

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	41.667MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	70
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3808 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f96j60-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-61341-069-1

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Pin Name	Pin Number	Pin	Buffer	Description
Fin Name	TQFP	Туре	Туре	Description
				PORTD is a bidirectional I/O port.
RD0/AD0/PSP0 RD0 AD0 PSP0	92	I/O I/O I/O	ST TTL TTL	Digital I/O. External Memory Address/Data 0. Parallel Slave Port data.
RD1/AD1/PSP1 RD1 AD1 PSP1	91	I/O I/O I/O	ST TTL TTL	Digital I/O. External Memory Address/Data 1. Parallel Slave Port data.
RD2/AD2/PSP2 RD2 AD2 PSP2	90	I/O I/O I/O	ST TTL TTL	Digital I/O. External Memory Address/Data 2. Parallel Slave Port data.
RD3/AD3/PSP3 RD3 AD3 PSP3	89	I/O I/O I/O	ST TTL TTL	Digital I/O. External Memory Address/Data 3. Parallel Slave Port data.
RD4/AD4/PSP4/SDO2 RD4 AD4 PSP4 SDO2	88	I/O I/O I/O O	ST TTL TTL —	Digital I/O. External Memory Address/Data 4. Parallel Slave Port data. SPI data out.
RD5/AD5/PSP5/ SDI2/SDA2 RD5 AD5 PSP5 SDI2 SDA2	87	I/O I/O I/O I I/O	ST TTL TTL ST ST	Digital I/O. External Memory Address/Data 5. Parallel Slave Port data. SPI data in. I ² C™ data I/O.
RD6/AD6/PSP6/ SCK2/SCL2 RD6 AD6 PSP6 SCK2 SCL2	84	I/O I/O I/O I/O	ST TTL TTL ST ST	Digital I/O. External Memory Address/Data 6. Parallel Slave Port data. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.
RD7/AD7/PSP7/SS2 RD7 AD7 PSP7 SS2	83	I/O I/O I/O I	ST TTL TTL TTL	Digital I/O. External Memory Address/Data 7. Parallel Slave Port data. SPI slave select input.
I = Input P = Power Note 1: Alternate assig	tt Trigger input v	P2/P2A v	when CCP	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD) 2MX Configuration bit is cleared (Extended Microcontroller mode) es in all operating modes (CCP2MX Configuration bit is set).

TABLE 1-6: PIC18F96J60/96J65/97J60 PINOUT I/O DESCRIPTIONS (CONTINUED)

3: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).
4: Alternate assignment for ECCP2/P2A when CCP2MX Configuration bit is cleared (Microcontroller mode).

Alternate assignment for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared (Microcon)
 Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).

NOTES:

REGISTER 11-1: PSPCON: PARALLEL SLAVE PORT CONTROL REGISTER

R-0	R-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
IBF	OBF	IBOV	PSPMODE	_	—	—	_
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7 bit 6	0 = No word h OBF: Output	as been receiv nas been rece Buffer Full Sta	ed and is waiti ived tus bit	-			
bit 5	0 = The output 0 = The output IBOV: Input B	ut buffer has b		iy whiten word			
	1 = A write oc 0 = No overflo		a previously inp	out word has n	ot been read (m	ust be cleared	in software)
bit 4	PSPMODE: F 1 = Parallel S 0 = General F	lave Port mod	•	ect bit			
bit 3-0	Unimplemen						

FIGURE 11-3: PARALLEL SLAVE PORT WRITE WAVEFORMS

	Q1 Q2 Q3 Q4	Q1 Q2 Q3	Q4	Q1 Q2 Q3 C
CS				-
WR			1 	I I I
RD -				1 1 1
PORTD<7:0> —	-{		ı 	
IBF				
OBF —	· · · · · · · · · · · · · · · · · · ·		1 1 1	1 1
PSPIF				1 1 1

15.0 TIMER3 MODULE

The Timer3 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR3H and TMR3L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt on overflow
- Module Reset on CCPx/ECCPx Special Event Trigger

A simplified block diagram of the Timer3 module is shown in Figure 15-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 15-2.

The Timer3 module is controlled through the T3CON register (Register 15-1). It also selects the clock source options for the CCPx and ECCPx modules; see Section 17.1.1 "CCPx/ECCPx Modules and Timer Resources" for more information.

REGISTER 15-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

Legend:									
R = Readab	ble bit W = Writable I	t U = Unimplemented b	bit, read as '0'						
-n = Value a	t POR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 7	RD16: 16-Bit Read/Write Mo	e Enable bit							
	1 = Enables register read/wr	te of Timer3 in one 16-bit operation							
	0	te of Timer3 in two 8-bit operations							
bit 6,3	T3CCP<2:1>: Timer3 and Ti	ner1 to CCPx/ECCPx Enable bits							
		he clock sources for all CCPx/ECC							
		he clock sources for ECCP3, CCP4							
		he clock sources for ECCP1 and E he clock sources for ECCP2, ECCF							
		he clock sources for ECCP2, ECCP	-3, CCF4 and CCF5,						
		he clock sources for all CCPx/ECC	Px modules						
bit 5-4	T3CKPS<1:0>: Timer3 Input Clock Prescale Select bits								
	11 = 1:8 Prescale value								
	10 = 1:4 Prescale value								
	01 = 1:2 Prescale value								
	00 = 1:1 Prescale value								
bit 2		ock Input Synchronization Select bit							
	(not usable if the device cloc	comes from Timer1/Timer3)							
	<u>When TMR3CS = 1:</u> 1 = Do not synchronize external clock input								
	0 = Synchronize external clo	•							
	When TMR3CS = 0 :								
	This bit is ignored. Timer3 us	s the internal clock when TMR3CS	s = 0.						
bit 1	TMR3CS: Timer3 Clock Sou	ce Select bit							
	1 = External clock input from0 = Internal clock (Fosc/4)	Timer1 oscillator or T13CKI (on the r	rising edge after the first falling edge						
bit 0	TMR3ON: Timer3 On bit								
	1 = Enables Timer3 0 = Stops Timer3								

15.2 Timer3 16-Bit Read/Write Mode

Timer3 can be configured for 16-bit reads and writes (see Figure 15-2). When the RD16 control bit (T3CON<7>) is set, the address for TMR3H is mapped to a buffer register for the high byte of Timer3. A read from TMR3L will load the contents of the high byte of Timer3 into the Timer3 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer3 must also take place through the TMR3H Buffer register. The Timer3 high byte is updated with the contents of TMR3H when a write occurs to TMR3L. This allows a user to write all 16 bits to both the high and low bytes of Timer3 at once.

The high byte of Timer3 is not directly readable or writable in this mode. All reads and writes must take place through the Timer3 High Byte Buffer register.

Writes to TMR3H do not clear the Timer3 prescaler. The prescaler is only cleared on writes to TMR3L.

15.3 Using the Timer1 Oscillator as the Timer3 Clock Source

The Timer1 internal oscillator may be used as the clock source for Timer3. The Timer1 oscillator is enabled by setting the T1OSCEN (T1CON<3>) bit. To use it as the Timer3 clock source, the TMR3CS bit must also be set. As previously noted, this also configures Timer3 to increment on every rising edge of the oscillator source.

The Timer1 oscillator is described in Section 13.0 "Timer1 Module".

15.4 Timer3 Interrupt

The TMR3 register pair (TMR3H:TMR3L) increments from 0000h to FFFFh, and overflows to 0000h. The Timer3 interrupt, if enabled, is generated on overflow and is latched in interrupt flag bit, TMR3IF (PIR2<1>). This interrupt can be enabled or disabled by setting or clearing the Timer3 Interrupt Enable bit, TMR3IE (PIE2<1>).

15.5 Resetting Timer3 Using the ECCPx Special Event Trigger

If ECCP1 or ECCP2 is configured to use Timer3 and to generate a Special Event Trigger in Compare mode (CCPxM<3:0> = 1011), this signal will reset Timer3. The trigger from ECCP2 will also start an A/D conversion if the A/D module is enabled (see Section 18.2.1 "Special Event Trigger" for more information).

The module must be configured as either a timer or synchronous counter to take advantage of this feature. When used this way, the CCPRxH:CCPRxL register pair effectively becomes a Period register for Timer3.

If Timer3 is running in Asynchronous Counter mode, the Reset operation may not work.

In the event that a write to Timer3 coincides with a Special Event Trigger from an ECCPx module, the write will take precedence.

Note: The Special Event Triggers from the ECCPx module will not set the TMR3IF interrupt flag bit (PIR2<1>).

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:		
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	69		
OSCFIF	CMIF	ETHIF	r	BCL1IF	_	TMR3IF	CCP2IF	71		
OSCFIE	CMIE	ETHIE	r	BCL1IE	_	TMR3IE	CCP2IE	71		
OSCFIP	CMIP	ETHIP	r	BCL1IP		TMR3IP	CCP2IP	71		
3L Timer3 Register Low Byte										
I Timer3 Register High Byte										
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	70		
RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	71		
	GIE/GIEH OSCFIF OSCFIE OSCFIP Timer3 Reg Timer3 Reg RD16 RD16	GIE/GIEH PEIE/GIEL OSCFIF CMIF OSCFIE CMIE OSCFIP CMIP Timer3 Register Low By Timer3 Register High B RD16 T1RUN RD16 T3CCP2	GIE/GIEHPEIE/GIELTMR0IEOSCFIFCMIFETHIFOSCFIECMIEETHIEOSCFIPCMIPETHIPTimer3 Register Low ByteTimer3 Register High ByteRD16T1RUNT1CKPS1RD16T3CCP2T3CKPS1	GIE/GIEHPEIE/GIELTMROIEINTOIEOSCFIFCMIFETHIFrOSCFIECMIEETHIErOSCFIPCMIPETHIPrTimer3 Register Low ByteTimer3 Register High ByteRD16T1RUNT1CKPS1T1CKPS0RD16T3CCP2T3CKPS1T3CKPS0	GIE/GIEHPEIE/GIELTMROIEINTOIERBIEOSCFIFCMIFETHIFrBCL1IFOSCFIECMIEETHIErBCL1IEOSCFIPCMIPETHIPrBCL1IPOSCFIPCMIPETHIPrBCL1IPTimer3 Register Low ByteETHIPrBCL1IPTimer3 Register High ByteRD16T1RUNT1CKPS1T1CKPS0RD16T3CCP2T3CKPS1T3CKPS0T3CCP1	GIE/GIEHPEIE/GIELTMR0IEINT0IERBIETMR0IFOSCFIFCMIFETHIFrBCL1IF—OSCFIECMIEETHIErBCL1IE—OSCFIPCMIPETHIPrBCL1IP—OSCFIPCMIPETHIPrBCL1IP—Timer3 Register Low ByteEEEERD16T1RUNT1CKPS1T1CKPS0T1OSCENT1SYNCRD16T3CCP2T3CKPS1T3CKPS0T3CCP1T3SYNC	GIE/GIEHPEIE/GIELTMROIEINTOIERBIETMROIFINTOIFOSCFIFCMIFETHIFrBCL1IF—TMR3IFOSCFIECMIEETHIErBCL1IE—TMR3IEOSCFIPCMIPETHIPrBCL1IP—TMR3IPTimer3 Register Low ByteTimer3 Register High ByteRD16T1RUNT1CKPS1T1CKPS0T1OSCENT1SYNCTMR1CSRD16T3CCP2T3CKPS1T3CKPS0T3CCP1T3SYNCTMR3CS	GIE/GIEHPEIE/GIELTMROIEINTOIERBIETMROIFINTOIFRBIFOSCFIFCMIFETHIFrBCL1IF—TMR3IFCCP2IFOSCFIECMIEETHIErBCL1IE—TMR3IECCP2IEOSCFIPCMIPETHIPrBCL1IP—TMR3IPCCP2IPOSCFIPCMIPETHIPrBCL1IP—TMR3IPCCP2IPTimer3 Register Low ByteTimer3 Register High ByteRD16T1RUNT1CKPS1T1CKPS0T10SCENT1SYNCTMR1CSTMR10NRD16T3CCP2T3CKPS1T3CKPS0T3CCP1T3SYNCTMR3CSTMR3ON		

TABLE 15-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Legend: — = unimplemented, read as '0', r = reserved. Shaded cells are not used by the Timer3 module.

ECCP Mode	CCP3CON Configuration	RD1 or RG0 ⁽¹⁾	RE4	RE3	RD2 or RG3 ⁽¹⁾	RH5 ⁽²⁾	RH4 ⁽²⁾				
64-Pin Devices; 80-Pin Devices, ECCPMX = 1;											
100-Pin Devices, ECCPMX = 1, Microcontroller mode:											
Compatible CCP	00xx 11xx	ECCP3	RE4	RE3	RD2/RG3	RH5/AN13	RH4/AN12				
Dual PWM	10xx 11xx	P3A	P3B	RE3	RD2/RG3	RH5/AN13	RH4/AN12				
Quad PWM	x1xx 11xx	P3A	P3B	P3C	P3D	RH5/AN13	RH4/AN12				
80-Pin Devices, ECCPMX = 0; 100-Pin Devices, ECCPMX = 0, All Program Memory modes:											
Compatible CCP	00xx 11xx	ECCP3	RE6/AD14	RE5/AD13	RD2/RG3	RH5/AN13	RH4/AN12				
Dual PWM	10xx 11xx	P3A	RE6/AD14	RE5/AD13	RD2/RG3	P3B	RH4/AN12				
Quad PWM ⁽³⁾	x1xx 11xx	P3A	RE6/AD14	RE5/AD13	P3D	P3B	P3C				
100	-Pin Devices, E	CCPMX = 1, I	Extended Mic	rocontroller v	with 12-Bit Ac	Idress Width:					
Compatible CCP	00xx 11xx	ECCP3	RE4/AD12	RE3/AD11	RD2/RG3	RH5/AN13	RH4/AN12				
Dual PWM	10xx 11xx	P3A	P3B	RE3/AD11	RD2/RG3	RH5/AN13	RH4/AN12				
100-Pin Dev	vices, ECCPMX	= 1, Extende	d Microcontro	oller mode wi	th 16-Bit or 2	0-Bit Address	s Width:				
Compatible CCP	00xx 11xx	ECCP3	RE6/AD14	RE5/AD13	RD2/RG3	RH5/AN13	RH4/AN12				
Leaend: x = Do	n't care. Shaded	cells indicate r	oin assignment	s not used by F	CCP3 in a giv	en mode					

TABLE 18-3: PIN CONFIGURATIONS FOR ECCP3

Don't care. Shaded cells indicate pin assignments not used by ECCP3 in a given mode. na: x

Note 1: ECCP3/P3A and CCP4/P3D are multiplexed with RD1 and RD2 in 64-pin devices, and RG0 and RG3 in 80-pin and 100-pin devices.

2: These pin options are not available in 64-pin devices.

3: With ECCP3 in Quad PWM mode, the CCP4 pin's output is overridden by P3D; otherwise, CCP4 is fully operational.

18.4.7.1 Auto-Shutdown and Automatic Restart

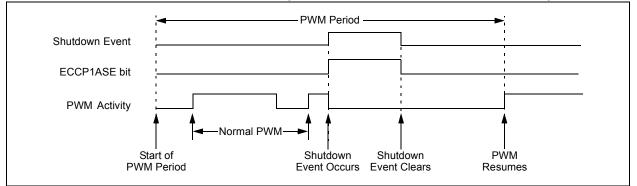
The auto-shutdown feature can be configured to allow automatic restarts of the module following a shutdown event. This is enabled by setting the P1RSEN bit of the ECCP1DEL register (ECCP1DEL<7>).

In Shutdown mode with P1RSEN = 1 (Figure 18-10), the ECCP1ASE bit will remain set for as long as the cause of the shutdown continues. When the shutdown condition clears, the ECCP1ASE bit is cleared. If P1RSEN = 0 (Figure 18-11), once a shutdown condition occurs, the ECCP1ASE bit will remain set until it is cleared by firmware. Once ECCP1ASE is cleared, the Enhanced PWM will resume at the beginning of the next PWM period.

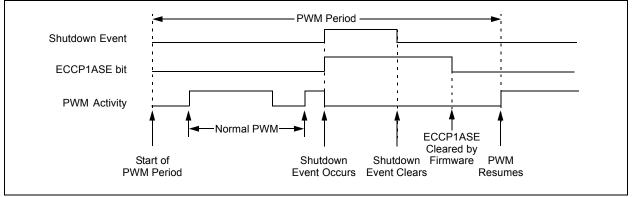
Note:	Writing to the ECCP1ASE bit is disabled
	while a shutdown condition is active.

Independent of the P1RSEN bit setting, if the auto-shutdown source is one of the comparators, the shutdown condition is a level. The ECCP1ASE bit cannot be cleared as long as the cause of the shutdown persists.

The Auto-Shutdown mode can be forced by writing a '1' to the ECCP1ASE bit.


18.4.8 START-UP CONSIDERATIONS

When the ECCP1 module is used in the PWM mode, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins. When the microcontroller is released from Reset, all of the I/O pins are in the high-impedance state. The external circuits must keep the power switch devices in the OFF state until the microcontroller drives the I/O pins with the proper signal levels, or activates the PWM output(s).


The CCP1M<1:0> bits (CCP1CON<1:0>) allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pins are configured as outputs. Changing the polarity configuration while the PWM pins are configured as outputs is not recommended since it may result in damage to the application circuits.

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pins for output at the same time as the ECCP1 module may cause damage to the application circuit. The ECCP1 module must be enabled in the proper Output mode and complete a full PWM cycle before configuring the PWM pins as outputs. The completion of a full PWM cycle is indicated by the TMR2IF bit being set as the second PWM period begins.

FIGURE 18-10: PWM AUTO-SHUTDOWN (P1RSEN = 1, AUTO-RESTART ENABLED)

REGISTER 19-15: EIR: ETHERNET INTERRUPT REQUEST (FLAG) REGISTER

U-0	R-0	R/C-0	R-0	R/C-0	U-0	R/C-0	R/C-0
—	PKTIF	DMAIF	LINKIF	TXIF	—	TXERIF	RXERIF
bit 7							bit 0

Legend:							
R = Readable bit		C = Clearable bit	U = Unimplemented bit, read as '0'				
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 7	Unimple	mented: Read as '0'					
bit 6	PKTIF: R	eceive Packet Pending Inter	rupt Flag bit				
	1 = Rece decre	•	more unprocessed packets;	cleared only when EPKTCNT i			
bit 5	DMAIF:	DMA Interrupt Flag bit					
		copy or checksum calculation MA interrupt is pending	on has completed				
bit 4	LINKIF: L	ink Change Interrupt Flag b	it				
		reports that the link status h status has not changed	as changed; read PHIR regis	ter to clear			
bit 3	1 = Tran	nsmit Interrupt Flag bit smit request has ended ansmit interrupt is pending					
bit 2	Unimple	mented: Read as '0'					
bit 1	TXERIF:	Transmit Error Interrupt Flag	ı bit				
		nsmit error has occurred					
	0 = No tr	ansmit error has occurred					
bit 0	RXERIF:	Receive Error Interrupt Flag	bit				
	•	cket was aborted because the ceive error interrupt is pend	•	e, or a buffer overrun has occurre			

REGISTER 19-18: MABBIPG: MAC BACK-TO-BACK INTER-PACKET GAP REGISTER

U-0	R/W-0						
—	BBIPG6	BBIPG5	BBIPG4	BBIPG3	BBIPG2	BBIPG1	BBIPG0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 Unimplemented: Read as '0'

bit 6-0 BBIPG<6:0>: Back-to-Back Inter-Packet Gap Delay Time bits

When FULDPX (MACON3<0>) = 1:

Nibble time offset delay between the end of one transmission and the beginning of the next in a back-to-back sequence. The register value should be programmed to the desired period in nibble times minus 3. The recommended setting is 15h which represents the minimum IEEE specified Inter-Packet Gap (IPG) of 9.6 μ s.

When FULDPX (MACON3<0>) = 0:

Nibble time offset delay between the end of one transmission and the beginning of the next in a back-to-back sequence. The register value should be programmed to the desired period in nibble times minus 6. The recommended setting is 12h which represents the minimum IEEE specified Inter-Packet Gap (IPG) of 9.6 μ s.

19.4.6 PHY INITIALIZATION SETTINGS

Depending on the application, bits in three of the PHY module's registers may also require configuration.

The PDPXMD bit (PHCON1<8>) controls the PHY half/full-duplex configuration. The application must program the bit properly, along with the FULDPX bit (MACON3<0>).

The HDLDIS bit (PHCON2<8>) disables automatic loopback of data. For proper operation, always set both HDLDIS and RXAPDIS (PHCON2<4>).

The PHY register, PHLCON (Register 19-13), controls the outputs of LEDA and LEDB. If an application requires a LED configuration other than the default, alter this register to match the new requirements. The settings for LED operation are discussed in Section 19.1.2 "LED Configuration".

19.4.7 DISABLING THE ETHERNET MODULE

There may be circumstances during which the Ethernet module is not needed for prolonged periods. For example, in situations where the application only needs to transmit or receive Ethernet packets on the occurrence of a particular event. In these cases, the module can be selectively powered down.

To selectively disable the module:

- 1. Turn off packet reception by clearing the RXEN bit.
- Wait for any in-progress packets to finish being received by polling the RXBUSY bit (ESTAT<2>). This bit should be clear before proceeding.
- Wait for any current transmissions to end by confirming that the TXRTS bit (ECON1<3>) is clear.
- Clear the ETHEN bit. This removes power and clock sources from the module, and makes the PHY registers inaccessible. The PHYRDY bit is also cleared automatically.

R/W-1	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
UCEN	ANDOR	CRCEN	PMEN	MPEN	HTEN	MCEN	BCEN
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	When ANDC 1 = Packets 0 = Filter is o When ANDC	not having a de disabled <u>)R = 0:</u> with a destination	stination addr	-	the local MAC a		
bit 6	1 = AND: Pa		ected unless		ers accept the p ers reject the pa		
bit 5	1 = All packe	st-Filter CRC Cl ets with an inval C validity will be	id CRC will be				
bit 4	When ANDC 1 = Packets 0 = Filter is o When ANDC	must meet the I disabled <u>$OR = 0:$ which meet the</u>	Pattern Match		y will be discard e accepted	ed	
bit 3	When ANDC 1 = Packets 0 = Filter is o When ANDC	must be Magic disabled <u>)R = 0:</u> ackets for the lo	Packets for th		iddress or they v	will be discarde	d
bit 2	When ANDC 1 = Packets 0 = Filter is o When ANDC	must meet the I disabled DR = 0: which meet the	Hash Table cri	,	vill be discarded		
bit 1	When ANDC 1 = The LSb 0 = Filter is o When ANDC	of the first byte of the first byte of the first byte of $\frac{1}{2} = 0$: which have the	of the packet's		dress must be se lestination addre		
bit 0	When ANDC 1 = Packets 0 = Filter is o When ANDC	must have a de disabled <u>)R = 0:</u> which have a de	stination addr		FF-FF-FF-FF or -FF-FF-FF w	-	

REGISTER 19-20: ERXFCON: ETHERNET RECEIVE FILTER CONTROL REGISTER

20.4.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDAx pin after the falling edge of SCLx is asserted (see data hold time specification Parameter 106). SCLx is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCLx is released high (see data setup time specification Parameter 107). When the SCLx pin is released high, it is held that way for TBRG. The data on the SDAx pin must remain stable for that duration and some hold time after the next falling edge of SCLx. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDAx. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared; if not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCLx low and SDAx unchanged (Figure 20-23).

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCLx until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will deassert the SDAx pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDAx pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPxCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCLx low and allowing SDAx to float.

20.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPxSTAT<0>) is set when the CPU writes to SSPxBUF, and is cleared when all 8 bits are shifted out.

20.4.10.2 WCOL Status Flag

If the user writes to the SSPxBUF when a transmit is already in progress (i.e., SSPxSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur) after 2 TcY after the SSPxBUF write. If SSPxBUF is rewritten within 2 TcY, the WCOL bit is set and SSPxBUF is updated. This may result in a corrupted transfer. The user should verify that the WCOL is clear after each write to SSPxBUF to ensure the transfer is correct. In all cases, WCOL must be cleared in software.

20.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPxCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$ and is set when the slave does not Acknowledge $(\overline{ACK} = 1)$. A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

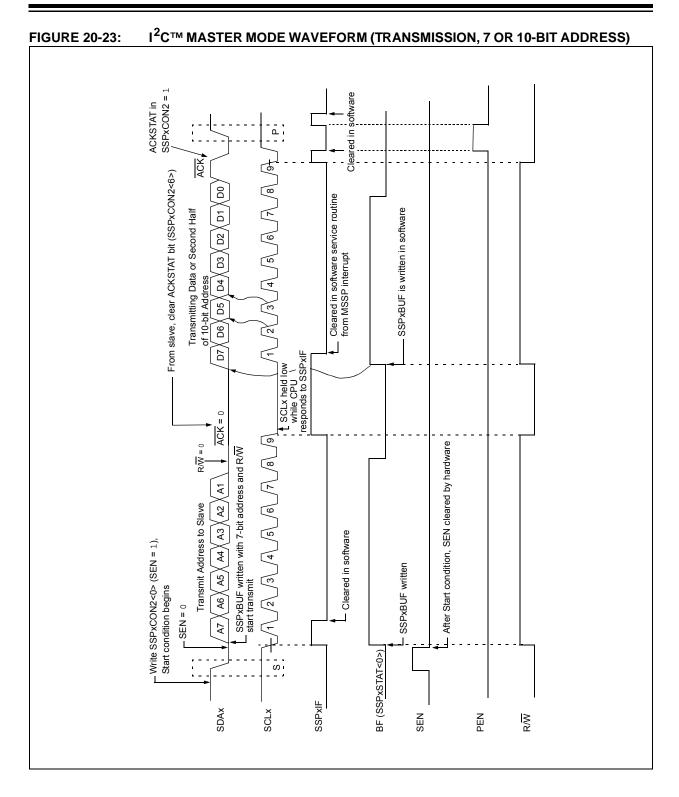
20.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN (SSPxCON2<3>).

Note:	The MSSP module must be in an Idle
	state before the RCEN bit is set or the
	RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover. The state of the SCLx pin changes (high-to-low/low-to-high) and data is shifted into the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCLx low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable bit, ACKEN (SSPxCON2<4>).

20.4.11.1 BF Status Flag


In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.

20.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.

20.4.11.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

REGISTER 25-6: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)

U-0	U-0	U-0	U-0	U-0	R/WO-1	R/WO-1	R/WO-1
(1)	(1)	(1)	(1)	_	ETHLED	ECCPMX ⁽²⁾	CCP2MX ⁽²⁾
bit 7					L		bit 0
Legend:							
R = Read	able bit	WO = Write-O	nce bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value	e when device is u	nprogrammed		'1' = Bit is set		'0' = Bit is clea	ared
bit 7-3	Unimplemer	ted: Read as '0	,				
bit 2	ETHLED: Eth	nernet LED Enal	ble bit				
	1 = RA0/RA	1 are multiplexed	d with LEDA/L	EDB when the	Ethernet modu	le is enabled a	nd function as
		the Ethernet is					
		1 function as I/O	regardless of	Ethernet modu	ile status		
bit 1	ECCPMX: EC	CCP MUX bit ⁽²⁾					
		outputs (P1B/P1	<i>'</i>				
		outputs (P3B/P3					
		outputs (P1B/P1 outputs (P3B/P3					
bit 0		CCP2 MUX bit ⁽²⁾					
		P2A is multiplex P2A is multiplex		Microcontrollo	r mada (90 pir	and 100 nin d	
		B3 in Extended			• •	•	evices)
Note 1:	The value of thes		-	•	1'. This ensure	es that the locat	tion is
	executed as a NO) P If It Is acciden	tally executed	•			

2: Implemented in 80-pin and 100-pin devices only.

IORL	w	Inclusive OR Literal with W				
Synta	ax:	IORLW k				
Oper	ands:	$0 \le k \le 258$	5			
Oper	ation:	(W) .OR. k	$x \rightarrow W$			
Statu	is Affected:	N, Z				
Enco	oding:	0000 1001 kkkk kkkk				
Description: The contents of W are ORed with the eight-bit literal 'k'. The result is placed in W.						
Words: 1						
Cycle	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3	5	Q4	
	Decode	Read literal 'k'	Proce Data		Write to W	
Example: IORLW 35h						
Before Instruction W = 9Ah After Instruction						

IORWF	Inclusive (OR W wit	:h f				
Syntax:	IORWF f	{,d {,a}}					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	d ∈ [0,1]					
Operation:	(W) .OR. (f	(W) .OR. (f) \rightarrow dest					
Status Affected:	N, Z						
Encoding:	0001	00da	ffff	ffff			
Description:	'0', the res u	Inclusive OR W with register 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default).					
	lf 'a' is '1', t	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).					
	set is enab in Indexed mode wher Section 26 Bit-Oriente	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Proce Data		Write to estination			
Example: Before Instruc		ESULT,	0, 1				

RESULT = W =

After Instruction RESULT = W = 13h 91h

13h 93h

DS39762F-page 398

W

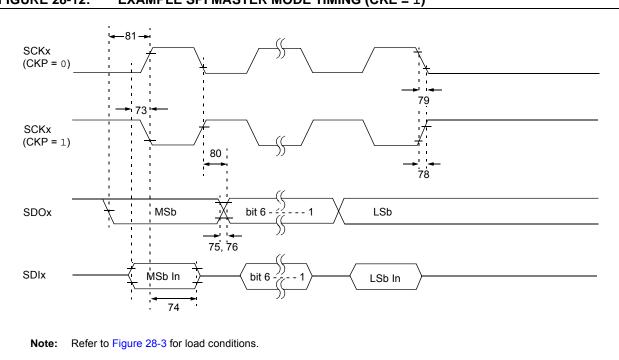
=

BFh

MOVSS	Move Indexed to Indexed				
Syntax:	MOVSS [z _s], [z _d]				
Operands:	$\begin{array}{l} 0 \leq z_s \leq 127 \\ 0 \leq z_d \leq 127 \end{array}$				
Operation:	$((FSR2) + z_s) \rightarrow ((FSR2) + z_d)$				
Status Affected:	None				
Encoding: 1st word (source) 2nd word (dest.)	1110 1011 1zzz zzzz _s 1111 xxxx xzzz zzzz _d				
Description	The contents of the source register are moved to the destination register. The addresses of the source and destination registers are determined by adding the 7-bit literal offsets ' z_s ' or ' z_d ', respectively, to the value of FSR2. Both registers can be located anywhere in the 4096-byte data memory space (000h to FFFh). The MOVSS instruction cannot use the PCL, TOSU, TOSH or TOSL as the				
	If the resultant source address points to an indirect addressing register, the value returned will be 00h. If the resultant destination address points to an indirect addressing register, the instruction will execute as a NOP.				
Words:	2				
Cycles:	2				
Q Cycle Activity:					

Q1	Q2	Q3	Q4
Decode	Determine	Determine	Read
	source addr	source addr	source reg
Decode	Determine	Determine	Write
	dest addr	dest addr	to dest reg

Example:	MOVSS	[05h],	[06h]

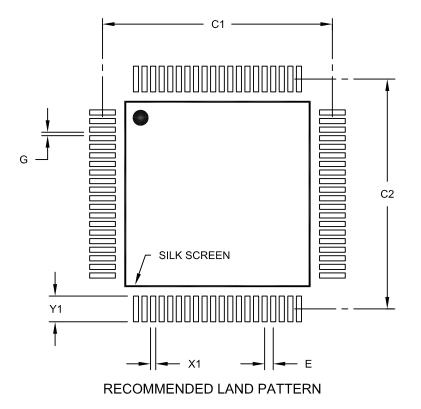

Before Instruction		
FSR2	=	80h
Contents of 85h Contents	=	33h
of 86h	=	11h
After Instruction		
FSR2	=	80h
Contents of 85h Contents	=	33h
of 86h	=	33h

PUSH	ΗL	Store Litera	al at FSR	2, Decr	ement FSR2	
Synta	IX:	PUSHL k				
Opera	ands:	$0 \le k \le 255$				
Opera	ation:	$k \rightarrow (FSR2),$ FSR2 – 1 \rightarrow FSR2				
Statu	s Affected:	None				
Enco	ding:	1110 1010 kkkk kkkk				
2000	ription:	The 8-bit literal 'k' is written to the data memory address specified by FSR2. FSR2 is decremented by 1 after the operation.				
		This instruct values onto			•	
Word	s:	1				
Cycle	s:	1				
QC	cle Activity:					
	Q1	Q2	G	3	Q4	
	Decode	Read 'k'	Proc da		Write to destination	
Exam	nple:	PUSHL 0	8h			

Before Instruction FSR2H:FSR2L = 01ECh Memory (01ECh) = 00h After Instruction FSR2H:FSR2L = 01EBh Memory (01ECh) = 08h

ADDWF	ADD W to (Indexed I		fset mode	e)
Syntax:	ADDWF	[k] {,d}		
Operands:	$\begin{array}{l} 0 \leq k \leq 95 \\ d \in [0,1] \end{array}$			
Operation:	(W) + ((FS	R2) + k) -	\rightarrow dest	
Status Affected:	N, OV, C, I	DC, Z		
Encoding:	0010	01d0	kkkk	kkkk
Description:	The conter contents o FSR2, offs	f the regis	ster indica	
If 'd' is '0', the result is stored in W. If ' is '1', the result is stored back in register 'f' (default).				
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read 'k'	Proce Data		Vrite to stination
Example:	ADDWF	[OFST]	,0	
Before Instruct	tion			
W OFST FSR2 Contents	= = =	17h 2Ch 0A00ł	ı	
of 0A2Ch After Instructio		20h		
W	=	37h		
Contents of 0A2Ch	=	20h		

BSF	Bit Set Inde (Indexed L	exed iteral Offset r	node)
Syntax:	BSF [k], b		
Operands:	$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$		
Operation:	$1 \rightarrow ((FSR2))$	2) + k) 	
Status Affected:	None		
Encoding:	1000	bbb0 kkl	kk kkkk
Description:		register indica e value 'k', is s	ated by FSR2, set.
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write to destination
Example:	BSF [FLAG_OFST]	, 7
Before Instruct	tion		
FLAG_OI FSR2 Contents	FST = =	0Ah 0A00h	
of 0A0Ah		55h	
After Instructio Contents	n		
of 0A0Ah	=	D5h	
SETF	Set Indexe (Indexed L	d iteral Offset ı	node)
SETF Syntax:			node)
-	(Indexed L		node)
Syntax:	(Indexed L SETF [k]	iteral Offset r	node)
Syntax: Operands:	(Indexed L SETF [k] 0 ≤ k ≤ 95	iteral Offset r	node)
Syntax: Operands: Operation:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS	iteral Offset r	
Syntax: Operands: Operation: Status Affected:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content	iteral Offset (SR2) + k)	kk kkkk er indicated by
Syntax: Operands: Operation: Status Affected: Encoding:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content	BR2) + k)	kk kkkk er indicated by
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset	BR2) + k)	kk kkkk er indicated by
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1	BR2) + k)	kk kkkk er indicated by
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1	BR2) + k)	kk kkkk er indicated by
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1	iteral Offset r SR2) + k) 1000 kk ts of the regist et by 'k', are se	kk kkkk er indicated by et to FFh.
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2	R2) + k) 1000 kk ts of the regist t by 'k', are se Q3	kk kkkk er indicated by et to FFh. Q4
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 2 Read 'k'	BR2) + k) 1000 kk: ts of the registress by 'k', are set Q3 Process Data	kk kkkk er indicated by et to FFh. Q4 Write
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2 Read 'k' SETF [iteral Offset r SR2) + k) 1000 kk ts of the regist et by 'k', are se Q3 Process	kk kkkk er indicated by et to FFh. Q4 Write
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct OFST	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 2 Read 'k' SETF [tion = 2C	BR2) + k) 1000 kk: ts of the regist et by 'k', are se Q3 Process Data OFST] h	kk kkkk er indicated by et to FFh. Q4 Write
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct OFST FSR2	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 2 Read 'k' SETF [tion = 2C	iteral Offset r (R2) + k) 1000 kk ts of the regist et by 'k', are se Q3 Process Data OFST]	kk kkkk er indicated by et to FFh. Q4 Write
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct OFST FSR2 Contents of 0A2Ch	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2 Read 'k' SETF [SETF [= 0A = 00	iteral Offset i SR2) + k) 1000 kk: ts of the regist ts of the regist ts of the regist ts of the regist of the regist Q3 Process Data OFST] h 00h	kk kkkk er indicated by et to FFh. Q4 Write
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct OFST FSR2 Contents of 0A2Ch After Instructio	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2 Read 'k' SETF [SETF [= 0A = 00	iteral Offset i SR2) + k) 1000 kk: ts of the regist ts of the regist ts of the regist ts of the regist of the regist Q3 Process Data OFST] h 00h	kk kkkk er indicated by et to FFh. Q4 Write
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct OFST FSR2 Contents of 0A2Ch	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2 Read 'k' SETF [tion = 2C = 0A = 00	iteral Offset i (R2) + k) 1000 kk ts of the register of the register Q3 Process Data OFST] h 00h h	kk kkkk er indicated by et to FFh. Q4 Write


TABLE 28-17: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	100	_	ns	
74	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge	100	—	ns	
75	TDOR	SDOx Data Output Rise Time	—	25	ns	
76	TDOF	SDOx Data Output Fall Time	—	25	ns	
78	TscR	SCKx Output Rise Time	—	25	ns	
79	TscF	SCKx Output Fall Time	—	25	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	50	ns	
81	TDOV2scH, TDOV2scL	SDOx Data Output Setup to SCKx Edge	Тсү	—	ns	

FIGURE 28-12: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIM	ETERS	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092A

Serial Clock	269
Serial Data In	269
Serial Data Out	269
Slave Mode	275
Slave Select	269
Slave Select Synchronization	275
SPI Clock	274
Typical Connection	273
SSPOV	
SSPOV Status Flag	304
SSPSTAT Register	
R/W Bit	286
SSPxSTAT Register	
R/W Bit	284
	269
SUBFSR	421
SUBFWB	410
SUBLW	411
SUBULNK	421
SUBWF	411
SUBWFB	412
SWAPF	412

т

Table Pointer Operations (table)		108
Table Reads/Table Writes		
TBLRD		413
TBLWT		414
Timer0		171
Associated Registers		173
Clock Source Select (T0CS Bit)		172
Operation		172
Overflow Interrupt		173
Prescaler		173
Prescaler Assignment (PSA Bit)		173
Prescaler Select (T0PS2:T0PS0 Bits)		173
Prescaler, Switching Assignment		173
Prescaler. See Prescaler, Timer0.		
Reads and Writes in 16-Bit Mode		172
Source Edge Select (T0SE Bit)		172
Timer1		
16-Bit Read/Write Mode		177
Associated Registers		179
Considerations in Asynchronous Counter Mode		
Interrupt		178
Operation		176
Oscillator	175,	177
Layout Considerations		177
Overflow Interrupt		175
Resetting, Using the ECCPx Special		
Event Trigger		178
Special Event Trigger (ECCP)		202
TMR1H Register		
TMR1L Register		175
Use as a Clock Source		177
Use as a Real-Time Clock		178
Timer2		180
Associated Registers		181
Interrupt		181
Operation		180
Output		181
PR2 Register		
TMR2 to PR2 Match Interrupt		203

Timer3		183
	Read/Write Mode	
	ated Registers	
	ion	
•	tor	
	w Interrupt	
	ing Using the ECCPx Special	
	vent Trigger	185
	Register	
	_ Register	
	ated Registers	
	ion	
	, PWM Time Base	
•	aler. See Postscaler, Timer4.	
	egister	194
	ler. See Prescaler, Timer4.	101
	Register	187
TMR4	to PR4 Match Interrupt 187,	188
Timing Diag		100
	priversion	162
Asynch	nronous Reception, RXDTP = 0	402
	Xx Not Inverted)	320
	nronous Transmission (Back-to-Back),	525
	XCKP = 0 (TXx Not Inverted)	326
	nronous Transmission, TXCKP = 0	520
	Xx Not Inverted)	226
	atic Baud Rate Calculation	
	/ake-up Bit (WUE) During Normal	324
		224
	peration	
	/ake-up Bit (WUE) During Sleep	
	Rate Generator with Clock Arbitration	
	Verflow Sequence	324
	teset Due to SDAx Arbitration During	
	tart Condition	310
	e/Compare/PWM (Including	
	CCPx Modules)	
	and I/O	
	Synchronization	
	nstruction Cycle	84
	RTx Synchronous Receive	
	Aaster/Slave)	461
	RTx Synchronous Transmission	
	/aster/Slave)	
	le SPI Master Mode (CKE = 0)	
	le SPI Master Mode (CKE = 1)	
	le SPI Slave Mode (CKE = 0)	
	le SPI Slave Mode (CKE = 1)	
	al Clock (All Modes Except PLL)	445
	al Memory Bus for Sleep (Extended	
	icrocontroller Mode) 122,	124
	al Memory Bus for TBLRD (Extended	
	icrocontroller Mode) 122,	
	fe Clock Monitor	
	tart Bit	
	idge PWM Output	
	idge PWM Output	
I ² C Acl	knowledge Sequence	307
	s Collision During a Repeated	
	tart Condition (Case 1)	311
	s Collision During a Repeated	
	tart Condition (Case 2)	
I ² C Bus	s Collision During a Stop Condition (Case 1)	312