

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	41.667MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	55
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3808 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 15x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f87j60t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Values on POR, BOR	Details on Page:			
ESTAT	_	BUFER	_	r	_	RXBUSY	TXABRT	PHYRDY	-0-0 -000	73, 228			
EIE	_	PKTIE	DMAIE	LINKIE	LINKIE TXIE – TXERIE RXERIE -								
EDMACSH	DMA Checks	0000 0000	73, 265										
EDMACSL	DMA Checks	MA Checksum Register Low Byte											
EDMADSTH	_	DMA Destination Register High Byte											
EDMADSTL	DMA Destina	ation Register	Low Byte	•					0000 0000	73, 265			
EDMANDH	_	_	_	DMA End Re	gister High By	rte			0 0000	73, 265			
EDMANDL	DMA End Re	egister Low By	te	•					0000 0000	73, 265			
EDMASTH	_	_	_	DMA Start Re	egister High B	yte			0 0000	73, 265			
EDMASTL	DMA Start R	egister Low B	/te	•					0000 0000	73, 265			
ERXWRPTH	_	_	_	Receive Buffe	er Write Pointe	er High Byte			0 0000	73, 225			
ERXWRPTL	Receive Buff	fer Write Point	er Low Byte						0000 0000	73, 225			
ERXRDPTH	—	—	—	Receive Buffe	er Read Pointe	er High Byte			0 0101	73, 225			
ERXRDPTL	Receive Buff	fer Read Point	er Low Byte						1111 1010	73, 225			
ERXNDH	_	_	—	Receive End	Register High	Byte			1 1111	73, 225			
ERXNDL	Receive End	Register Low	Byte						1111 1111	73, 225			
ERXSTH	_	_	—	Receive Star	t Register Higl	n Byte			0 0101	73, 225			
ERXSTL	Receive Star	rt Register Lov	v Byte	•					1111 1010	73, 225			
ETXNDH	_	_	_	Transmit End	Register High	n Byte			0 0000	74, 226			
ETXNDL	Transmit En	d Register Lov	v Byte						0000 0000	74, 226			
ETXSTH	_	_	_	Transmit Star	t Register Hig	h Byte			0 0000	74, 226			
ETXSTL	Transmit Sta	rt Register Lov	w Byte						0000 0000	74, 226			
EWRPTH	_	_	_	Buffer Write F	Pointer High B	yte			0 0000	74, 223			
EWRPTL	Buffer Write	Pointer Low B	yte						0000 0000	74, 223			
EPKTCNT	Ethernet Pac	cket Count Re	gister						0000 0000	74, 252			
ERXFCON	UCEN	ANDOR	CRCEN	PMEN	MPEN	HTEN	MCEN	BCEN	1010 0001	74, 260			
EPMOH	—	_	_	Pattern Matc	h Offset Regis	ter High Byte			0 0000	74, 263			
EPMOL	Pattern Mato	ch Offset Regis	ster Low Byte						0000 0000	74, 263			
EPMCSH	Pattern Mato	ch Checksum I	Register High	Byte					0000 0000	74, 263			
EPMCSL	Pattern Mato	ch Checksum I	Register Low	Byte					0000 0000	74, 263			
EPMM7	Pattern Mate	h Mask Regis	ter Byte 7						0000 0000	74, 263			
EPMM6	Pattern Mate	h Mask Regis	ter Byte 6						0000 0000	74, 263			
EPMM5	Pattern Mate	h Mask Regis	ter Byte 5						0000 0000	74, 263			
EPMM4	Pattern Mato	h Mask Regis	ter Byte 4						0000 0000	74, 263			
EPMM3	Pattern Mate	h Mask Regis	ter Byte 3						0000 0000	74, 263			
EPMM2	Pattern Mate	h Mask Regis	ter Byte 2						0000 0000	74, 263			
EPMM1	Pattern Mato	h Mask Regis	ter Byte 1						0000 0000	74, 263			
EPMM0	Pattern Mate	h Mask Regis	ter Byte 0						0000 0000	74, 263			

TABLE 6-5: REGISTER FILE SUMMARY (PIC18F97J60 FAMILY) (CONTINUED)

Legend: x = unknown; u = unchanged; - = unimplemented, read as '0'; q = value depends on condition; r = reserved bit, do not modify. Shaded cells are unimplemented, read as '0'.

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.

2: Bit 21 of the PC is only available in Serial Programming modes.

3: Reset value is '0' when Two-Speed Start-up is enabled and '1' if disabled.

4: Alternate names and definitions for these bits when the MSSP module is operating in I^2C^{TM} Slave mode.

5: These bits and/or registers are only available in 100-pin devices; otherwise, they are unimplemented and read as '0'. Reset values shown apply only to 100-pin devices.

6: These bits and/or registers are only available in 80-pin and 100-pin devices. In 64-pin devices, they are unimplemented and read as '0'. Reset values are shown for 100-pin devices.

7: In Microcontroller mode, the bits in this register are unwritable and read as '0'.

8: PLLEN is only available when either ECPLL or HSPLL Oscillator mode is selected; otherwise, read as '0'.

9: Implemented in 100-pin devices in Microcontroller mode only.

6.3.6 STATUS REGISTER

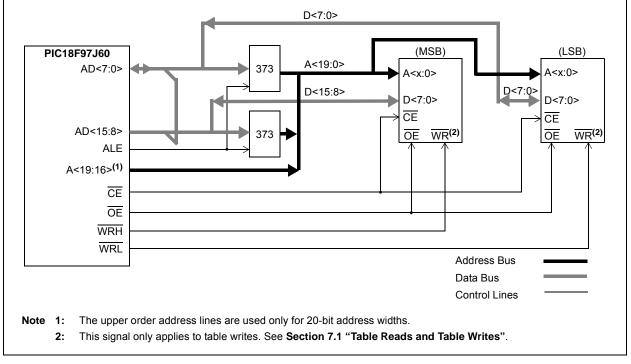
The STATUS register, shown in Register 6-3, contains the arithmetic status of the ALU. The STATUS register can be the operand for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, then the write to these five bits is disabled.

These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. For example, CLRF STATUS will set the Z bit but leave the other bits unchanged. The STATUS

register then reads back as '000u u1uu'. It is recommended, therefore, that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register.

For other instructions not affecting any Status bits, see the instruction set summaries in Table 26-2 and Table 26-3.

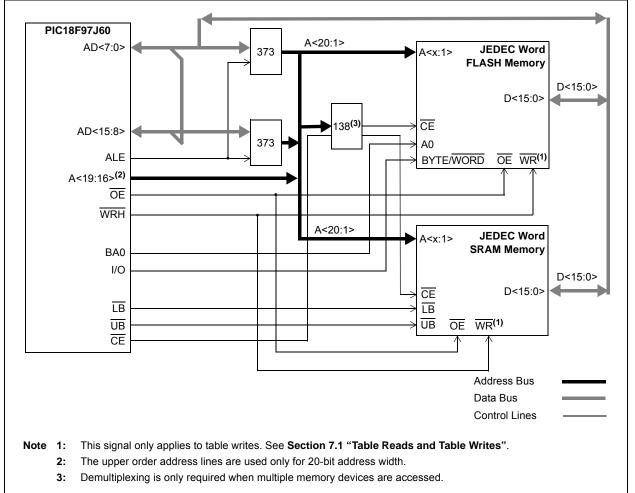
Note: The C and DC bits operate as a Borrow and Digit Borrow bit respectively, in subtraction.


REGISTER 6-3: STATUS REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	_	N	OV	Z	DC ⁽¹⁾	C ⁽²⁾
oit 7							bit
Legend:							
R = Read	dable bit	W = Writable	e bit	U = Unimplen	nented bit, rea	ıd as '0'	
-n = Valu	e at POR	'1' = Bit is se	t	'0' = Bit is cle		x = Bit is unkr	nown
bit 7-5	Unimpleme	nted: Read as	' ∩'				
oit 4	N: Negative		0				
511 4	0	ed for signed a	rithmetic (2's	complement). It	indicates whe	ther the result w	vas negative
	1 = Result w 0 = Result w	•					
bit 3	which cause	ed for signed a s the sign bit (b	oit 7 of the resu	ult) to change s	tate.	verflow of the 7-	bit magnitude
	1 = Overflow 0 = No overf		igned arithme	tic (in this arithn	netic operatior	ו)	
bit 2	Z: Zero bit						
		It of an arithme It of an arithme		eration is zero eration is non-z	ero		
bit 1	0	rry/ <mark>Borrow</mark> bit ⁽¹ ADDLW, SUBLW		structions:			
		out from the 4th -out from the 4		of the result oc t of the result	curred		
bit 0	C: Carry/Bor						
		DDLW, SUBLW	and SUBWF ins	structions:			
				bit of the result t bit of the resul			
Note 1:	For Borrow, the po operand. For rotat						
2:	For Borrow, the po operand. For rotal source register.	plarity is revers	ed. A subtracti	on is executed	by adding the	2's complement	of the second

8.6.1 16-BIT BYTE WRITE MODE

Figure 8-1 shows an example of 16-Bit Byte Write mode for PIC18F97J60 family devices. This mode is used for two separate 8-bit memories connected for 16-bit operation. This generally includes basic EPROM and Flash devices. It allows table writes to byte-wide external memories. During a TBLWT instruction cycle, the TABLAT data is presented on the upper and lower bytes of the AD<15:0> bus. The appropriate WRH or WRL control line is strobed on the LSb of the TBLPTR.



8.6.3 16-BIT BYTE SELECT MODE

Figure 8-3 shows an example of 16-Bit Byte Select mode. This mode allows table write operations to word-wide external memories with byte selection capability. This generally includes both word-wide Flash and SRAM devices.

During a TBLWT cycle, the TABLAT data is presented on the upper and lower byte of the AD<15:0> bus. The WRH signal is strobed for each write cycle; the WRL pin is not used. The BA0 or UB/LB signals are used to select the byte to be written based on the Least Significant bit of the TBLPTR register. Flash and SRAM devices use different control signal combinations to implement Byte Select mode. JEDEC standard Flash memories require that a controller I/O port pin be connected to the memory's BYTE/WORD pin to provide the select signal. They also use the BA0 signal from the controller as a byte address. JEDEC standard, static RAM memories, on the other hand, use the UB or LB signals to select the byte.

Example 9-3 shows the sequence to do a 16 x 16 unsigned multiplication. Equation 9-1 shows the algorithm that is used. The 32-bit result is stored in four registers (RES3:RES0).

EQUATION 9-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	 ARG1H:ARG1L • ARG2H:ARG2L (ARG1H • ARG2H • 2^{16}) + (ARG1H • ARG2L • 2^{8}) + (ARG1L • ARG2H • 2^{8}) + (ARG1L • ARG2L)
	$(ARG1L \bullet ARG2L)$

EXAMPLE 9-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W	
	MULWF	ARG2L	; ARG1L * ARG2L->
			; PRODH:PRODL
	MOVFF	PRODH, RES1	;
	MOVFF	PRODL, RESO	;
;			
	MOVF	ARG1H, W	
	MULWF	ARG2H	; ARG1H * ARG2H->
			; PRODH:PRODL
	MOVFF	PRODH, RES3	;
	MOVFF	PRODL, RES2	;
;			
	MOVF	ARG1L, W	
	MULWF	ARG2H	; ARG1L * ARG2H->
			; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	
	MOVF	PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;
;			
	MOVF	ARG1H, W	;
	MULWF	ARG2L	; ARG1H * ARG2L->
			; PRODH:PRODL
	MOVF		;
	ADDWF	RES1, F	; Add cross
	MOVF		; products
	ADDWFC	RES2, F	;
	CLRF	WREG	;
	ADDWFC	RES3, F	;

Example 9-4 shows the sequence to do a 16 x 16 signed multiply. Equation 9-2 shows the algorithm used. The 32-bit result is stored in four registers (RES3:RES0). To account for the sign bits of the arguments, the MSb for each argument pair is tested and the appropriate subtractions are done.

EQUATION 9-2: 16 x 16 SIGNED MULTIPLICATION ALGORITHM

RES3:RES0=ARG1H:ARG1L • ARG2H:ARG2L
$= (ARG1H \bullet ARG2H \bullet 2^{16}) +$
$(ARG1H \bullet ARG2L \bullet 2^8) +$
$(ARG1L \bullet ARG2H \bullet 2^8) +$
$(ARG1L \bullet ARG2L) +$
$(-1 \bullet ARG2H < 7 > \bullet ARG1H:ARG1L \bullet 2^{16}) +$
$(-1 \bullet ARG1H < 7 > \bullet ARG2H:ARG2L \bullet 2^{16})$

EXAMPLE 9-4: 16 x 16 SIGNED MULTIPLY ROUTINE

-		MOEI	
	MOVF	ARG1L, W	
	MULWF		; ARG1L * ARG2L ->
			; PRODH:PRODL
	MOVFF	PRODH, RES1	;
	MOVFF	PRODL, RESO	
;		110002, 11200	
	MOVF	ARG1H, W	
	MULWF		; ARG1H * ARG2H ->
	NOLWI	AROZII	; PRODH:PRODL
	MOVEE	PRODH, RES3	
	MOVFF	PRODL, RESS	;
;	MOVFF	PRODL, RE52	,
'	MOVF	ARG1L, W	
		ARG1L, W ARG2H	
	MOTME	ARGZH	; ARG1L * ARG2H ->
	NOTE	DDODI II	; PRODH:PRODL
	MOVF	PRODL, W	;
	ADDWF	RES1, F	; Add cross
			; products
		RES2, F	i
	CLRF		;
	ADDWFC	RES3, F	;
;			
		ARG1H, W	;
	MULWF	ARG2L	; ARG1H * ARG2L ->
			; PRODH:PRODL
	MOVF	PRODL, W	;
		RES1, F	; Add cross
			; products
		RES2, F	;
		WREG	;
	ADDWFC	RES3, F	;
;			
			; ARG2H:ARG2L neg?
	BRA	SIGN_ARG1	; no, check ARG1
		ARG1L, W	;
	SUBWF	RES2	;
		ARG1H, W	;
	SUBWFB	RES3	
;			
SIG	N_ARG1		
		ARG1H, 7	; ARG1H:ARG1L neg?
	BRA	CONT_CODE	; no, done
	MOVF	ARG2L, W	;
	SUBWF	RES2	;
		ARG2H, W	;
	SUBWFB	RES3	
;			
CON	T_CODE		
	:		
1			

REGISTER 10-3: INTCON3: INTERRUPT CONTROL REGISTER 3

R/W-	1 R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INT2	IP INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
bit 7							bit C
Legend:							
R = Read		W = Writable		-	nented bit, read		
-n = valu	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	INT2IP: INT	2 External Interr	upt Priority bit	t			
	1 = High pri						
	0 = Low price	ority					
bit 6		1 External Interr	upt Priority bit	İ			
	1 = High pri 0 = Low pric						
bit 5	·	3 External Interr	unt Enable hit				
bit 5		the INT3 extern	•				
		s the INT3 exter	•				
bit 4	INT2IE: INT	2 External Interr	upt Enable bit				
		the INT2 extern					
		s the INT2 exter	•				
bit 3		1 External Interr	•				
		the INT1 extern the INT1 extern					
bit 2		3 External Interr	•				
		3 external inter		(must be clear	ed in software)		
		3 external inter					
bit 1	INT2IF: INT2	2 External Interr	upt Flag bit				
		2 external inter		·	ed in software)		
		2 external inter	•	cur			
bit 0		1 External Interr					
		1 external inter			ed in software)		
		1 external inter	מים מומ חטל סל	CUI			
Note:	Interrupt flag bits						
	enable bit or the (errupt flag bits
	are clear prior to	enabling an inte	errupt. This fea	ature allows for	software pollin	g.	

15.0 TIMER3 MODULE

The Timer3 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR3H and TMR3L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt on overflow
- Module Reset on CCPx/ECCPx Special Event Trigger

A simplified block diagram of the Timer3 module is shown in Figure 15-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 15-2.

The Timer3 module is controlled through the T3CON register (Register 15-1). It also selects the clock source options for the CCPx and ECCPx modules; see Section 17.1.1 "CCPx/ECCPx Modules and Timer Resources" for more information.

REGISTER 15-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0	R/W-0 R/W-0		R/W-0 R/W-0 R/W-0 R/W-0 R				R/W-0
RD16	RD16 T3CCP2 T3CKPS1 T3C		T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

Legend:									
R = Readab	le bit W = Writable	bit U = Unimplemented	l bit, read as '0'						
-n = Value a	t POR '1' = Bit is se	'0' = Bit is cleared	x = Bit is unknown						
hit 7	RD16: 16-Bit Read/Write M	ada Enabla bit							
bit 7		rite of Timer3 in one 16-bit operatic							
	C C	rite of Timer3 in two 8-bit operation							
bit 6,3	•	imer1 to CCPx/ECCPx Enable bits	0						
		the clock sources for all CCPx/EC	CPx modules						
		the clock sources for ECCP3, CCF							
	Timer1 and Timer2 ar	the clock sources for ECCP1 and	ECCP2						
		the clock sources for ECCP2, ECC	CP3, CCP4 and CCP5;						
		the clock sources for ECCP1 the clock sources for all CCPx/EC	CBy modulos						
L:1 F 4			CFX modules						
bit 5-4		t Clock Prescale Select bits							
	11 = 1:8 Prescale value 10 = 1:4 Prescale value								
	01 = 1.2 Prescale value								
	00 = 1:1 Prescale value								
bit 2	T3SYNC: Timer3 External	Clock Input Synchronization Select b	bit						
	(not usable if the device clo	ck comes from Timer1/Timer3)							
	When TMR3CS = 1:								
	1 = Do not synchronize ext								
	0 = Synchronize external c	ock input							
	<u>When TMR3CS = 0:</u> This bit is ignored. Timer3.	ses the internal clock when TMR3C	S = 0						
L:1 4	•		.5 – 0.						
bit 1	TMR3CS: Timer3 Clock Sc		, vision adve. often the first falling adv						
	1 = External clock input fo 0 = Internal clock (Fosc/4)	n nimer i oscillator or i 130Ki (on the	e rising edge after the first falling edge						
bit 0	TMR3ON: Timer3 On bit								
	1 = Enables Timer3								
	0 = Stops Timer3								

17.1 CCPx Module Configuration

Each Capture/Compare/PWM module is associated with a control register (generically, CCPxCON) and a data register (CCPRx). The data register, in turn, is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte). All registers are both readable and writable.

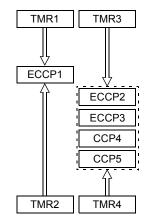
17.1.1 CCPx/ECCPx MODULES AND TIMER RESOURCES

The CCPx/ECCPx modules utilize Timers 1, 2, 3 or 4, depending on the mode selected. Timer1 and Timer3 are available to modules in Capture or Compare modes, while Timer2 and Timer4 are available for modules in PWM mode.

TABLE 17-1: CCPx/ECCPx MODE – TIMER RESOURCE

CCPx/ECCPx Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2 or Timer4

The assignment of a particular timer to a module is determined by the timer to CCPx enable bits in the T3CON register (Register 15-1, page 183). Depending on the configuration selected, up to four timers may be active at once, with modules in the same configuration (Capture/Compare or PWM) sharing timer resources. The possible configurations are shown in Figure 17-1.


17.1.2 ECCP2 PIN ASSIGNMENT

The pin assignment for ECCP2 (Capture input, Compare and PWM output) can change based on device configuration. The CCP2MX Configuration bit determines which pin ECCP2 is multiplexed to. By default, it is assigned to RC1 (CCP2MX = 1). If the Configuration bit is cleared, ECCP2 is multiplexed with RE7 on 80-pin and 100-pin devices in Microcontroller mode and RB3 on 100-pin devices in Extended Microcontroller mode.

Changing the pin assignment of ECCP2 does not automatically change any requirements for configuring the port pin. Users must always verify that the appropriate TRIS register is configured correctly for ECCP2 operation, regardless of where it is located.

FIGURE 17-1: CCPx/ECCPx AND TIMER INTERCONNECT CONFIGURATIONS

T3CCP<2:1> = 00 TMR1 TMR3 ECCP1 ECCP2 ECCP3 CCP4 CCP4 CCP5 TMR2 TMR4

T3CCP<2:1> = 01

Timer1 is used for all Capture and Compare operations for all CCPx modules. Timer2 is used for PWM operations for all CCPx modules. Modules may share either timer resource as a common time base.

Timer3 and Timer4 are not available.

Timer1 and Timer2 are used for Capture and Compare or PWM operations for ECCP1 only (depending on selected mode).

All other modules use either Timer3 or Timer4. Modules may share either timer resource as a common time base if they are in Capture/Compare or PWM modes. Timer1 and Timer2 are used for Capture and Compare or PWM operations for ECCP1 and ECCP2 only (depending on the mode selected for each module). Both modules may use a timer as a common time base if they are both in Capture/Compare or PWM modes.

T3CCP<2:1> = 10

TMR3

ECCP3

CCP4

CCP5

TMR4

TMR1

ECCP1

ECCP2

TMR2

The other modules use either Timer3 or Timer4. Modules may share either timer resource as a common time base if they are in Capture/Compare or PWM modes. TMR2 TMR4 Timer3 is used for all Capture and Compare operations for all CCPx modules. Timer4 is used for PWM operations for all CCPx modules. Modules

T3CCP<2:1> = 11

TMR3

ECCP1

ECCP2

ECCP3

CCP4 CCP5

TMR1

all CCPx modules. Modules may share either timer resource as a common time base.

Timer1 and Timer2 are not available.

TABLE 19-3: PIC18F97J60 FAMILY PHY REGISTER SUMMARY

Addr	Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values
00h	PHCON1	r	r		—	r	r	_	PDPXMD	r	_	—				—		00 00-0 0
01h	PHSTAT1	_	_		r	r	_	_	_	_	_	—	—	_	LLSTAT	r	_	1 100-
10h	PHCON2	_	FRCLNK	r	r	r	r	r	HDLDIS	r	r	r	RXAPDIS	r	r	r	r	-000 0000 0000 0000
11h	PHSTAT2	_	_	TXSTAT	RXSTAT	COLSTAT	LSTAT	r	_		-	r	_	_		_	_	0 00x0
12h	PHIE	r	r	r	r	r	r	r	r	r	r	r	PLNKIE	r	r	PGEIE	r	xxxx xxxx xx00 xx00
13h	PHIR	r	r	r	r	r	r	r	r	r	r	r	PLNKIF	r	PGIF	r	r	xxxx xxxx xx00 00x0
14h	PHLCON	r	r	r	r	LACFG3	LACFG2	LACFG1	LACFG0	LBCFG3	LBCFG2	LBCFG1	LBCFG0	LFRQ1	LFRQ0	STRCH	r	0011 0100 0010 001x

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', r = reserved, do not modify. Shaded cells are unimplemented, read as '0'.

19.5 Transmitting and Receiving Data

The Ethernet protocol (IEEE Standard 802.3) provides an extremely detailed description of the 10 Mbps, frame-based serial communications system. Before discussing the actual use of the Ethernet module, a brief review of the structure of a typical Ethernet data frame may be appropriate. It is assumed that users already have some familiarity with IEEE 802.3. Those requiring more information should refer to the official standard, or other Ethernet reference texts, for a more comprehensive explanation.

19.5.1 PACKET FORMAT

Normal IEEE 802.3 compliant Ethernet frames are between 64 and 1518 bytes long. They are made up of five or six different fields: a destination MAC address, a source MAC address, a type/length field, data payload, an optional padding field and a Cyclic Redundancy Check (CRC). Additionally, when transmitted on the Ethernet medium, a 7-byte preamble field and Start-of-Frame (SOF) delimiter byte are appended to the beginning of the Ethernet packet. Thus, traffic seen on the twisted-pair cabling will appear as shown in Figure 19-8.

19.5.1.1 Preamble/Start-of-Frame Delimiter

When transmitting and receiving data with the Ethernet module, the preamble and Start-of-Frame delimiter bytes are automatically generated, or stripped from the packets, when they are transmitted or received. It can also automatically generate CRC fields and padding as needed on transmission, and verify CRC data on reception. The user application does not need to create or process these fields, or manually verify CRC data. However, the padding and CRC fields are written into the receive buffer when packets arrive, so they may be evaluated by the user application as needed.

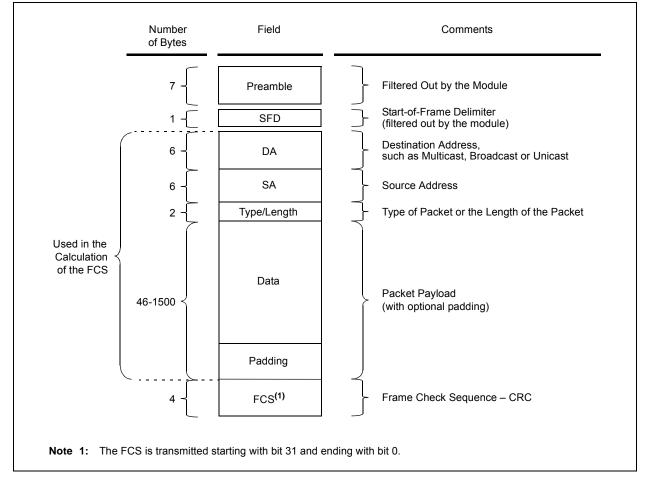


FIGURE 19-8: ETHERNET PACKET FORMAT

19.10 Module Resets

The Ethernet module provides selective module Resets:

- Transmit Only Reset
- · Receive Only Reset

19.10.1 MICROCONTROLLER RESETS

Following any standard Reset event, the Ethernet module returns to a known state. The contents of the Ethernet buffer memory are unknown. All SFR and PHY registers are loaded with their specified Reset values, depending on the type of Reset event. However, the PHY registers must not be accessed until the PHY start-up timer has expired and the PHYRDY bit (ESTAT<0>) becomes set, or at least 1 ms has passed since the ETHEN bit was set. For more details, see **Section 19.1.3.1 "Start-up Timer"**.

19.10.2 TRANSMIT ONLY RESET

The Transmit Only Reset is performed by writing a '1' to the TXRST bit (ECON1<7>). This resets the transmit logic only. Other register and control blocks, such as buffer management and host interface, are not affected by a Transmit Only Reset event. To return to normal operation, the TXRST bit must be cleared in software. After clearing TXRST, firmware must not write to any Ethernet module SFRs for at least 1.6 μ s. After the delay, normal operation can resume.

19.10.3 RECEIVE ONLY RESET

The Receive Only Reset is performed by writing a '1' to the RXRST bit (ECON1<6>). This action resets receive logic only. Other register and control blocks, such as the buffer management and host interface blocks, are not affected by a Receive Only Reset event. To return to normal operation, the RXRST bit is cleared in software. After clearing RXRST, firmware must not write to any Ethernet module SFRs for at least 1.6 μ s. After the delay, normal operation can resume.

EQUATION 21-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG: Desired Baud Rate = Fosc/(64 ([SPBRGHx:SPBRGx] + 1)) Solving for SPBRGHx:SPBRGx: X = ((Fosc/Desired Baud Rate)/64) - 1 = ((16000000/9600)/64) - 1 = [25.042] = 25Calculated Baud Rate=16000000/(64 (25 + 1))

= 9615

Error = (Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate (0.015 - 0.000)/0.000 = 0.160

= (9615 - 9600)/9600 = 0.16%

TABLE 21-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	71
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	71
BAUDCONx	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	72
SPBRGHx	EUSARTx Baud Rate Generator Register High Byte						72		
SPBRGx	EUSARTx	Baud Rate	Generator I	Register Lov	w Byte				72

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

NOTES:

RETU	JRN	m Subro	outine					
Synta	ax:	RETURN	{s}					
Oper	ands:	s ∈ [0,1]						
Oper	ation:	if s = 1, (WS) \rightarrow W (STATUSS (BSRS) \rightarrow	$(TOS) \rightarrow PC;$ if s = 1, $(WS) \rightarrow W,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged					
Statu	s Affected:	None						
Enco	ding:	0000	0000	0001	001s			
Description:		is loaded in 's'= 1, the registers W loaded into registers W 's' = 0, no	Return from subroutine. The stack is popped and the top of the stack (TOS) is loaded into the program counter. If 's'= 1, the contents of the shadow registers WS, STATUSS and BSRS are loaded into their corresponding registers W, STATUS and BSR. If 's' = 0, no update of these registers occurs (default).					
Word	ls:	1						
Cycles:		2						
QC	ycle Activity:							
	Q1	Q2	Q	3	Q4			
	Decode	No operation	Proce Dat		POP PC from stack			
	No	No	No		No			
	operation	operation	opera	tion	operation			
<u>Exan</u>	nple:	RETURN						

After Inst	ruction:
PC	= TOS

Syntax:	RLCF f {,d {,a}}					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operation:	$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow C,$ $(C) \rightarrow dest < 0 >$					
Status Affected:	C, N, Z					
Encoding:	0011 01da ffff fff	Ē£				
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default).					
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).					
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details					
	set is enabled, this instruction operation in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and	tes				
	set is enabled, this instruction operat in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexe	tes				
Words:	set is enabled, this instruction operat in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexe Literal Offset Mode" for details.	tes				
Words: Cycles:	set is enabled, this instruction operation in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexe Literal Offset Mode" for details.	tes				
Cycles:	set is enabled, this instruction operation in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexe Literal Offset Mode" for details.	tes				
	set is enabled, this instruction operation in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexe Literal Offset Mode" for details.	tes				
Cycles: Q Cycle Activity:	set is enabled, this instruction operat in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexe Literal Offset Mode" for details.	ed				
Cycles: Q Cycle Activity: Q1	set is enabled, this instruction operat in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexe Literal Offset Mode" for details.	ed				
Cycles: Q Cycle Activity: Q1 Decode	set is enabled, this instruction operation in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. C - register f	ed				

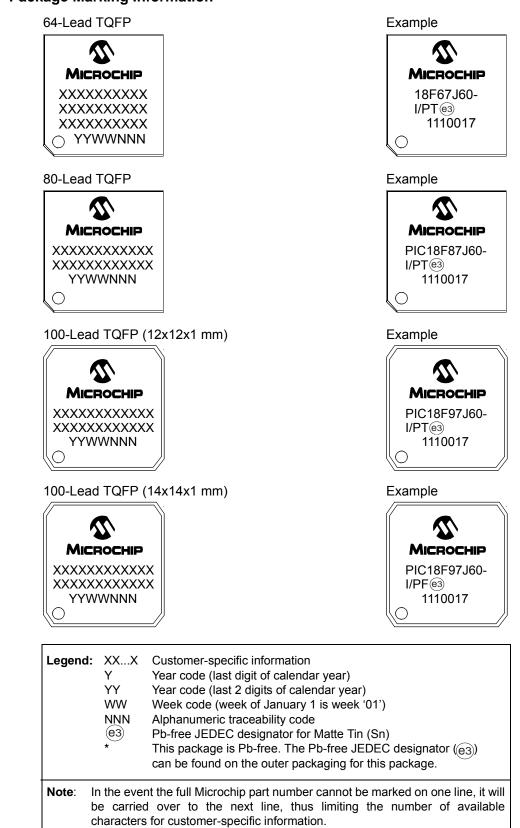
28.2 DC Characteristics: Power-Down and Supply Current PIC18F97J60 Family (Industrial) (Continued)

PIC18F97J60 Family (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
Param No.	Device	Тур	Max	Units		Conditions				
	Supply Current (IDD) ⁽²⁾									
	All devices	22.0	45.0	μΑ	-10°C					
		22.0	45.0	μΑ	+25°C	VDD = 2.0V, $VDDCORE = 2.0V(4)$				
		78.0	114.0	μA	+70°C					
	All devices	27.0	52.0	μΑ	-10°C		Fosc = 32 kHz ⁽³⁾ (SEC_RUN mode,			
		27.0	52.0	μA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$				
		92.0	135.0	μA	+70°C		Timer1 as clock)			
	All devices	106.0	168.0	μA	-10°C					
		106.0	168.0	μA	+25°C	VDD = 3.3V ⁽⁵⁾				
		188.0	246.0	μA	+70°C					
	All devices	18.0	37.0	μA	-10°C	$\lambda = 0.0 \lambda$				
		18.0	37.0	μA	+25°C	VDD = 2.0V, $VDDCORE = 2.0V(4)$				
		75.0	105.0	μA	+70°C					
	All devices	21.0	40.0	μΑ	-10°C		Fosc = 32 kHz ⁽³⁾			
		21.0	40.0	μΑ	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$	(SEC_IDLE mode,			
		84.0	98.0	μΑ	+70°C		Timer1 as clock)			
	All devices	94.0	152.0	μΑ	-10°C					
		94.0	152.0	μΑ	+25°C	VDD = 3.3V ⁽⁵⁾				
		182.0	225.0	μA	+70°C					

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or Vss, and all features that add delta current disabled (such as WDT, Timer1 oscillator, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:


OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- **4:** Voltage regulator disabled (ENVREG = 0, tied to Vss).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD).
- 6: For △IETH, the specified current includes current sunk through TPOUT+ and TPOUT-. LEDA and LEDB are disabled for all testing.

29.0 PACKAGING INFORMATION

29.1 Package Marking Information

NOTES:

Baud Rate Generator Operation	
Operation	300
Reception	304
Repeated Start Condition Timing	
Start Condition Timing	
Transmission	304
Multi-Master Communication, Bus Collision	
and Arbitration	308
Multi-Master Mode	
Operation	
Read/Write Bit Information (R/W Bit)	
Registers	
Serial Clock (SCKx/SCLx)	
Slave Mode	
Address Masking	
Addressing	
Reception	
Transmission	
Sleep Operation	
Stop Condition Timing	307
INCF	
INCFSZ	
In-Circuit Debugger	
In-Circuit Serial Programming (ICSP)	
Indexed Literal Offset Addressing	. 000, 070
5	400
and Standard PIC18 Instructions	
Indexed Literal Offset Mode	
Indirect Addressing	
INFSNZ	
Initialization Conditions for All Registers	
Instruction Cycle	
Clocking Scheme	84
Flow/Pipelining	
Flow/Pipelining Instruction Set	
	375
Instruction Set	375 381
Instruction Set ADDLW ADDWF	375 381 381
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode)	375 381 381 423
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC	
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW	
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF	
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC	375 381 423 382 382 383 383 383
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BCF	375 381 423 382 382 383 383 383 384
Instruction Set	375 381 423 382 382 383 383 384 384
Instruction Set	375 381 381 382 382 383 383 384 384 384 385
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDLW BC BCF BN BNN	
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDLW BC BCF BN BNC BNN BNOV	
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDLW BC BCF BN BNN	
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDLW BC BCF BN BNC BNN BNOV	
Instruction Set	
Instruction Set	
Instruction Set	
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BCF BN BNC BNN BNOV BNZ BOV BSF BSF (Indexed Literal Offset Mode)	
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BCF BN BNC BNN BNOV BNZ BOV BSF BSF (Indexed Literal Offset Mode) BTFSC	
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BCF BN BNC BNN BNOV BNZ BOV BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS	
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BCF BN BNC BNN BNOV BNZ BOV BSF BSF (Indexed Literal Offset Mode) BTFSC BTFSS BTG	
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BCF BN BNC BNN BNOV BNZ BOV BSF BSF (Indexed Literal Offset Mode) BTFSC BTG	
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BCF BN BNC BNN BNOV BNZ BOV BSF BSF (Indexed Literal Offset Mode) BTFSC BTG BZ CALL	
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BCF BN BNC BNN BNOV BNZ BOV BSF BSF (Indexed Literal Offset Mode) BTFSC BTG BZ CALL	
Instruction Set	
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BCF BN BNC BNV BNOV BNZ BOV BSF BSF (Indexed Literal Offset Mode) BTFSC BTG BZ CALL CLRF CLRWDT	
Instruction Set	
Instruction Set ADDLW ADDWF ADDWF (Indexed Literal Offset Mode) ADDWFC ANDLW ANDWF BC BCF BN BNC BNV BNOV BNZ BOV BSF BSF (Indexed Literal Offset Mode) BTFSC BTG BZ CALL CLRF CLRWDT	
Instruction Set	
Instruction Set	

DECF	394
DECFSZ	395
Extended Instructions	417
Considerations when Enabling	
Syntax	
Use with MPLAB IDE Tools	417
General Format	
GOTO	396
INCF	396
INCFSZ	397
INFSNZ	397
IORLW	
IORWF	
LFSR	
MOVF	
MOVFF	
MOVLB	400
MOVLW	401
MOVWF	401
MULLW	402
MULWF	
NEGF	
NOP	
POP	
PUSH	
RCALL	405
RESET	405
RETFIE	406
RETLW	406
RETURN	407
RLCF	
RLNCF	
RRCF	
RRNCF	
SETF	
SETF (Indexed Literal Offset Mode)	
SLEEP	
Standard Instructions	375
SUBFWB	410
SUBLW	411
SUBWF	411
SUBWFB	
SWAPF	
TBLRD	
	T I T
TSTFSZ	
XORLW	415
XORWF	416
INTCON Register	
RBIF Bit	148
INTCON Registers	
Inter-Integrated Circuit. See I ² C Mode.	101
Internal Oscillator Block	E 1
	. 51
Internal RC Oscillator	
Use with WDT	
Internal Voltage Regulator Specifications	
Internet Address	488

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support