer	Development					
Pin Name	TQFP	Туре	Туре	Description					
				PORTH is a bidirectional I/O port.					
RH0/A16	99								
RH0		I/O	ST	Digital I/O.					
Alb		0	_	External Memory Address 16.					
RH1/A17	100	1/0	ст						
A17		0		External Memory Address 17.					
RH2/A18	1								
RH2		I/O	ST	Digital I/O.					
A18		0	—	External Memory Address 18.					
RH3/A19	2								
RH3		1/0	ST	Digital I/O.					
A19		0	_	External Memory Address 19.					
RH4/AN12/P3C	27	1/0	ст						
AN12		1/0	Analog	Analog Input 12.					
P3C ⁽⁵⁾		0	_	ECCP3 PWM Output C.					
RH5/AN13/P3B	26								
RH5		I/O	ST	Digital I/O.					
AN13 D2D (5)			Analog	Analog Input 13.					
	0.5	0	_						
RH6/AN14/P1C	25	1/0	ST	Digital I/O					
AN14		1	Analog	Analog Input 14.					
P1C ⁽⁵⁾		0	—	ECCP1 PWM Output C.					
RH7/AN15/P1B	24								
RH7		I/O	ST	Digital I/O.					
AN15 P1B (5)			Analog	Analog Input 15. ECCP1 PWM Output B					
	ompatible input	0		CMOS = CMOS compatible input or output					
ST = Schm	itt Trigger input v	with CM	OS levels	Analog = Analog input					
I = Input	Q = Qutput								

TABLE 1-6: PIC18F96J60/96J65/97J60 PINOUT I/O DESCRIPTIONS (CONTINUED)

 P
 = Power
 OD
 = Open-Drain (no P diode to VDD)

 Note 1:
 Alternate assignment for ECCP2/P2A when CCP2MX Configuration bit is cleared (Extended Microcontroller mode).

2: Default assignment for ECCP2/P2A for all devices in all operating modes (CCP2MX Configuration bit is set).

3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).

4: Alternate assignment for ECCP2/P2A when CCP2MX Configuration bit is cleared (Microcontroller mode).

5: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).

2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 3.0 "Oscillator Configurations"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins, and other signals in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):

- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.7 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

FIGURE 2-5: SUGGESTED PLACEMENT

OF THE OSCILLATOR CIRCUIT

8.6.1 16-BIT BYTE WRITE MODE

Figure 8-1 shows an example of 16-Bit Byte Write mode for PIC18F97J60 family devices. This mode is used for two separate 8-bit memories connected for 16-bit operation. This generally includes basic EPROM and Flash devices. It allows table writes to byte-wide external memories. During a TBLWT instruction cycle, the TABLAT data is presented on the upper and lower bytes of the AD<15:0> bus. The appropriate WRH or WRL control line is strobed on the LSb of the TBLPTR.

10.3 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Enable registers (PIE1, PIE2, PIE3). When IPEN = 0, the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 10-7: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PSPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 7	bit 7 PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit ⁽¹⁾ 1 = Enabled 0 = Disabled										
bit 6	ADIE: A/D Co 1 = Enabled 0 = Disabled	onverter Interru	pt Enable bit								
bit 5	RC1IE: EUSA 1 = Enabled 0 = Disabled	ART1 Receive I	nterrupt Enab	ole bit							
bit 4	TX1IE: EUSA 1 = Enabled 0 = Disabled	RT1 Transmit	Interrupt Enat	ble bit							
bit 3	SSP1IE: MSSP1 Interrupt Enable bit 1 = Enabled 0 = Disabled										
bit 2	CCP1IE: ECCP1 Interrupt Enable bit 1 = Enabled 0 = Disabled										
bit 1	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enabled 0 = Disabled										
bit 0	 Disabled TMR1IE: TMR1 Overflow Interrupt Enable bit 1 = Enabled 0 = Disabled 										

Note 1: Implemented in 100-pin devices in Microcontroller mode only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
OSCFIE	CMIE	ETHIE	r	BCL1IE	_	TMR3IE	CCP2IE		
bit 7	·	•					bit 0		
Legend:		r = Reserved	bit						
R = Readable	bit	W = Writable	W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cl∉	eared	x = Bit is unkr	nown		
bit 7	OSCFIE: Osc 1 = Enabled 0 = Disabled	illator Fail Inte	rrupt Enable b	bit					
bit 6	CMIE: Compa 1 = Enabled 0 = Disabled	arator Interrupt	Enable bit						
bit 5	ETHIE: Ether 1 = Enabled 0 = Disabled	net Module Inte	errupt Enable	bit					
bit 4	Reserved: M	aintain as '0'							
bit 3	BCL1IE: Bus	Collision Intern	upt Enable bi	t (MSSP1 mod	dule)				
	1 = Enabled 0 = Disabled								
bit 2	Unimplemen	ted: Read as '	0'						
bit 1	TMR3IE: TMF 1 = Enabled 0 = Disabled	R3 Overflow In	terrupt Enable	e bit					
bit 0	CCP2IE: ECO 1 = Enabled 0 = Disabled	CP2 Interrupt E	nable bit						

REGISTER 10-8: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

Pin Name	Function	TRIS Setting	I/O	I/O Type	Description
RA0/LEDA/AN0	RA0	0	0	DIG	LATA<0> data output; not affected by analog input.
		1	I	TTL	PORTA<0> data input; disabled when analog input is enabled.
	LEDA	0	0	DIG	Ethernet LEDA output; takes priority over digital data.
	AN0	1	I	ANA	A/D Input Channel 0. Default input configuration on POR; does not affect digital output.
RA1/LEDB/AN1	RA1	0	0	DIG	LATA<1> data output; not affected by analog input.
		1	I	TTL	PORTA<1> data input; disabled when analog input is enabled.
	LEDB	0	0	DIG	Ethernet LEDB output; takes priority over digital data.
	AN1	1	I	ANA	A/D Input Channel 1. Default input configuration on POR; does not affect digital output.
RA2/AN2/VREF-	RA2	0	0	DIG	LATA<2> data output; not affected by analog input. Disabled when CVREF output is enabled.
		1	I	TTL	PORTA<2> data input. Disabled when analog functions are enabled; disabled when CVREF output is enabled.
	AN2	1	I	ANA	A/D Input Channel 2 and Comparator C2+ input. Default input configuration on POR; not affected by analog output.
	VREF-	1	I	ANA	A/D and comparator low reference voltage input.
RA3/AN3/VREF+	RA3	0	0	DIG	LATA<3> data output; not affected by analog input.
		1	Ι	TTL	PORTA<3> data input; disabled when analog input is enabled.
	AN3	1	Ι	ANA	A/D Input Channel 3. Default input configuration on POR.
	VREF+	1	I	ANA	A/D high reference voltage input.
RA4/T0CKI	RA4	0	0	DIG	LATA<4> data output.
		1	I	ST	PORTA<4> data input; default configuration on POR.
	TOCKI	х	I	ST	Timer0 clock input.
RA5/AN4	RA5	0	0	DIG	LATA<5> data output; not affected by analog input.
		1	I	TTL	PORTA<5> data input; disabled when analog input is enabled.
	AN4	1	I	ANA	A/D Input Channel 4. Default configuration on POR.

TABLE 11-3: PORTA FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTA	RJPU ⁽¹⁾	_	RA5	RA4	RA3	RA2	RA1	RA0	72
LATA	RDPU	REPU	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	72
TRISA	_	-	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	71
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	70

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTA.

Note 1: Implemented in 80-pin and 100-pin devices only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	72
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	72
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	71
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	69
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	69
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	69

TABLE 11-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: Shaded cells are not used by PORTB.

17.2 Capture Mode

In Capture mode, the CCPRxH:CCPRxL register pair captures the 16-bit value of the TMR1 or TMR3 registers when an event occurs on the corresponding CCPx pin. An event is defined as one of the following:

- · Every falling edge
- · Every rising edge
- Every 4th rising edge
- · Every 16th rising edge

The event is selected by the mode select bits, CCPxM<3:0> (CCPxCON<3:0>). When a capture is made, the interrupt request flag bit, CCPxIF, is set; it must be cleared in software. If another capture occurs before the value in register, CCPRx, is read, the old captured value is overwritten by the new captured value.

17.2.1 CCPx PIN CONFIGURATION

In Capture mode, the appropriate CCPx pin should be configured as an input by setting the corresponding TRIS direction bit.

Note:	If RG4/CCP5/P1D is configured as an
	output, a write to the port can cause a
	capture condition.

17.2.2 TIMER1/TIMER3 MODE SELECTION

The timers that are to be used with the capture feature (Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation will not work. The timer to be used with each CCPx module is selected in the T3CON register (see Section 17.1.1 "CCPx/ECCPx Modules and Timer Resources").

17.2.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit clear to avoid false interrupts. The interrupt flag bit, CCPxIF, should also be cleared following any such change in operating mode.

17.2.4 CCPx PRESCALER

There are four prescaler settings in Capture mode. They are specified as part of the operating mode selected by the mode select bits (CCPxM<3:0>). Whenever the CCPx module is turned off or Capture mode is disabled, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared; therefore, the first capture may be from a non-zero prescaler. Example 17-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 17-1: CHANGING BETWEEN CAPTURE PRESCALERS (CCP5 SHOWN)

CLRF	CCP5CON	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load WREG with the
		;	new prescaler mode
		;	value and CCP ON
MOVWF	CCP5CON	;	Load CCP5CON with
		;	this value

FIGURE 17-2: CAPTURE MODE OPERATION BLOCK DIAGRAM

19.4 Module Initialization

Before the Ethernet module can be used to transmit and receive packets, certain device settings must be initialized. Depending on the application, some configuration options may need to be changed. Normally, these tasks may be accomplished once after Reset and do not need to be changed thereafter.

Before any other configuration actions are taken, it is recommended that the module be enabled by setting the ETHEN bit (ECON2<5>). This reduces the Idle time that might otherwise result while waiting for the PHYRDY flag to become set.

19.4.1 RECEIVE BUFFER

Before receiving any packets, the receive buffer must be initialized by setting the ERXST and ERXND Pointers. All memory between and including the ERXST and ERXND addresses will be dedicated to the receive hardware. The ERXST Pointers must be programmed with an even address while the ERXND Pointers must be programmed with an odd address.

Applications expecting large amounts of data and frequent packet delivery may wish to allocate most of the memory as the receive buffer. Applications that may need to save older packets, or have several packets ready for transmission, should allocate less memory.

When programming the ERXST or ERXND Pointers, the ERXWRPT Pointer registers will automatically be updated with the value in the ERXST registers. The address in the ERXWRPT registers will be used as the starting location when the receive hardware begins writing received data. When the ERXST and ERXND Pointers are initialized, the ERXRDPT registers should additionally be programmed with the value of the ERXND registers. To program the ERXRDPT registers, write to ERXRDPTL first, followed by ERXRDPTH. See **Section 19.5.3.3 "Freeing Receive Buffer Space"** for more information.

19.4.2 TRANSMISSION BUFFER

All memory which is not used by the receive buffer is considered to be the transmission buffer. Data which is to be transmitted should be written into any unused space. After a packet is transmitted, however, the hardware will write a 7-byte status vector into memory after the last byte in the packet. Therefore, the application should leave at least 7 bytes between each packet and the beginning of the receive buffer.

19.4.3 RECEIVE FILTERS

The appropriate receive filters should be enabled or disabled by writing to the ERXFCON register. See **Section 19.8 "Receive Filters"** for information on how to configure it.

19.4.4 WAITING FOR THE PHY START-UP TIMER

If the initialization procedure is being executed immediately after enabling the module (setting the ETHEN bit to '1'), the PHYRDY bit should be polled to make certain that enough time (1 ms) has elapsed before proceeding to modify the PHY registers. For more information on the PHY start-up timer, see **Section 19.1.3.1 "Start-up Timer"**.

19.4.5 MAC INITIALIZATION SETTINGS

Several of the MAC registers require configuration during initialization. This only needs to be done once during initialization; the order of programming is unimportant.

- Set the MARXEN bit (MACON1<0>) to enable the MAC to receive frames. If using full duplex, most applications should also set TXPAUS and RXPAUS to allow IEEE defined flow control to function.
- 2. Configure the PADCFG<2:0>, TXCRCEN and FULDPX bits in the MACON3 register. Most applications should enable automatic padding to at least 60 bytes and always append a valid CRC. For convenience, many applications may wish to set the FRMLNEN bit as well to enable frame length status reporting. The FULDPX bit should be set if the application will be connected to a full-duplex configured remote node; otherwise leave it clear.
- Configure the bits in MACON4. For maintaining compliance with IEEE 802.3, be certain to set the DEFER bit (MACON4<6>).
- Program the MAMXFL registers with the maximum frame length to be permitted to be received or transmitted. Normal network nodes are designed to handle packets that are 1518 bytes or less; larger packets are not supported by IEEE 802.3.
- Configure the MAC Back-to-Back Inter-Packet Gap register, MABBIPG, with 15h (when Full-Duplex mode is used) or 12h (when Half-Duplex mode is used). Refer to Register 19-18 for a more detailed description of configuring the inter-packet gap.
- 6. Configure the MAC Non Back-to-Back Inter-Packet Gap Low Byte register, MAIPGL, with 12h.
- 7. If half duplex is used, configure the MAC Non Back-to-Back Inter-Packet Gap High Byte register, MAIPGH, with 0Ch.
- 8. Program the local MAC address into the MAADR1:MAADR6 registers.

FIGURE 20-9: I²C[™] SLAVE MODE TIMING WITH SEN = 0 AND ADMSK<5:1> = 01011 (RECEPTION, 7-BIT ADDRESS)

NOTES:

REGISTER 25-3: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

R/WO-1 FOSC2	R/WO-1 FOSC1	R/WO-1 FOSC0 bit 0						
FOSC2	FOSC1	FOSC0 bit 0						
		bit 0						
plemented bit, read	d as '0'							
set	'0' = Bit is clea	ared						
r Switchover) Cont	rol bit							
1 = Clock selected by FOSC<1:0> as system clock is enabled when OSCCON<1:0> = 0.0 0 = INTRC enabled as system clock when OSCCON<1:0> = 0.0								
 11 = EC oscillator, PLL is enabled and under software control, CLKO function on OSC2 10 = EC oscillator, CLKO function on OSC2 01 = HS oscillator, PLL is enabled and under software control 00 = HS oscillator 								
	r Switchover) Cont enabled when OS(:1:0> = 00 e control, CLKO fut e control	<pre>set '0' = Bit is clear r Switchover) Control bit enabled when OSCCON<1:0> = 0 :1:0> = 00 e control, CLKO function on OSC2 e control</pre>						

26.0 INSTRUCTION SET SUMMARY

The PIC18F97J60 family of devices incorporates the standard set of 75 PIC18 core instructions, as well as an extended set of 8 new instructions for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

26.1 Standard Instruction Set

The standard PIC18 instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from these PIC MCU instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

The PIC18 instruction set summary in Table 26-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 26-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator 'f' specifies which file register is to be used by the instruction. The destination designator 'd' specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All **bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator 'b' selects the number of the bit affected by the operation, while the file register designator 'f' represents the number of the file in which the bit is located. The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 26-1 shows the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 26-2, lists the standard instructions recognized by the Microchip MPASM[™] Assembler.

Section 26.1.1 "Standard Instruction Set" provides a description of each instruction.

BCF	Bit Clear f	BN	Branch if N	legative		
Syntax:	BCF f, b {,a}	Syntax:	BN n			
Operands:	$0 \leq f \leq 255$	Operands:	-128 ≤ n ≤ 1	27		
	0 ≤ b ≤ 7 a ∈ [0,1]		if Negative (PC) + 2 + 2	bit is '1', 2n \rightarrow PC		
Operation:	$0 \rightarrow f \le b >$	Status Affected:	None			
Status Affected:	None	Encodina:	1110	0110 nnr	n nnnn	
Encoding:	1001 bbba ffff ffff	Description:	If the Negat	ive bit is '1' th	en the	
Description:	Bit 'b' in register 'f' is cleared.	2000.19.00	program will branch.			
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).		The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.			
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing					
	mode whenever $f \le 95$ (5Fh). See	Words:	1			
	Section 26.2.3 "Byte-Oriented and	Cycles:	1(2)			
	Literal Offset Mode" for details.	Q Cycle Activity: If Jump:				
Words:	1	Q1	Q2	Q3	Q4	
Cycles:	1	Decode	Read literal	Process	Write to	
Q Cycle Activity:			'n'	Data	PC	
Q1	Q2 Q3 Q4	No	N0 operation	N0 operation	N0 operation	
Decode	register 'f' Data register 'f'	If No Jump:	oporation	oporation	oporation	
		Q1	Q2	Q3	Q4	
Example:	BCF FLAG_REG, 7, 0	Decode	Read literal	Process	No	
Before Instruc	tion		'n'	Data	operation	
FLAG_REG = C7h After Instruction		Example:	HERE	BN Jump		
FLAG_R	EG = 47h	Before Instruction PC = address (HERE) After Instruction				
		If Negativ PC If Negativ PC	ve = 1; = ado ve = 0; = ado	dress (Jump) dress (HERE	+ 2)	

28.2 DC Characteristics: Power-Down and Supply Current PIC18F97J60 Family (Industrial) (Continued)

PIC18F97J60 Family (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
Param No.	Device	Тур	Max	Units	Conditions				
	Supply Current (IDD) ⁽²⁾								
	All devices	0.8	1.5	mA	-40°C		Fosc = 1 MHz (PRI_RUN mode, EC oscillator)		
		0.8	1.5	mA	+25°C	VDD = 2.0V,			
		0.9	1.7	mA	+85°C				
	All devices	1.1	1.8	mA	-40°C				
		1.1	1.8	mA	+25°C	VDD = 2.5V, VDDCORE = 2.5V(4)			
		1.2	2.0	mA	+85°C	VBBOOKE 2.0V			
	All devices	2.1	3.4	mA	-40°C				
		2.0	3.4	mA	+25°C	VDD = 3.3V ⁽⁵⁾			
		2.1	3.4	mA	+85°C				
	All devices	9.2	14.5	mA	-40°C		Fosc = 25 MHz (PRI_RUN mode, EC oscillator)		
		9.0	14.5	mA	+25°C	VDD = 2.5V, VDDCORF = 2.5V(4)			
		9.2	14.5	mA	+85°C	VBBCORE 2.0V			
	All devices	13.0	18.4	mA	-40°C				
		12.4	18.4	mA	+25°C	VDD = 3.3V ⁽⁵⁾			
		13.0	18.4	mA	+85°C				
	All devices	13.4	19.8	mA	-40°C		Fosc = 41.6667 MHz (PRI_RUN mode, EC oscillator)		
		13.0	19.8	mA	+25°C	VDD = 2.5V, VDDCORE = 2.5V(4)			
		13.4	19.8	mA	+85°C				
	All devices	14.5	21.6	mA	-40°C				
		14.4	21.6	mA	+25°C	VDD = 3.3V ⁽⁵⁾			
		14.5	21.6	mA	+85°C				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 oscillator, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator disabled (ENVREG = 0, tied to Vss).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD).
- 6: For △IETH, the specified current includes current sunk through TPOUT+ and TPOUT-. LEDA and LEDB are disabled for all testing.

28.2 DC Characteristics: Power-Down and Supply Current PIC18F97J60 Family (Industrial) (Continued)

PIC18F97J60 Family (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No.	Device	Тур	Max	Units		Condition	S
	Supply Current (IDD) ⁽²⁾						
	All devices	22.0	45.0	μΑ	-10°C		Fosc = 32 kHz ⁽³⁾ (SEC_RUN mode, Timer1 as clock)
		22.0	45.0	μA	+25°C	VDD = 2.0V, $VDDCORF = 2.0V(4)$	
		78.0	114.0	μA	+70°C		
	All devices	27.0	52.0	μA	-10°C		
		27.0	52.0	μA	+25°C	VDD = 2.5V, VDDCORE = 2.5V ⁽⁴⁾	
		92.0	135.0	μA	+70°C		
	All devices	106.0	168.0	μA	-10°C		
		106.0	168.0	μA	+25°C	VDD = 3.3V ⁽⁵⁾	
		188.0	246.0	μA	+70°C		
	All devices	18.0	37.0	μA	-10°C		Fosc = 32 kHz ⁽³⁾ (SEC_IDLE mode, Timer1 as clock)
		18.0	37.0	μA	+25°C	VDD = 2.0V, VDDCORE = 2.0V ⁽⁴⁾	
		75.0	105.0	μA	+70°C		
	All devices	21.0	40.0	μA	-10°C		
		21.0	40.0	μA	+25°C	VDD = 2.5V, VDDCORE = 2.5V ⁽⁴⁾	
		84.0	98.0	μA	+70°C		
	All devices	94.0	152.0	μA	-10°C		
		94.0	152.0	μA	+25°C	VDD = 3.3V ⁽⁵⁾	
		182.0	225.0	μA	+70°C		

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 oscillator, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- **4:** Voltage regulator disabled (ENVREG = 0, tied to Vss).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD).
- 6: For △IETH, the specified current includes current sunk through TPOUT+ and TPOUT-. LEDA and LEDB are disabled for all testing.

28.4 AC (Timing) Characteristics

28.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2ppS	i	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase le	etters (pp) and their meanings:		
рр			
сс	ECCP1	osc	OSC1
ck	CLKO	rd	RD
CS	CS	rw	RD or WR
di	SDIx	sc	SCKx
do	SDOx	SS	SSx
dt	Data in	tO	ТОСКІ
io	I/O port	t1	T13CKI
mc	MCLR	wr	WR
Uppercase le	etters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-Impedance)	V	Valid
L	Low	Z	High-Impedance
I ² C only			
AA	Output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C s	pecifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		

Param. No.	Symbol	Characteris	stic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0	_	μS	PIC18F97J60 family must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μS	PIC18F97J60 family must operate at a minimum of 10 MHz
			MSSP module	1.5 TCY	_		
101 TLOW	Clock Low Time	100 kHz mode	4.7	—	μS	PIC18F97J60 family must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	_	μs	PIC18F97J60 family must operate at a minimum of 10 MHz
			MSSP module	1.5 TCY	_		
102	TR	SDAx and SCLx Rise	100 kHz mode	—	1000	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDAx and SCLx Fall	100 kHz mode	—	300	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90 Tsu:sta	Start Condition Setup	100 kHz mode	4.7	_	μS	Only relevant for Repeated	
		Time	400 kHz mode	0.6	_	μS	Start condition
91	THD:STA	Start Condition Hold	100 kHz mode	4.0	_	μS	After this period, the first
		Time	400 kHz mode	0.6	—	μS	clock pulse is generated
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μS	
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
92	Tsu:sto	Stop Condition Setup	100 kHz mode	4.7	—	μS	
		lime	400 kHz mode	0.6		μS	
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	-	μS	Time the bus must be free
			400 kHz mode	1.3		μS	can start
D102	Св	Bus Capacitive Loading		—	400	pF	

TABLE 28-21: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCLx to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C[™] bus device can be used in a Standard mode I²C bus system, but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line,

TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCLx line is released.

29.0 PACKAGING INFORMATION

29.1 Package Marking Information

INDEX

Α

A/D	339
Acquisition Requirements	344
ADCAL Bit	347
ADCON0 Register	339
ADCON1 Register	339
ADCON2 Register	339
ADRESH Register 339	342
ADRESI Register	330
Analog Port Pins, Configuring	345
Associated Registers	347
Automatic Acquisition Time, Selecting and	041
Configuring	3/5
Configuring the Medule	240
	245
Conversion Clock (TAD)	340
	403
Conversion Status (GO/DONE Bit)	342
Conversions	340
Converter Calibration	347
Converter Characteristics	462
Converter Interrupt, Configuring	343
Operation in Power-Managed Modes	347
Special Event Trigger (ECCP)202,	346
Use of the ECCP2 Trigger	346
Absolute Maximum Ratings	429
AC (Timing) Characteristics	443
Load Conditions for Device Timing	
Specifications	444
Parameter Symbology	443
Temperature and Voltage Specifications	444
Timing Conditions	444
ACKSTAT	304
ACKSTAT Status Flag	304
ADCAL Bit	347
ADCON0 Register	330
GO/DONE Bit	342
	330
ADCON2 Pagister	330
	110
	201
	301
ADDULNK	418
	381
	382
ADRESH Register	339
ADRESL Register	342
Analog-to-Digital Converter. See A/D.	
ANDLW	382
ANDWF	383
Assembler	
MPASM Assembler	426
D	
Baud Rate Generator	300
BC	383
BCF	384
BF	304
BF Status Flag	304
Block Diagrams	
16-Bit Byte Select Mode	121
16-Bit Byte Write Mode	119

	343
Baud Rate Generator	300
Capture Mode Operation	191
Comparator Analog Input Model	353
Comparator I/O Operating Modes	350
Comparator Output	352
Comparator Voltage Reference	356
Comparator Voltage Reference Output	
Buffer Example	357
Compare Mode Operation	192
Connections for On-Chip Voltage Regulator	369
Crystal Oscillator Operation (HS, HSPLL)	50
Device Clock	49
Enhanced PWM	203
Ethernet Interrupt Logic	239
Ethernet Module	217
EUSARTx Receive	329
EUSARTx Transmit	326
External Clock Input Operation (EC)	50
External Clock Input Operation (HS)	50
External Power-on Reset Circuit (Slow	
VDD Power-up)	65
Fail-Safe Clock Monitor	371
Full-Bridge Application Example	209
Generic I/O Port Operation	
Half-Bridge Output Mode Applications	
Interrupt Logic	130
MSSP (I ² C Master Mode)	
MSSP (I ² C Mode)	279
MSSP (SPI Mode)	269
On-Chip Reset Circuit	63
PIC18E66.I60/66.I65/67.I60	
PIC18E86.160/86.165/87.160	16
PIC18F96.160/96.165/97.160	
PORTD and PORTE (Parallel Slave Port)	168
PWM Operation (Simplified)	100
Reads from Flash Program Memory	109
Required External Components for Ethernet	210
PX Polarity Correction Circuit (TX not Show	ייייייייייייייייייייייייייייייייייייי
Single Comparator	351
Table Read Operation	105
	105
Table Write Operation	106
Table Write Operation	
Table Write Operation Table Writes to Flash Program Memory	
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode	106 111 172
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer0 in 8-Bit Mode	
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer0 in 8-Bit Mode Timer1 Timer1 (16 Bit Bood(M/site Mode))	
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer0 in 8-Bit Mode Timer1 Timer1 (16-Bit Read/Write Mode)	
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer0 in 8-Bit Mode Timer1 Timer1 (16-Bit Read/Write Mode) Timer2 Timer2	
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer0 in 8-Bit Mode Timer1 Timer1 (16-Bit Read/Write Mode) Timer2 Timer3 Timer3 (16 Bit Bead/Write Mode)	
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer1 in 8-Bit Mode Timer1 (16-Bit Read/Write Mode) Timer2 Timer3 (16-Bit Read/Write Mode) Timer3 (16-Bit Read/Write Mode)	106 111 172 172 176 176 176 181 184 184
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer0 in 8-Bit Mode Timer1 Timer1 (16-Bit Read/Write Mode) Timer2 Timer3 Timer4 Watebadea Timer	106 111 172 172 176 176 176 181 184 184 184
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer0 in 8-Bit Mode Timer1 Timer1 (16-Bit Read/Write Mode) Timer2 Timer3 Timer3 (16-Bit Read/Write Mode) Timer4 Watchdog Timer	106 111 172 172 176 176 176 181 184 184 188 367
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer0 in 8-Bit Mode Timer1 Timer1 (16-Bit Read/Write Mode) Timer2 Timer3 Timer3 Timer3 (16-Bit Read/Write Mode) Timer4 Watchdog Timer	106 111 172 172 176 176 176 181 184 184 188 367 384
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer1 in 8-Bit Mode Timer1 Timer1 (16-Bit Read/Write Mode) Timer2 Timer3 Timer3 Timer3 (16-Bit Read/Write Mode) Timer4 Watchdog Timer BN	106 111 172 172 176 176 176 181 184 184 188 367 384 385
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer0 in 8-Bit Mode Timer1 Timer1 Timer1 (16-Bit Read/Write Mode) Timer2 Timer3 Timer3 Timer3 (16-Bit Read/Write Mode) Timer4 Watchdog Timer BN BNC BNN	106 111 172 172 176 176 176 181 184 184 188 367 384 385 385
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer1 in 8-Bit Mode Timer1 Timer1 (16-Bit Read/Write Mode) Timer2 Timer3 Timer3 (16-Bit Read/Write Mode) Timer4 Watchdog Timer BN BNC BNN BNC	106 111 172 172 172 176 176 181 184 184 184 188 367 384 385 385 385
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer1 in 8-Bit Mode Timer1 Timer1 (16-Bit Read/Write Mode) Timer2 Timer3 Timer3 Timer3 (16-Bit Read/Write Mode) Timer4 Watchdog Timer BN BNC BNN BNC BNN BNOV BNZ	106 111 172 172 176 176 176 181 184 184 188 367 384 385 385 385 386 386
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer1 in 8-Bit Mode Timer1 Timer1 (16-Bit Read/Write Mode) Timer2 Timer3 Timer3 Timer3 (16-Bit Read/Write Mode) Timer4 Watchdog Timer BN BNC BNN BNC BNN BNC BNN BNOV BNZ BOR. See Brown-out Reset.	106 111 172 172 176 176 176 181 184 184 184 188 367 384 385 385 385 386 386
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer1 in 8-Bit Mode Timer1 Timer1 (16-Bit Read/Write Mode) Timer2 Timer3 Timer3 Timer3 (16-Bit Read/Write Mode) Timer4 Watchdog Timer BN BNC BNC BNN BNC BNN BNC BNN BNOV BNZ BOR. See Brown-out Reset. BOV	106 111 172 172 176 176 176 181 184 184 184 188 367 384 385 385 385 386 386 386
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer1 in 8-Bit Mode Timer1 Timer1 (16-Bit Read/Write Mode) Timer2 Timer3 Timer3 Timer3 (16-Bit Read/Write Mode) Timer4 Watchdog Timer BN BNC BNN BNC BNN BNC BNN BNC BNN BNOV BNZ BOR. See Brown-out Reset. BOV BRA	106 111 172 172 176 176 176 181 184 184 184 188 367 384 385 385 385 386 386 386 389 387
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer1 in 8-Bit Mode Timer1 Timer1 (16-Bit Read/Write Mode) Timer2 Timer3 Timer3 (16-Bit Read/Write Mode) Timer3 Timer4 Watchdog Timer BN BNC BNN BNOV BNZ BOR. See Brown-out Reset. BOV BRA BRA BRA BRA BRA Browned Beend (ReP)	106 111 172 172 176 176 176 181 184 184 184 188 367 384 385 385 386 386 386 389
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer1 in 8-Bit Mode Timer1 Timer1 (16-Bit Read/Write Mode) Timer2 Timer3 Timer3 (16-Bit Read/Write Mode) Timer3 Timer3 (16-Bit Read/Write Mode) Timer3 Timer4 Watchdog Timer BN BNC BNN BNOV BNZ BOR. See Brown-out Reset. BOV BRA BRG. See Baud Rate Generator. Brown-out Reset (BOR)	106 111 172 172 176 176 176 181 184 184 184 188 367 384 385 385 386 386 386 389 387 50 50
Table Write Operation Table Writes to Flash Program Memory Timer0 in 16-Bit Mode Timer1 in 8-Bit Mode Timer1 Timer1 (16-Bit Read/Write Mode) Timer2 Timer3 Timer3 (16-Bit Read/Write Mode) Timer4 Watchdog Timer BN BNC BNN BNC BNN BNC BNN BNOV BNZ BOR. See Brown-out Reset. BOV BRA BRA BRG. See Baud Rate Generator. Brown-out Reset (BOR) and On-Chip Voltage Regulator	106 111 172 172 172 176 176 181 184 184 184 184 367 384 385 385 385 386 386 386 389 387 5 5 5 65

 16-Bit Word Write Mode
 120

 8-Bit Multiplexed Mode
 123

 A/D
 342