E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	77
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	PG-TQFP-100
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c165l25fhabxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2000-12

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 2000. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

C165

Revision History:		2000-12					
Previous Version:		 1998-12 Update 0.5μ technology 01.96 3 Volt Addendum 07.95 25 MHz Addendum 09.94 Data Sheet 					
Subjects (r	major change	es since last revision)					
Converted	to Infineon lay	vout					
ROM derivatives removed, 25-MHz derivatives and 3 V derivatives included							
Pin number	Pin numbers for TQFP added						
Address wi	ndow arbitrati	on and master/slave mode introduced	ł				
New standa	ard layout for	section "Absolute Maximum Ratings"					
Section "Op	perating Cond	litions" added					
Parameter	"RSTIN pullup	o" replaced by "RSTIN current"					
DC Charac	teristics for re	duced supply voltage added					
Separate sp	pecification fo	r power consumption with greatly impr	oved values				
Description	of clock gene	eration improved					
Timing ada	pted to 25 MF	łz					
Timing for r	educed suppl	ly voltage added					
	Subjects (r Converted t ROM deriva included Pin number Address wir New standa Section "Op Parameter DC Charac Separate sp Description Timing ada	ersion: 1998-12 01.96 07.95 09.94 Subjects (major change Converted to Infineon lay ROM derivatives remove included Pin numbers for TQFP a Address window arbitrati New standard layout for Section "Operating Cond Parameter "RSTIN pullup DC Characteristics for re Separate specification fo Description of clock gene Timing adapted to 25 MH	ersion: 1998-12 Update 0.5μ technology 01.96 3 Volt Addendum 07.95 25 MHz Addendum 09.94 Data Sheet Subjects (major changes since last revision) Converted to Infineon layout ROM derivatives removed, 25-MHz derivatives and 3 V derivatives				

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Introduction

The C165 is a derivative of the Infineon C166 Family of full featured single-chip CMOS microcontrollers. It combines high CPU performance (up to 12.5 million instructions per second) with peripheral functionality and enhanced IO-capabilities. The C165 is especially suited for cost sensitive applications.

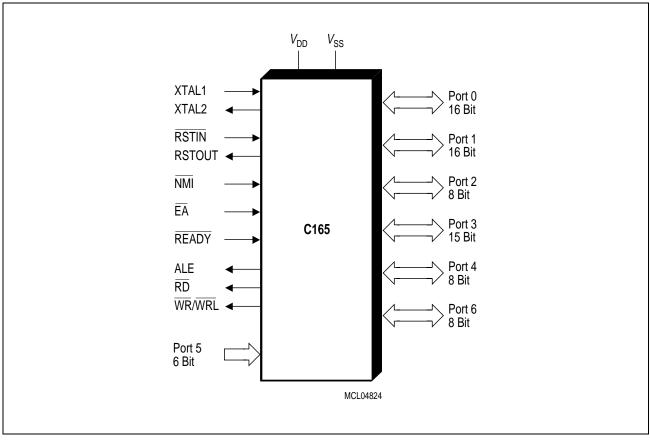


Figure 1 Logic Symbol

Pin Configuration TQFP Package

(top view)

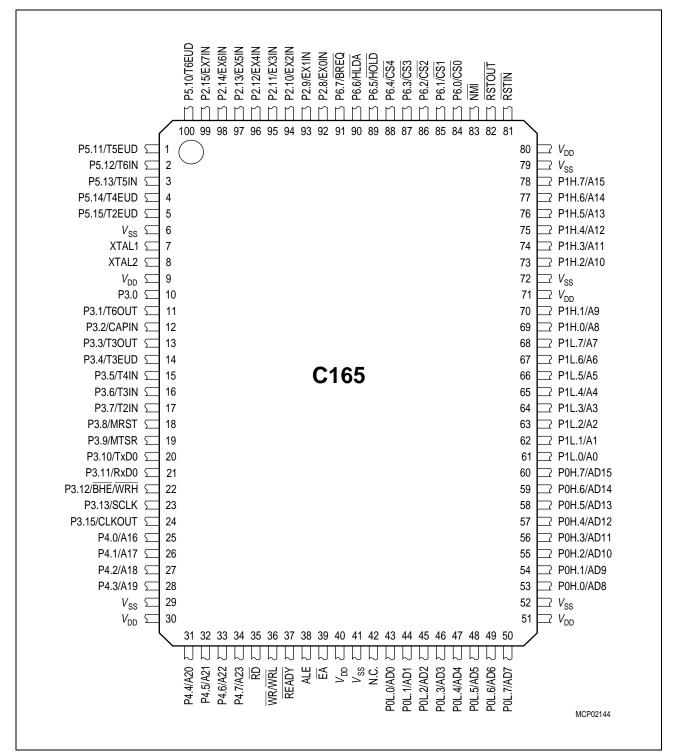


Figure 2

Pin Configuration MQFP Package

(top view)

Figure 3

Symbol	Pin Nr TQFP	Pin Nr MQFP	Input Outp.	Function						
XTAL1	5	7	I	XTAL1:	Input to the oscillator amplifier and input to the internal clock generator					
XTAL2	6	8	Ο	XTAL2: Output of the oscillator amplifier circuit. To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Minimum and maximum high/low and rise/fall times specified in the AC Characteristics must be observed.						
Ρ3			IO	programma For a pin co into high-in configured	15-bit bidirectional I/O port. It is bit-wise able for input or output via direction bits. onfigured as input, the output driver is put npedance state. Port 3 outputs can be as push/pull or open drain drivers. The serve for following alternate functions:					
P3.0	8	10								
P3.1	9	11	0	T6OUT	GPT2 Timer T6 Toggle Latch Output					
P3.2	10	12		CAPIN	GPT2 Register CAPREL Capture Input					
P3.3	11	13	0	T3OUT	GPT1 Timer T3 Toggle Latch Output					
P3.4	12	14		T3EUD	GPT1 Timer T3 Ext. Up/Down Ctrl Input					
P3.5	13	15	1	T4IN	GPT1 Timer T4					
		10		TOIN	Count/Gate/Reload/Capture Input					
P3.6	14	16		T3IN	GPT1 Timer T3 Count/Gate Input					
P3.7	15	17	1	T2IN	GPT1 Timer T2					
P3.8	16	18	I/O	MRST	Count/Gate/Reload/Capture Input SSC Master-Receive/Slave-Transmit Input/Output					
P3.9	17	19	I/O	MTSR	SSC Master-Transmit/Slave-Receive					
P3.10	18	20	0	TxD0	ASC0 Clock/Data Output (Asyn./Sync.)					
P3.11	19	21	I/O	RxD0	ASC0 Data Inp. (Asyn.) or In/Out (Sync)					
P3.12	20	22	0	BHE	Ext. Memory High Byte Enable Signal,					
			0	WRH	Ext. Memory High Byte Write Strobe					
P3.13	21	23	I/O	SCLK	SSC Master Cl. Output / Slave Cl. Input					
P3.15	22	24	0	CLKOUT	System Clock Output (= CPU Clock)					

Table 2Pin Definitions and Functions

Symbol	Pin Nr TQFP	Pin Nr MQFP	Input Outp.	Function
P4.0 P4.1 P4.2 P4.3 P4.4 P4.5 P4.6 P4.7	23 24 25 26 29 30 31 32	25 26 27 28 31 32 33 34	IO O O O O O O O O	Port 4 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. Port 4 can be used to output the segment address lines: A16 Least Significant Segment Address Line A17 Segment Address Line A18 Segment Address Line A19 Segment Address Line A20 Segment Address Line A21 Segment Address Line A22 Segment Address Line A23 Most Significant Segment Address Line
RD	33	35	0	External Memory Read Strobe. \overline{RD} is activated for every external instruction or data read access.
WR/ WRL	34	36	0	External Memory Write Strobe. In $\overline{\text{WR}}$ -mode this pin is activated for every external data write access. In WRL-mode this pin is activated for low byte data write accesses on a 16-bit bus, and for every data write access on an 8-bit bus. See WRCFG in register SYSCON for mode selection.
READY	35	37	1	Ready Input. When the Ready function is enabled, a high level at this pin during an external memory access will force the insertion of memory cycle waitstates until the pin returns to a low level. An internal pullup device holds this pin high when nothing is driving it.
ALE	36	38	0	Address Latch Enable Output. Can be used for latching the address into external memory or an address latch in the multiplexed bus modes.
ĒĀ	37	39	1	External Access Enable pin. A low level at this pin during and after Reset forces the C165 to begin instruction execution out of external memory. A high level forces execution out of the internal program memory.

Table 2Pin Definitions and Functions (cont'd)

Central Processing Unit (CPU)

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C165's instructions can be executed in just one machine cycle which requires 80 ns at 25 MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a 16×16 bit multiplication in 5 cycles and a 32-/16 bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', allows reducing the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.

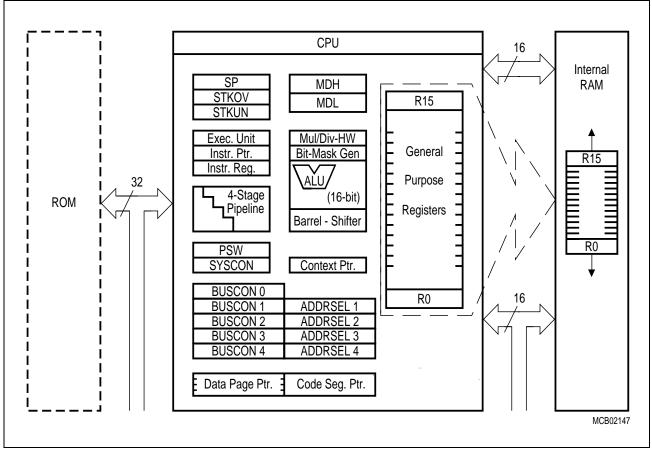


Figure 5

CPU Block Diagram

The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal. These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer (CP) register determines the base address of the active register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 1024 words is provided as a storage for temporary data. The system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient C165 instruction set which includes the following instruction classes:

- Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

Table 3

C165 Interrupt Nodes

Source of Interrupt or	Request	Enable	Interrupt Vector	Vector Location	Trap Number
PEC Service Request	Flag	Flag			
External Interrupt 0	CC8IR	CC8IE	CC8INT	00'0060 _H	18 _H
External Interrupt 1	CC9IR	CC9IE	CC9INT	00'0064 _H	19 _H
External Interrupt 2	CC10IR	CC10IE	CC10INT	00'0068 _H	1A _H
External Interrupt 3	CC11IR	CC11IE	CC11INT	00'006C _H	1B _H
External Interrupt 4	CC12IR	CC12IE	CC12INT	00'0070 _H	1C _H
External Interrupt 5	CC13IR	CC13IE	CC13INT	00'0074 _H	1D _H
External Interrupt 6	CC14IR	CC14IE	CC14INT	00'0078 _H	1E _H
External Interrupt 7	CC15IR	CC15IE	CC15INT	00'007C _H	1F _H
GPT1 Timer 2	T2IR	T2IE	T2INT	00'0088 _H	22 _H
GPT1 Timer 3	T3IR	T3IE	T3INT	00'008C _H	23 _H
GPT1 Timer 4	T4IR	T4IE	T4INT	00'0090 _H	24 _H
GPT2 Timer 5	T5IR	T5IE	T5INT	00'0094 _H	25 _H
GPT2 Timer 6	T6IR	T6IE	T6INT	00'0098 _H	26 _H
GPT2 CAPREL Reg.	CRIR	CRIE	CRINT	00'009C _H	27 _H
ASC0 Transmit	S0TIR	SOTIE	SOTINT	00'00A8 _H	2A _H
ASC0 Transmit Buffer	S0TBIR	S0TBIE	S0TBINT	00'011C _H	47 _H
ASC0 Receive	SORIR	SORIE	SORINT	00'00AC _H	2B _H
ASC0 Error	S0EIR	SOEIE	SOEINT	00'00B0 _H	2C _H
SSC Transmit	SCTIR	SCTIE	SCTINT	00'00B4 _H	2D _H
SSC Receive	SCRIR	SCRIE	SCRINT	00'00B8 _H	2E _H
SSC Error	SCEIR	SCEIE	SCEINT	00'00BC _H	2F _H
Unassigned node	XP0IR	XP0IE	XP0INT	00'0100 _H	40 _H
Unassigned node	XP1IR	XP1IE	XP1INT	00'0104 _H	41 _H
Unassigned node	XP2IR	XP2IE	XP2INT	00'0108 _H	42 _H
Unassigned node	XP3IR	XP3IE	XP3INT	00'010C _H	43 _H
Unassigned node	CC29IR	CC29IE	CC29INT	00'0110 _H	44 _H
Unassigned node	CC30IR	CC30IE	CC30INT	00'0114 _H	45 _H
Unassigned node	CC31IR	CC31IE	CC31INT	00'0118 _H	46 _H
	1	I	1	1	1

General Purpose Timer (GPT) Unit

The GPT unit represents a very flexible multifunctional timer/counter structure which may be used for many different time related tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT unit incorporates five 16-bit timers which are organized in two separate modules, GPT1 and GPT2. Each timer in each module may operate independently in a number of different modes, or may be concatenated with another timer of the same module.

Each of the three timers T2, T3, T4 of **module GPT1** can be configured individually for one of four basic modes of operation, which are Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the CPU clock, divided by a programmable prescaler, while Counter Mode allows a timer to be clocked in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes, each timer has one associated port pin (TxIN) which serves as gate or clock input. The maximum resolution of the timers in module GPT1 is 16 TCL.

The count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD) to facilitate e.g. position tracking.

In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected to the incremental position sensor signals A and B via their respective inputs TxIN and TxEUD. Direction and count signals are internally derived from these two input signals, so the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out monitoring of external hardware components, or may be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to their basic operating modes, timers T2 and T4 may be configured as reload or capture registers for timer T3. When used as capture or reload registers, timers T2 and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2 or T4 triggered either by an external signal or by a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be constantly generated without software intervention.

Table 6C165 Registers, Ordered by Name (cont'd)									
Name	Physica Addres		8-Bit Addr.	Description	Reset Value				
СР		FE10 _H		08 _H	CPU Context Pointer Register	FC00 _H			
CRIC	b	FF6A _H		B5 _H	GPT2 CAPREL Interrupt Ctrl. Reg.	0000 _H			
CSP		FE08 _H		04 _H	CPU Code Seg. Pointer Reg. (read only)	0000 _H			
DP0H	b	F102 _H	Ε	81 _H	P0H Direction Control Register	00 _H			
DP0L	b	F100 _H	Ε	80 _H	P0L Direction Control Register	00 _H			
DP1H	b	F106 _H	Ε	83 _H	P1H Direction Control Register	00 _H			
DP1L	b	F104 _H	Ε	82 _H	P1L Direction Control Register	00 _H			
DP2	b	FFC2 _H		E1 _H	Port 2 Direction Control Register	0000 _H			
DP3	b	FFC6 _H		E3 _H	Port 3 Direction Control Register	0000 _H			
DP4	b	FFCA _H		E5 _H	Port 4 Direction Control Register	00 _H			
DP6	b	FFCE _H		E7 _H	Port 6 Direction Control Register	00 _H			
DPP0		FE00 _H		00 _H	CPU Data Page Pointer 0 Reg. (10 bits)	0000 _H			
DPP1		FE02 _H		01 _H	CPU Data Page Pointer 1 Reg. (10 bits)	0001 _H			
DPP2		FE04 _H		02 _H	CPU Data Page Pointer 2 Reg. (10 bits)	0002 _H			
DPP3		FE06 _H		03 _H	CPU Data Page Pointer 3 Reg. (10 bits)	0003 _H			
EXICON	b	F1C0 _H	Ε	E0 _H	External Interrupt Control Register	0000 _H			
IDCHIP		F07C _H	Ε	3E _H	Identifier	05XX _H			
IDMANUF		F07E _H	Ε	3F _H	Identifier	1820 _H			
IDMEM		F07A _H	Ε	3D _H	Identifier	0000 _H			
IDMEM2		F076 _H	Ε	3B _H	Identifier	0000 _H			
IDPROG		F078 _H	Ε	3C _H	Identifier	0000 _H			
MDC	b	FF0E _H		87 _H	CPU Multiply Divide Control Register	0000 _H			
MDH		FE0C _H		06 _H	CPU Multiply Divide Reg. – High Word	0000 _H			
MDL		FE0E _H		07 _H	CPU Multiply Divide Reg. – Low Word	0000 _H			
ODP2	b	F1C2 _H	Ε	E1 _H	Port 2 Open Drain Control Register	0000 _H			
ODP3	b	F1C6 _H	Ε	E3 _H	Port 3 Open Drain Control Register	0000 _H			
ODP6	b	F1CE _H	Ε	E7 _H	Port 6 Open Drain Control Register	00 _H			
ONES	b	FF1E _H		8F _H	Constant Value 1's Register (read only)	FFFF _H			
		1		1					

P0H

P0L

00_H

00_H

Port 0 High Reg. (Upper half of PORT0)

Port 0 Low Reg. (Lower half of PORT0)

81_H

80_H

FF02_H

 $FF00_{H}$

b

b

Absolute Maximum Ratings

Parameter	Symbol	Limit	Values	Unit	Notes
		min.	max.		
Storage temperature	T _{ST}	- 65	150	°C	_
Junction temperature	TJ	- 40	150	°C	under bias
Voltage on V_{DD} pins with respect to ground (V_{SS})	V _{DD}	- 0.5	6.5	V	-
Voltage on any pin with respect to ground (V_{SS})	V _{IN}	- 0.5	V _{DD} + 0.5	V	-
Input current on any pin during overload condition	-	- 10	10	mA	-
Absolute sum of all input currents during overload condition	-	-	100	mA	-
Power dissipation	P _{DISS}	-	1.5	W	-

Table 7 Absolute Maximum Rating Parameters

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$) the voltage on V_{DD} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C165 and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C165 will provide signals with the respective timing characteristics.

SR (**S**ystem **R**equirement):

The external system must provide signals with the respective timing characteristics to the C165.

DC Characteristics (Standard Supply Voltage Range)

(Operating Conditions apply)¹⁾

Parameter	Symbol	Limit '	Values	Unit	Test Condition	
		min.	max.			
Input low voltage (TTL, all except XTAL1)	V _{IL} SR	- 0.5	0.2 V _{DD} - 0.1	V	-	
Input low voltage XTAL1	V_{IL2} SR	- 0.5	0.3 V _{DD}	V	-	
Input high voltage (TTL, all except RSTIN and XTAL1)	V _{IH} SR	0.2 V _{DD} + 0.9	V _{DD} + 0.5	V	_	
Input high voltage RSTIN (when operated as input)	V _{IH1} SR	0.6 V _{DD}	V _{DD} + 0.5	V	_	
Input high voltage XTAL1	V _{IH2} SR	0.7 V _{DD}	V _{DD} + 0.5	V	_	
Output low voltage (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, RSTOUT, RSTIN ²⁾)	V _{OL} CC	-	0.45	V	I _{OL} = 2.4 mA	
Output low voltage (all other outputs)	V _{OL1} CC	_	0.45	V	<i>I</i> _{OL} = 1.6 mA	
Output high voltage ³⁾	V _{OH} CC	2.4	_	V	I _{OH} = - 2.4 mA	
(PORT0, PORT1, Port 4, ALE, RD, WR, BHE, RSTOUT)		0.9 V _{DD}	_	V	I _{OH} = - 0.5 mA	
Output high voltage ³⁾	V _{OH1} CC	2.4	_	V	I _{OH} = - 1.6 mA	
(all other outputs)		0.9 V _{DD}	_	V	I _{OH} = - 0.5 mA	
Input leakage current (Port 5)	I _{OZ1} CC	-	± 200	nA	$0 V < V_{IN} < V_{DD}$	
Input leakage current (all other)	I _{OZ2} CC	_	± 500	nA	$0.45 \text{ V} < V_{\text{IN}} < V_{\text{E}}$	
RSTIN inactive current ⁴⁾	I _{RSTH} ⁵⁾	_	- 10	μA	$V_{\rm IN} = V_{\rm IH1}$	

DC Characteristics (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)¹⁾

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
PORT0 configuration current ⁸⁾	I _{P0H} ⁵⁾	_	- 5	μA	$V_{\rm IN} = V_{\rm IHmin}$
	<i>I</i> _{P0L} ⁶⁾	- 100	_	μA	$V_{\rm IN} = V_{\rm ILmax}$
XTAL1 input current	I _{IL} CC	_	± 20	μA	$0 V < V_{IN} < V_{DD}$
Pin capacitance ⁹⁾ (digital inputs/outputs)	C _{IO} CC	_	10	pF	f = 1 MHz $T_A = 25 \text{ °C}$

¹⁾ Keeping signal levels within the levels specified in this table, ensures operation without overload conditions. For signal levels outside these specifications also refer to the specification of the overload current I_{OV} .

²⁾ Valid in bidirectional reset mode only.

³⁾ This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.

- ⁴⁾ These parameters describe the $\overline{\text{RSTIN}}$ pullup, which equals a resistance of ca. 50 to 250 k Ω .
- ⁵⁾ The maximum current may be drawn while the respective signal line remains inactive.
- ⁶⁾ The minimum current must be drawn in order to drive the respective signal line active.
- ⁷⁾ This specification is valid during Reset and during Hold-mode or Adapt-mode. During Hold-mode Port 6 pins are only affected, if they are used (configured) for CS output and the open drain function is not enabled. The READY-pullup is always active, except for Powerdown mode.
- ⁸⁾ This specification is valid during Reset and during Adapt-mode.
- ⁹⁾ Not 100% tested, guaranteed by design and characterization.

Memory Cycle Variables

The timing tables below use three variables which are derived from the BUSCONx registers and represent the special characteristics of the programmed memory cycle. The following table describes, how these variables are to be computed.

Table 12Memory Cycle Variables

Description	Symbol	Values
ALE Extension	t _A	TCL × <alectl></alectl>
Memory Cycle Time Waitstates	t _C	2TCL × (15 - <mctc>)</mctc>
Memory Tristate Time	t _F	2TCL × (1 - <mttc>)</mttc>

Note: Please respect the maximum operating frequency of the respective derivative.

AC Characteristics

Multiplexed Bus (Standard Supply Voltage Range)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (120 ns at 25 MHz CPU clock without waitstates)

Parameter		nbol	Max. CPU Clock = 25 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
ALE high time	<i>t</i> 5	CC	$10 + t_{A}$	_	TCL - 10 + <i>t</i> _A	-	ns
Address setup to ALE	<i>t</i> ₆	CC	$4 + t_A$	_	TCL - 16 + <i>t</i> _A	-	ns
Address hold after ALE	<i>t</i> ₇	CC	$10 + t_{A}$	_	TCL - 10 + <i>t</i> _A	_	ns
ALE falling edge to \overline{RD} , WR (with RW-delay)	<i>t</i> 8	CC	$10 + t_{A}$	_	TCL - 10 + <i>t</i> _A	_	ns
ALE falling edge to \overline{RD} , WR (no RW-delay)	t ₉	СС	- 10 + <i>t</i> _A	_	- 10 + <i>t</i> _A	_	ns
Address float after RD, WR (with RW-delay)	t ₁₀	CC	-	6	-	6	ns
Address float after RD, WR (no RW-delay)	<i>t</i> ₁₁	CC	-	26	-	TCL + 6	ns
RD, WR low time (with RW-delay)	t ₁₂	CC	$30 + t_{\rm C}$	_	2TCL - 10 + <i>t</i> _C	_	ns

Multiplexed Bus (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (120 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CPU Clock = 25 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
RD, WR low time (no RW-delay)	<i>t</i> ₁₃	CC	$50 + t_{\rm C}$	-	3TCL - 10 + <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	-	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	_	$40 + t_{\rm C}$	-	3TCL - 20 + <i>t</i> _C	ns
ALE low to valid data in	t ₁₆	SR	_	$40 + t_A + t_C$	_	3TCL - 20 + <i>t</i> _A + <i>t</i> _C	ns
Address to valid data in	t ₁₇	SR	_	$50 + 2t_A + t_C$	_	$4TCL - 30 + 2t_A + t_C$	ns
Data hold after RD rising edge	t ₁₈	SR	0	_	0	-	ns
Data float after RD	t ₁₉	SR	_	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	ns
Data valid to WR	t ₂₂	CC	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	-	ns
Data hold after \overline{WR}	t ₂₃	CC	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	-	ns
$\frac{\text{ALE rising edge after }\overline{\text{RD}},}{\overline{\text{WR}}}$	t ₂₅	CC	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	-	ns
Address hold after RD, WR	t ₂₇	CC	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE falling edge to $\overline{CS}^{1)}$	t ₃₈	CC	- 4 - t _A	10 - <i>t</i> _A	- 4 - t _A	10 - <i>t</i> _A	ns
CS low to Valid Data In ¹⁾	t ₃₉	SR	_	$40 + t_{C} + 2t_{A}$	-	$3TCL - 20 + t_{C} + 2t_{A}$	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{(1)}$	<i>t</i> ₄₀	CC	46 + <i>t</i> _F	-	3TCL - 14 + <i>t</i> _F	-	ns
ALE fall. edge to RdCS, WrCS (with RW delay)	<i>t</i> ₄₂	CC	16 + <i>t</i> _A	-	TCL - 4 + <i>t</i> _A	-	ns
ALE fall. edge to RdCS, WrCS (no RW delay)	t ₄₃	CC	$-4 + t_{A}$	-	- 4 + <i>t</i> _A	-	ns

Demultiplexed Bus (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (80 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol	I Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		Unit
		min.	max.	min.	max.	
Data float after RdCS (with RW-delay) ¹⁾	<i>t</i> ₅₃ SR	_	20 + <i>t</i> _F	-	2TCL - 20 + $2t_A + t_F$ 1)	ns
Data float after RdCS (no RW-delay) ¹⁾	<i>t</i> ₆₈ SR	-	0 + <i>t</i> _F	-	TCL - 20 + $2t_A + t_F$ 1)	ns
Address hold after RdCS, WrCS	<i>t</i> ₅₅ CC	- 6 + <i>t</i> _F	-	- 6 + <i>t</i> _F	-	ns
Data hold after WrCS	<i>t</i> ₅₇ CC	6 + <i>t</i> _F	_	TCL - 14 + <i>t</i> _F	_	ns

¹⁾ RW-delay and t_A refer to the next following bus cycle (including an access to an on-chip X-Peripheral).

2) Read data are latched with the same clock edge that triggers the address change and the rising RD edge. Therefore address changes before the end of RD have no impact on read cycles.

³⁾ These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

AC Characteristics

CLKOUT and READY (Reduced Supply Voltage)

(Operating Conditions apply)

Parameter	Symbol		Max. CPU Clock = 20 MHz		Variable CPU Clock 1 / 2TCL = 1 to 20 MHz		Unit
			min.	max.	min.	max.	
CLKOUT cycle time	t ₂₉	CC	50	50	2TCL	2TCL	ns
CLKOUT high time	t ₃₀	CC	15	-	TCL - 10	-	ns
CLKOUT low time	t ₃₁	CC	13	-	TCL - 12	-	ns
CLKOUT rise time	t ₃₂	CC	-	12	_	12	ns
CLKOUT fall time	<i>t</i> ₃₃	CC	-	8	-	8	ns
CLKOUT rising edge to ALE falling edge	t ₃₄	CC	$0 + t_A$	$8 + t_A$	$0 + t_A$	$8 + t_A$	ns
Synchronous READY setup time to CLKOUT	t ₃₅	SR	18	-	18	_	ns
Synchronous READY hold time after CLKOUT	t ₃₆	SR	4	-	4	_	ns
Asynchronous READY low time	t ₃₇	SR	68	-	2TCL + <i>t</i> ₅₈	_	ns
Asynchronous READY setup time ¹⁾	t ₅₈	SR	18	-	18	_	ns
Asynchronous READY hold time ¹⁾	t ₅₉	SR	4	-	4	_	ns
Async. READY hold time after RD, WR high (Demultiplexed Bus) ²⁾	<i>t</i> ₆₀	SR	0	0 + $2t_A$ + t_C + $t_F^{2)}$	0	$TCL - 25 + 2t_A + t_C + t_F^{2}$	ns

¹⁾ These timings are given for test purposes only, in order to assure recognition at a specific clock edge.

²⁾ Demultiplexed bus is the worst case. For multiplexed bus 2TCL are to be added to the maximum values. This adds even more time for deactivating READY.

The $2t_A$ and t_C refer to the next following bus cycle, t_F refers to the current bus cycle.

The maximum limit for t_{60} must be fulfilled if the next following bus cycle is **READY** controlled.

AC Characteristics

External Bus Arbitration (Standard Supply Voltage)

(Operating Conditions apply)

Parameter	Symbol	Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		Unit
		min.	max.	min.	max.	
HOLD input setup time to CLKOUT	<i>t</i> ₆₁ SR	20	-	20	-	ns
CLKOUT to HLDA high or BREQ low delay	<i>t</i> ₆₂ CC	-	20	-	20	ns
CLKOUT to HLDA low or BREQ high delay	<i>t</i> ₆₃ CC	-	20	-	20	ns
CSx release	<i>t</i> ₆₄ CC	-	20	_	20	ns
CSx drive	t ₆₅ CC	- 4	24	- 4	24	ns
Other signals release	t ₆₆ CC	-	20	-	20	ns
Other signals drive	t ₆₇ CC	- 4	24	- 4	24	ns

External Bus Arbitration (Reduced Supply Voltage)

(Operating Conditions apply)

Parameter	Symbol	Max. CPU Clock = 20 MHz		Variable CPU Clock 1 / 2TCL = 1 to 20 MHz		Unit
		min.	max.	min.	max.	
HOLD input setup time to CLKOUT	<i>t</i> ₆₁ SR	30	-	30	-	ns
CLKOUT to HLDA high or BREQ low delay	t ₆₂ CC	-	20	-	20	ns
CLKOUT to HLDA low or BREQ high delay	t ₆₃ CC	-	20	-	20	ns
CSx release	t ₆₄ CC	-	20	-	20	ns
CSx drive	t ₆₅ CC	- 4	30	- 4	30	ns
Other signals release	t ₆₆ CC	-	20	-	20	ns
Other signals drive	t ₆₇ CC	- 4	30	- 4	30	ns