

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	41.667MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	70
Program Memory Size	96KB (48K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3808 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f96j65t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	PIC18F66J60	PIC18F66J65	PIC18F67J60		
Operating Frequency	DC – 41.667 MHz	DC – 41.667 MHz	DC – 41.667 MHz		
Program Memory (Bytes)	64K	96K	128K		
Program Memory (Instructions)	32764	49148	65532		
Data Memory (Bytes)		3808			
Interrupt Sources		26			
I/O Ports	F	Ports A, B, C, D, E, F, O	G		
I/O Pins		39			
Timers	5				
Capture/Compare/PWM Modules	2				
Enhanced Capture/Compare/PWM Modules	3				
Serial Communications	MSSP (1), Enhanced USART (1)				
Ethernet Communications (10Base-T)		Yes			
Parallel Slave Port Communications (PSP)	No				
External Memory Bus	No				
10-Bit Analog-to-Digital Module	11 Input Channels				
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR , WDT (PWRT, OST)				
Instruction Set	75 Instructions, 8	3 with Extended Instru	ction Set Enabled		
Packages	64-Pin TQFP				

TABLE 1-1: DEVICE FEATURES FOR THE PIC18F97J60 FAMILY (64-PIN DEVICES)

TABLE 1-2: DEVICE FEATURES FOR THE PIC18F97J60 FAMILY (80-PIN DEVICES)

Features	PIC18F86J60	PIC18F86J65	PIC18F87J60	
Operating Frequency	DC – 41.667 MHz	DC – 41.667 MHz	DC – 41.667 MHz	
Program Memory (Bytes)	64K	96K	128K	
Program Memory (Instructions)	32764	49148	65532	
Data Memory (Bytes)		3808		
Interrupt Sources		27		
I/O Ports	Ports A, B, C, D, E, F, G, H, J			
I/O Pins	55			
Timers	5			
Capture/Compare/PWM Modules	2			
Enhanced Capture/Compare/PWM Modules		3		
Serial Communications	MSS	P (1), Enhanced USAF	RT (2)	
Ethernet Communications (10Base-T)		Yes		
Parallel Slave Port Communications (PSP)		No		
External Memory Bus		No		
10-Bit Analog-to-Digital Module		15 Input Channels		
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR , WDT (PWRT, OST)			
Instruction Set	75 Instructions, 8	3 with Extended Instru	ction Set Enabled	
Packages		80-Pin TQFP		

	Pin Number	Pin	Buffer	
Pin Name	TQFP	Туре	Туре	Description
				PORTF is a bidirectional I/O port.
RF1/AN6/C2OUT RF1 AN6 C2OUT	23	I/O I O	ST Analog —	Digital I/O. Analog Input 6. Comparator 2 output.
RF2/AN7/C1OUT RF2 AN7 C1OUT	18	I/O I O	ST Analog —	Digital I/O. Analog Input 7. Comparator 1 output.
RF3/AN8 RF3 AN8	17	I/O I	ST Analog	Digital I/O. Analog Input 8.
RF4/AN9 RF4 AN9	16	I/O I	ST Analog	Digital I/O. Analog Input 9.
RF5/AN10/CVREF RF5 AN10 CVREF	15	I/O I O	ST Analog —	Digital I/O. Analog Input 10. Comparator reference voltage output.
RF6/AN11 RF6 AN11	14	I/O I	ST Analog	Digital I/O. Analog Input 11.
RF7/ <u>SS1</u> RF7 SS1	13	I/O I	ST TTL	Digital I/O. SPI slave select input.
		with CM0	OS levels	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

TABLE 1-5:	PIC18F86J60/86J65/87J60 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2/P2A when CCP2MX Configuration bit is set.

2: Default assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is set).

3: Alternate assignment for ECCP2/P2A when CCP2MX Configuration bit is cleared.

4: Alternate assignments for P1B/P1C/P3B/P3C (ECCPMX Configuration bit is cleared).

PIC18F97J60 FAMILY

TABLE 5-2		INITIALIZATION CONDITIONS FOR			MCLR Reset,	
Register A STATUS PIC18F6XJ6X		pplicable Device	9S	Power-on Reset, Brown-out Reset	WDT Reset, RESET Instruction, St <u>ack</u> Resets, CM Reset	Wake-up via WDT or Interrupt
		PIC18F8XJ6X	PIC18F9XJ6X	x xxxx	u uuuu	u uuuu
TMR0H	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
TMR0L	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	xxxx xxxx	uuuu uuuu	uuuu uuuu
T0CON	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	1111 1111	1111 1111	uuuu uuuu
OSCCON	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0 q-00	0 q-00	u q-uu
ECON1	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 00	0000 00	uuuu uu
WDTCON	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0	0	u
RCON ⁽⁴⁾	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0-q1 1100	0-uq qquu	u-uu qquu
TMR1H	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1L	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	u0uu uuuu	uuuu uuuu
TMR2	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
PR2	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	1111 1111	1111 1111	1111 1111
T2CON	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	-000 0000	-000 0000	-uuu uuuu
SSP1BUF	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSP1ADD	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
SSP1STAT	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
SSP1CON1	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
SSP1CON2	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
ADRESH	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADRESL	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0-00 0000	0-00 0000	u-uu uuuu
ADCON1	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	00 0000	00 0000	uu uuuu
ADCON2	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0-00 0000	0-00 0000	u-uu uuuu
CCPR1H	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1L	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
CCPR2H	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR2L	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP2CON	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
CCPR3H	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR3L	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP3CON	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
ECCP1AS	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
CVRCON	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0000	0000 0000	uuuu uuuu
CMCON	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	0000 0111	0000 0111	uuuu uuuu
TMR3H	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR3L	PIC18F6XJ6X	PIC18F8XJ6X	PIC18F9XJ6X	xxxx xxxx	uuuu uuuu	uuuu uuuu

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend:u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

4: See Table 5-1 for Reset value for specific condition.

REGISTER 7-1: EECON1: EEPROM CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-x	R/W-0	R/S-0	U-0
—	—	—	FREE	WRERR	WREN	WR	—
bit 7							bit 0

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	Unimplemented: Read as '0'
bit 4	FREE: Flash Row Erase Enable bit
	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation) 0 = Perform write-only
bit 3	WRERR: Flash Program Error Flag bit
	 1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal operation or an improper write attempt) 0 = The write operation completed
bit 2	WREN: Flash Program Write Enable bit
	 1 = Allows write cycles to Flash program memory 0 = Inhibits write cycles to Flash program memory
bit 1	WR: Write Control bit
	 1 = Initiates a program memory erase cycle or write cycle (The operation is self-timed and the bit is cleared by hardware once the write is complete. The WR bit can only be set (not cleared) in software.) 0 = Write cycle complete
bit 0	Unimplemented: Read as '0'

10.1 INTCON Registers

The INTCON registers are readable and writable registers which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 10-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾	
bit 7	•				·		bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 7	When IPEN = 1 = Enables a 0 = Disables a When IPEN =	III unmasked in all interrupts <u>1:</u> III high-priority i	terrupts					
bit 6	PEIE/GIEL : P When IPFN =	Peripheral Inter	rupt Enable bi	it				

	<u>When IPEN = 0:</u> 1 = Enables all unmasked interrupts 0 = Disables all interrupts
	<u>When IPEN = 1:</u> 1 = Enables all high-priority interrupts 0 = Disables all interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit
	<u>When IPEN = 0:</u> 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
	<u>When IPEN = 1:</u> 1 = Enables all low-priority peripheral interrupts 0 = Disables all low-priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit
	1 = Enables the TMR0 overflow interrupt0 = Disables the TMR0 overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit
	 1 = Enables the INT0 external interrupt 0 = Disables the INT0 external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit
	 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit
	1 = TMR0 register has overflowed (must be cleared in software)0 = TMR0 register did not overflow
bit 1	INTOIF: INTO External Interrupt Flag bit
	 1 = The INT0 external interrupt occurred (must be cleared in software) 0 = The INT0 external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾
	 1 = At least one of the RB<7:4> pins changed state (must be cleared in software) 0 = None of the RB<7:4> pins have changed state
Note 1.	A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition a

Note 1: A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared.

REGISTER 10-9: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
SSP2IE ⁽¹⁾	BCL2IE ⁽¹⁾	RC2IE ⁽²⁾	TX2IE ⁽²⁾	TMR4IE	CCP5IE	CCP4IE	CCP3IE
bit 7						·	bit C
Legend:							
R = Readable		W = Writable		-	nented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
bit 7	SSP2IE: MSS	SP2 Interrupt E	nable bit ⁽¹⁾				
	1 = Enabled 0 = Disabled						
bit 6	BCL2IE: Bus 1 = Enabled 0 = Disabled	Collision Interr	upt Enable bit	: (MSSP2 mod	ule) ⁽¹⁾		
bit 5		RT2 Receive	Interrupt Enab	le bit ⁽²⁾			
bit 4	0 = Disabled	RT2 Transmit	Interrupt Enab	le bit ⁽²⁾			
	1 = Enabled 0 = Disabled						
bit 3	TMR4IE: TMF 1 = Enabled 0 = Disabled	R4 to PR4 Mate	ch Interrupt Er	hable bit			
bit 2	CCP5IE: CCF 1 = Enabled 0 = Disabled	25 Interrupt En	able bit				
bit 1	CCP4IE: CCF 1 = Enabled 0 = Disabled	P4 Interrupt En	able bit				
bit 0		CP3 Interrupt E	nable bit				

2: Implemented in 80-pin and 100-pin devices only.

Pin Name	Function	TRIS Setting	I/O	I/О Туре	Description
RF0/AN5 ⁽¹⁾	RF0 ⁽¹⁾	0	0	DIG	LATF<0> data output; not affected by analog input.
		1	I	ST	PORTF<0> data input; disabled when analog input is enabled.
	AN5 ⁽¹⁾	1	Ι	ANA	A/D Input Channel 5. Default configuration on POR.
RF1/AN6/	RF1	0	0	DIG	LATF<1> data output; not affected by analog input.
C2OUT		1	I	ST	PORTF<1> data input; disabled when analog input is enabled.
	AN6	1	Ι	ANA	A/D Input Channel 6. Default configuration on POR.
	C2OUT	0	0	DIG	Comparator 2 output; takes priority over port data.
RF2/AN7/	RF2	0	0	DIG	LATF<2> data output; not affected by analog input.
C1OUT		1	I	ST	PORTF<2> data input; disabled when analog input is enabled.
	AN7	1	Ι	ANA	A/D Input Channel 7. Default configuration on POR.
	C10UT	0	0	TTL	Comparator 1 output; takes priority over port data.
RF3/AN8 RF3 0 O DIG LATF<3> da		DIG	LATF<3> data output; not affected by analog input.		
		1	Ι	ST	PORTF<3> data input; disabled when analog input is enabled.
	AN8	1	I	ANA	A/D Input Channel 8 and Comparator C2+ input. Default input configuration on POR; not affected by analog output.
RF4/AN9	RF4	0	0	DIG	LATF<4> data output; not affected by analog input.
		1	Ι	ST	PORTF<4> data input; disabled when analog input is enabled.
	AN9	1	Ι	ANA	A/D Input Channel 9 and Comparator C2- input. Default input configuration on POR; does not affect digital output.
RF5/AN10/ CVref	RF5	0	0	DIG	LATF<5> data output; not affected by analog input. Disabled when CVREF output is enabled.
		1	I	ST	PORTF<5> data input; disabled when analog input is enabled. Disabled when CVREF output is enabled.
	AN10	1	Ι	ANA	A/D Input Channel 10 and Comparator C1+ input. Default input configuration on POR.
	CVREF	x	0	ANA	Comparator voltage reference output. Enabling this feature disables digital I/O.
RF6/AN11	RF6	0	0	DIG	LATF<6> data output; not affected by analog input.
		1	Ι	ST	PORTF<6> data input; disabled when analog input is enabled.
	AN11	1	I	ANA	A/D Input Channel 11 and Comparator C1- input. Default input configuration on POR; does not affect digital output.
RF7/SS1	RF7	0	0	DIG	LATF<7> data output.
		1	Ι	ST	PORTF<7> data input.
	SS1	1	I	TTL	Slave select input for MSSP1 module.

TABLE 11-13: PORTF FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Implemented on 100-pin devices only.

TABLE 11-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0 ⁽¹⁾	72
LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0 ⁽¹⁾	72
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0 ⁽¹⁾	71
ADCON1	_	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	70
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	70
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	70

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTF.

Note 1: Implemented on 100-pin devices only.

14.0 TIMER2 MODULE

The Timer2 timer module incorporates the following features:

- 8-Bit Timer and Period registers (TMR2 and PR2, respectively)
- · Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4 and 1:16)
- Software programmable postscaler (1:1 through 1:16)
- Interrupt on TMR2 to PR2 match
- Optional use as the shift clock for the MSSPx modules

This module is controlled through the T2CON register (Register 14-1) which enables or disables the timer and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

A simplified block diagram of the module is shown in Figure 14-1.

14.1 Timer2 Operation

In normal operation, TMR2 is incremented from 00h on each clock (Fosc/4). A 4-bit counter/prescaler on the clock input gives direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, T2CKPS<1:0> (T2CON<1:0>). The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see **Section 14.2** "**Timer2 Interrupt**").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, while the PR2 register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- · A write to the TMR2 register
- · A write to the T2CON register
- Any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	Unimplement	ted: Read as '	כ'				
bit 6-3	T2OUTPS<3:	0>: Timer2 Ou	tput Postscale	Select bits			
	0000 = 1:1 Po	ostscale					
	0001 = 1:2 P	ostscale					
	•						
	•						
	•	N					
	1111 = 1:16 F	001000.10					
bit 2	TMR2ON: Tim	ner2 On bit					
	1 = Timer2 is	•••					
	0 = Timer2 is	off					
bit 1-0	T2CKPS<1:0	>: Timer2 Cloc	k Prescale Se	lect bits			
	00 = Prescale	er is 1					
	01 = Prescale						
	1x = Prescale	er is 16					

REGISTER 14-1: T2CON: TIMER2 CONTROL REGISTER

PIC18F97J60 FAMILY

18.4.9 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the ECCP1 module for PWM operation:

- 1. Configure the PWM pins, P1A and P1B (and P1C and P1D, if used), as inputs by setting the corresponding TRIS bits.
- 2. Set the PWM period by loading the PR2 (PR4) register.
- Configure the ECCP1 module for the desired PWM mode and configuration by loading the CCP1CON register with the appropriate values:
 - Select one of the available output configurations and direction with the P1M<1:0> bits.
 - Select the polarities of the PWM output signals with the CCP1M<3:0> bits.
- 4. Set the PWM duty cycle by loading the CCPR1L register and the CCP1CON<5:4> bits.
- 5. For auto-shutdown:
 - Disable auto-shutdown; ECCP1ASE = 0
 - · Configure auto-shutdown source
 - Wait for Run condition
- 6. For Half-Bridge Output mode, set the dead-band delay by loading ECCP1DEL<6:0> with the appropriate value.
- 7. If auto-shutdown operation is required, load the ECCP1AS register:
 - Select the auto-shutdown sources using the ECCP1AS<2:0> bits.
 - Select the shutdown states of the PWM output pins using PSS1AC<1:0> and PSS1BD<1:0> bits.
 - Set the ECCP1ASE bit (ECCP1AS<7>).

- 8. If auto-restart operation is required, set the P1RSEN bit (ECCP1DEL<7>).
- 9. Configure and start TMR2 (TMR4):
 - Clear the TMRx interrupt flag bit by clearing the TMRxIF bit (PIR1<1> for Timer2 or PIR3<3> for Timer4).
 - Set the TMRx prescale value by loading the TxCKPS bits (T2CON<1:0> for Timer2 or T4CON<1:0> for Timer4).
 - Enable Timer2 (or Timer4) by setting the TMRxON bit (T2CON<2> for Timer2 or T4CON<2> for Timer4).
- 10. Enable PWM outputs after a new PWM cycle has started:
 - Wait until TMR2 (TMR4) overflows (TMRxIF bit is set).
 - Enable the ECCP1/P1A, P1B, P1C and/or P1D pin outputs by clearing the respective TRIS bits.
 - Clear the ECCP1ASE bit (ECCP1AS<7>).

18.4.10 EFFECTS OF A RESET

Both Power-on Reset and subsequent Resets will force all ports to Input mode and the CCPx/ECCPx registers to their Reset states.

This forces the Enhanced CCPx modules to reset to a state compatible with the standard CCPx modules.

REGISTER 19-13: PHLCON: PHY MODULE LED CONTROL REGISTER

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1	R/W-0	R/W-0
r	r	r	r	LACFG3	LACFG2	LACFG1	LACFG0
bit 15	•						bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1	R/W-x
LBCFG3	LBCFG2	LBCFG1	LBCFG0	LFRQ1	LFRQ0	STRCH	r
bit 7							bit 0
Legend:		r = Reserved b	it				
R = Readable	bit	W = Writable b		U = Unimplem	ented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkno	wn
bit 15-14	Reserved: Wr	i te as '0'					
bit 13-12	Reserved: Wr	ite as '1'					
bit 11-8	LACFG<3:0>:	LEDA Configur	ation bits				
	0000 = Reserv		<i></i>				
		y transmit activity y receive activity					
		y collision activity					
	0100 = Displa		., (00.0				
		y duplex status					
	0110 = Reserv		anaiva antivity (otrotoboblo)			
	1000 = On	y transmit and re	eceive activity (stretchable)			
	1001 = Off						
	1010 = Blink f						
	1011 = Blink s	slow y link status and	roccivo octiviti	(always strate			
		y link status and			,		
	111x = Reserv	-		, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , ,		
bit 7-4	LBCFG<3:0>:	LEDB Configur	ation bits				
	0000 = Reserv						
		y transmit activit					
		y receive activity y collision activity					
	0100 = Displa		., (00.0				
		y duplex status					
	0110 = Reserv	ved y transmit and re	acaiva activity (stratchable)			
	1000 = On	y transmit and to	eceive activity (stretchable)			
	1001 = Off						
	1010 = Blink f						
	1011 = Blink s	siow y link status and	receive activity	v (always stretch	ned)		
		y link status and			,		
	111x = Reserv	-					
bit 3-2	LFRQ<1:0>: L	ED Pulse Streto	h Time Configu	uration bits (see	Table 19-1)		
	11 = Reserved						
		ED events by Ti ED events by Ti					
		ED events by Tr					
bit 1		Pulse Stretching					
-		-		nened LED pulse	es based on LF	RQ<1:0> configu	ration
		le LED events w				5	
bit 0	Reserved: Wr	i te as '0'					

19.8 Receive Filters

To minimize microcontroller processing overhead, the Ethernet module incorporates a range of different receive filters which can automatically reject packets which are not needed. Six different types of packet filters are implemented:

- Unicast
- Multicast
- Broadcast
- Pattern Match
- Magic Packet[™]
- Hash Table

The individual filters are all configured by the ERXFCON register (Register 19-20). More than one filter can be active at any given time. Additionally, the filters can be configured by the ANDOR bit to either logically AND or logically OR the tests of several filters. In other words, the filters may be set so that only packets accepted by all active filters are accepted, or a packet accepted by any one filter is accepted. The flowcharts in Figure 19-13 and Figure 19-14 show the effect that each of the filters will have, depending on the setting of ANDOR.

The device can enter Promiscuous mode and receive all legal packets by setting the ERXFCON register to 20h (enabling only the CRC filter for valid packets). The proper setting of the register will depend on the application requirements.

19.8.1 UNICAST FILTER

The Unicast receive filter checks the destination address of all incoming packets. If the destination address exactly matches the contents of the MAADR registers, the packet meets the Unicast filter criteria.

19.8.2 MULTICAST FILTER

The Multicast receive filter checks the destination address of all incoming packets. If the Least Significant bit of the first byte of the destination address is set, the packet meets the Multicast filter criteria.

19.8.3 BROADCAST FILTER

The Broadcast receive filter checks the destination address of all incoming packets. If the destination address is FF-FF-FF-FF-FF, the packet meets the Broadcast filter criteria.

19.8.4 HASH TABLE FILTER

The Hash Table receive filter is typically used to receive traffic sent to a specific Multicast group address. Because it checks the specific destination address of packets, it is capable of filtering out more unwanted packets than the Multicast filter.

The filter performs a 32-bit CRC over the six destination address bytes in the packet, using the polynomial, 4C11DB7h. From the resulting 32-bit binary number, a 6-bit value is derived from bits<28:23>. This value, in turn, points to a location in a table formed by the Ethernet Hash Table registers, ETH0 through ETH7. If the bit in that location is set, the packet meets the Hash Table filter criteria and is accepted. The specific pointer values for each bit location in the table are shown in Table 19-9.

An example of the Hash Table operation is shown in Example 19-1. In this case, the destination address, 01-00-00-00-01-2C, produces a Table Pointer value of 34h, which points to bit 4 of ETH6. If this bit is '1', the packet will be accepted.

By extension, clearing every bit in the Hash Table registers means that the filter criteria will never be met. Similarly, if every bit in the Hash Table is set, the filter criteria will always be met.

TABLE 19-9:BIT ASSIGNMENTS IN HASH
TABLE REGISTERS

Periotor	Bit Number in Hash Table										
Register	7	6	5	4	3	2	1	0			
EHT0	07	06	05	04	03	02	01	00			
EHT1	0F	0E	0D	0C	0B	0A	09	08			
EHT2	17	16	15	14	13	12	11	10			
EHT3	1F	1E	1D	1C	1B	1A	19	18			
EHT4	27	26	25	24	23	22	21	20			
EHT5	2F	2E	2D	2C	2B	2A	29	28			
EHT6	37	36	35	34	33	32	31	30			
EHT7	3F	3E	3D	3C	3B	3A	39	38			

EXAMPLE 19-1: DERIVING A HASH TABLE LOCATION

Packet Destination Address:							
	01-00-00-00-01-2C (hex)						
Result of CRC-32 with	n 4C11DB7h:						
110 1 1010 0 000 10	11 0100 0101 0111 0101 (binary)						
Pointer Derived from	bits<28:23> of CRC Result:						
	110100 (binary) or 34 (hex)						
Corresponding Hash Table Location:							
	ETH6<4>						

21.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is one of two serial I/O modules. (Generically, the EUSART is also known as a Serial Communications Interface or SCI.) The EUSART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

The Enhanced USART module implements additional features, including automatic baud rate detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These features make it ideally suited for use in Local Interconnect Network bus (LIN/J2602 bus) systems.

The 64-pin devices of the PIC18F97J60 family are equipped with one EUSART module, referred to as EUSART1. The 80-pin and 100-pin devices each have two independent EUSART modules, referred to as EUSART1 and EUSART2. They can be configured in the following modes:

- Asynchronous (full-duplex) with:
 - Auto-Wake-up on Character Reception
 - Auto-Baud Calibration
- 12-Bit Break Character Transmission
- Synchronous Master (half-duplex) with Selectable Clock Polarity
- Synchronous Slave (half-duplex) with Selectable Clock Polarity

The pins of EUSART1 and EUSART2 are multiplexed with the functions of PORTC (RC6/TX1/CK1 and RC7/RX1/DT1) and PORTG (RG1/TX2/CK2 and RG2/RX2/DT2), respectively. In order to configure these pins as an EUSART:

- For EUSART1:
 - SPEN bit (RCSTA1<7>) must be set (= 1)
 - TRISC<7> bit must be set (= 1)
 - TRISC<6> bit must be cleared (= 0) for Asynchronous and Synchronous Master modes
 - TRISC<6> bit must be set (= 1) for Synchronous Slave mode
- For EUSART2:
 - SPEN bit (RCSTA2<7>) must be set (= 1)
 - TRISG<2> bit must be set (= 1)
 - TRISG<1> bit must be cleared (= 0) for Asynchronous and Synchronous Master modes
 - TRISG<1> bit must be set (= 1) for Synchronous Slave mode

Note: The EUSARTx control will automatically reconfigure the pin from input to output as needed.

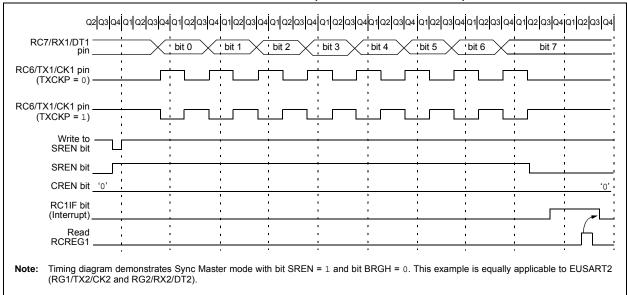
The operation of each Enhanced USART module is controlled through three registers:

- Transmit Status and Control (TXSTAx)
- Receive Status and Control (RCSTAx)
- Baud Rate Control (BAUDCONx)

These are detailed on the following pages in Register 21-1, Register 21-2 and Register 21-3, respectively.

Note: Throughout this section, references to register and bit names that may be associated with a specific EUSART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "RCSTAx" might refer to the Receive Status register for either EUSART1 or EUSART2.

21.3.2 EUSARTx SYNCHRONOUS MASTER RECEPTION


Once Synchronous mode is selected, reception is enabled by setting either the Single Receive Enable bit, SREN (RCSTAx<5>), or the Continuous Receive Enable bit, CREN (RCSTAx<4>). Data is sampled on the RXx pin on the falling edge of the clock.

If enable bit, SREN, is set, only a single word is received. If enable bit, CREN, is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.
- 3. Ensure bits, CREN and SREN, are clear.

- 4. If the signal from the CKx pin is to be inverted, set the TXCKP bit. If the signal from the DTx pin is to be inverted, set the RXDTP bit.
- 5. If interrupts are desired, set enable bit, RCxIE.
- 6. If 9-bit reception is desired, set bit, RX9.
- 7. If a single reception is required, set bit, SREN. For continuous reception, set bit, CREN.
- 8. Interrupt flag bit, RCxIF, will be set when reception is complete and an interrupt will be generated if the enable bit, RCxIE, was set.
- 9. Read the RCSTAx register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREGx register.
- 11. If any error occurred, clear the error by clearing bit, CREN.
- 12. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

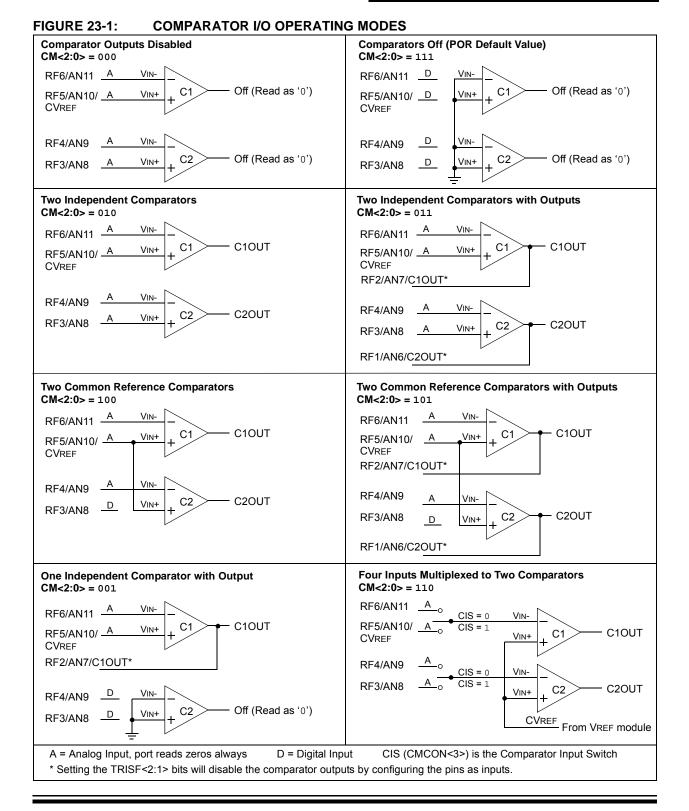


FIGURE 21-13: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

23.1 Comparator Configuration

There are eight modes of operation for the comparators, shown in Figure 23-1. Bits CM<2:0> of the CMCON register are used to select these modes. The TRISF register controls the data direction of the comparator pins for each mode. If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in **Section 28.0 "Electrical Characteristics"**.

Note: Comparator interrupts should be disabled during a Comparator mode change; otherwise, a false interrupt may occur.

Byte-oriented file register operations	Example Instruction
15 10 9 8 7 0	
OPCODE d a f (FILE #)	ADDWF MYREG, W, B
 d = 0 for result destination to be WREG register d = 1 for result destination to be file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Byte to Byte move operations (2-word)	
<u>15 12 11 0</u>	
OPCODE f (Source FILE #)	MOVFF MYREG1, MYREG2
15 12 11 0	
1111 f (Destination FILE #)	
f = 12-bit file register address	
Bit-oriented file register operations	
<u>15 12 11 9 8 7 0</u>	
OPCODE b (BIT #) a f (FILE #)	BSF MYREG, bit, B
 b = 3-bit position of bit in file register (f) a = 0 to force Access Bank a = 1 for BSR to select bank f = 8-bit file register address 	
Literal operations	
<u>15 8 7 0</u>	
OPCODE k (literal)	MOVLW 7Fh
k = 8-bit immediate value	
Control operations	
CALL, GOTO and Branch operations	
15 8 7 0	
OPCODE n<7:0> (literal)	GOTO Label
15 12 11 0	
1111 n<19:8> (literal)	
n = 20-bit immediate value	
15 8 7 0	
OPCODE S n<7:0> (literal)	CALL MYFUNC
15 12 11 0	
1111 n<19:8> (literal)	
S = Fast bit	
15 11 10 0	
OPCODE n<10:0> (literal)	BRA MYFUNC
45 0.7 0	
15 8 7 0 OPCODE n<7:0> (literal)	BC MYFUNC

PIC18F97J60 FAMILY

RLNCF	Rotate Left f (no carry)	RRCF	Rotate Right f through Carry		
Syntax:	RLNCF f {,d {,a}}	Syntax:	RRCF f {,d {,a}}		
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$		
Operation:	$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow dest < 0 >$	Operation:	$(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow C,$ $(C) \rightarrow dest < 7 >$		
Status Affected:	N, Z	Status Affected:	C, N, Z		
Encoding:	0100 01da ffff ffff	Encoding:	0011 00da ffff ffff		
Description:	The contents of register 'f' are rotated one bit to the left. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the	Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default).		
	GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates		If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select th GPR bank (default).		
	in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.		If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.		
Words:	1		C register f		
Cycles:	1				
Q Cycle Activity		Words:	1		
Q1	Q2 Q3 Q4	Cycles:	1		
Decode	ReadProcessWrite toregister 'f'Datadestination	Q Cycle Activity:	Q2 Q3 Q4		
Example:	RLNCF REG, 1, 0	Decode	ReadProcessWrite toregister 'f'Datadestination		
Before Instr	uction	Francis			
REG After Instruc	= 1010 1011	Example: Refere Instru	RRCF REG, 0, 0		
REG	= 0101 0111	Before Instru REG C After Instruct	= 1110 0110 = 0		
		REG W C	= 1110 0110 = 0111 0011 = 0		

PIC18F97J60 FAMILY

SUBWFB		Sub	tract \	N from	n f w	ith B	orr	ow
Syntax:		SUE	BWFB	f {,d {	[,a}}			
Operands:		0 ≤ 1	f ≤ 255	5				
			[0,1]					
o "			[0,1]	<u>,</u>				
Operation:		. ,	• •	$(\overline{C}) \rightarrow$	des	t		
Status Affeo	cted:	N, OV, C, DC, Z						
Encoding:			101	10da		fff		ffff
Description	:	Subtract W and the Carry flag (borrow) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).						
		lf 'a'	is '1',		R is			selected. select the
		set i in In moo Sec Bit-	is enab idexed le whe tion 2 Orient	bled, th Literal never f 6.2.3 "l	is in Off ≤ 9 Byte truc	struct set Ac 5 (5F e-Orie	ion ddre h). ente in	See ed and Indexed
Words:		1						
Cycles:		1						
Q Cycle A	ctivity:							
	ົ ຊ1	(Q2		Q3			Q4
Dec	code		ead		oces			Vrite to
		regis	ster 'f'		Data	l	de	stination
Example 1:			JBWFB	REG	, 1	, 0		
	Instructi	ion =	106	(0	0.01	100	1 \	
r V	REG V	=	19h 0Dh			100 110		
C		=	1					
	nstructior REG	n =	0Ch	(0	ممم	101	1)	
V	V	=	0Dh			110		
C Z		=	1 0					
Z		=	Õ	; re	sult	ult is positive		
Example 2:		SU	JBWFB	REG,	Ο,	0		
	Instructi							
н V	REG V	=	1Bh 1Ah			101		
C	;	=	0	(0	001		,	
R V		n = =	1Bh 00h	(0	001	101	1)	
C Z N		= = =	1 1 0	; re	esult	is ze	ro	
Example 3:		SU	JBWFB	REG	, 1	, 0		
	Instructi	ion						
R V C		= = =	03h 0Eh 1			001 110		
	nstruction							
F	REG	=	F5h			010 0mp]	0)	
V		=	0Eh			110	1)	
C Z N	, I	= = =	0 0 1	; re	esult	is ne	gat	ive

SWAPF	Swap f							
Syntax:	SWAPF f	{,d {,a}}						
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	d ∈ [0,1]						
Operation:	. ,	$(f<3:0>) \rightarrow dest<7:4>,$ $(f<7:4>) \rightarrow dest<3:0>$						
Status Affected:	None							
Encoding:	0011	10da	ffff	ffff				
Description:	'f' are exchais placed in	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f' (default).						
	If 'a' is '0', the Access Bank is If 'a' is '1', the BSR is used to s GPR bank (default).							
	If 'a' is '0' a set is enabl in Indexed mode wher Section 26 Bit-Oriente Literal Offs	led, this ins Literal Offs never f ≤ 98 .2.3 "Byte ed Instruct	struction set Addre 5 (5Fh). e-Oriente tions in	operates essing See ed and Indexed				
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read register 'f'	Process Data	-	/rite to stination				
Example:	SWAPF F	REG, 1,	0					
Example: Swapp Reg, 1, 0 Before Instruction REG = 53h After Instruction REG = 35h								

28.2 DC Characteristics: Power-Down and Supply Current PIC18F97J60 Family (Industrial) (Continued)

PIC18F9 (Indu	7J60 Family strial)		rd Oper ng temp	•	•	ss otherwise stated) $A \le +85^{\circ}C$ for industria	al		
Param No.	Device	Тур	Max	Units		Conditions			
	Supply Current (IDD) ⁽²⁾								
	All devices	0.8	1.5	mA	-40°C				
		0.8	1.5	mA	+25°C	VDD = 2.0V, $VDDCORE = 2.0V(4)$			
		0.9	1.7	mA	+85°C	VBBOOKE 2.0V			
	All devices	1.1	1.8	mA	-40°C		Fosc = 1 MHz		
		1.1	1.8	mA	+25°C	$V_{DD} = 2.5V,$ $V_{DDCORE} = 2.5V^{(4)}$	(PRI_RUN mode,		
		1.2	2.0	mA	+85°C	VBBOOKE 2.0V	EC oscillator)		
	All devices	2.1	3.4	mA	-40°C				
		2.0	3.4	mA	+25°C	VDD = 3.3V ⁽⁵⁾			
		2.1	3.4	mA	+85°C				
	All devices	9.2	14.5	mA	-40°C				
		9.0	14.5	mA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$			
		9.2	14.5	mA	+85°C	VBBOOKE 2.0V	Fosc = 25 MHz		
	All devices	13.0	18.4	mA	-40°C		(PRI_RUN mode, EC oscillator)		
		12.4	18.4	mA	+25°C	VDD = 3.3V ⁽⁵⁾	_0 000		
		13.0	18.4	mA	+85°C				
	All devices	13.4	19.8	mA	-40°C				
		13.0	19.8	mA	+25°C	$V_{DD} = 2.5V,$ $V_{DDCORE} = 2.5V^{(4)}$			
		13.4	19.8	mA	+85°C		Fosc = 41.6667 MHz (PRI_RUN mode,		
	All devices	14.5	21.6	mA	-40°C		EC oscillator)		
		14.4	21.6	mA	+25°C	VDD = 3.3V ⁽⁵⁾	,		
		14.5	21.6	mA	+85°C				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 oscillator, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;
- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator disabled (ENVREG = 0, tied to Vss).
- 5: Voltage regulator enabled (ENVREG = 1, tied to VDD).
- 6: For △IETH, the specified current includes current sunk through TPOUT+ and TPOUT-. LEDA and LEDB are disabled for all testing.

28.2 DC Characteristics: Power-Down and Supply Current PIC18F97J60 Family (Industrial) (Continued)

	7J60 Family strial)		rd Oper ng temp	•	•	ss otherwise stated) $A \le +85^{\circ}C$ for industria	al	
Param No.	Device	Тур	Max	Units		Conditions		
	Supply Current (IDD) ⁽²⁾							
	All devices	2.8	5.2	mA	-40°C			
		2.5	5.2	mA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$		
		2.8	5.2	mA	+85°C		Fosc = 25 MHz, 2.7778 MHz internal	
	All devices	3.6	6.4	mA	-40°C		(PRI_RUN HS mode)	
		3.3	6.4	mA	+25°C	VDD = 3.3V ⁽⁵⁾	(,	
		3.6	6.4	mA	+85°C			
	All devices	6.4	11.0	mA	-40°C			
		6.0	11.0	mA	+25°C	VDD = 2.5V, VDDCORE = 2.5V ⁽⁴⁾	Fosc = 25 MHz, 13.8889 MHz internal	
		6.4	11.0	mA	+85°C	VDDCORE - 2.5V		
	All devices	7.8	12.5	mA	-40°C		(PRI_RUN HSPLL mode)	
		7.4	12.5	mA	+25°C	VDD = 3.3V ⁽⁵⁾		
		7.8	12.5	mA	+85°C			
	All devices	9.2	14.5	mA	-40°C			
		9.0	14.5	mA	+25°C	VDD = 2.5V, VDDCORE = 2.5V ⁽⁴⁾		
		9.2	14.5	mA	+85°C		Fosc = 25 MHz, 25 MHz internal	
	All devices	13.0	18.4	mA	-40°C		(PRI_RUN HS mode)	
		12.4	18.4	mA	+25°C	VDD = 3.3V ⁽⁵⁾	· – /	
		13.0	18.4	mA	+85°C			
	All devices	13.4	19.8	mA	-40°C	$\lambda = 2.5 \lambda'$		
		13.0	19.8	mA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V^{(4)}$		
		13.4	19.8	mA	+85°C		Fosc = 25 MHz, 41.6667 MHz internal	
	All devices	14.5	21.6	mA	-40°C		(PRI_RUN HSPLL mode	
		14.4	21.6	mA	+25°C	VDD = 3.3V ⁽⁵⁾		
		14.5	21.6	mA	+85°C			

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS, and all features that add delta current disabled (such as WDT, Timer1 oscillator, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

- **3:** Standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: Voltage regulator disabled (ENVREG = 0, tied to Vss).
- **5:** Voltage regulator enabled (ENVREG = 1, tied to VDD).
- 6: For △IETH, the specified current includes current sunk through TPOUT+ and TPOUT-. LEDA and LEDB are disabled for all testing.

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Program Flash Memory					
D130	Eр	Cell Endurance	100	1K	—	E/W	-40°C to +85°C
D131	Vpr	VDD for Read	VMIN	—	3.6	V	Vміn = Minimum operating voltage
D132B	Vpew	Voltage for Self-Timed Erase or Write					
		Vdd	2.70	—	3.6	V	ENVREG tied to VDD
		VDDCORE	2.35	—	2.7	V	ENVREG tied to Vss
D133A	Tiw	Self-Timed Write Cycle Time	_	2.8	—	ms	
D134	TRETD	Characteristic Retention	20	—	_	Year	Provided no other specifications are violated
D135	Iddp	Supply Current during Programming	—	10		mA	Ethernet module disabled

TABLE 28-1: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.