

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	77
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	P-MQFP-100
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c165l25mhabxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2000-12

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 2000. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Pin Configuration TQFP Package

(top view)

Figure 2

Symbol	Pin Nr TQFP	Pin Nr MQFP	Input Outp.	Function						
XTAL1	5	7	I	XTAL1:	Input to the oscillator amplifier and input to the internal clock generator					
XTAL2	6	8	0	XTAL2: Output of the oscillator amplifier circuit To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Minimum and maximum high/low and rise/fall time specified in the AC Characteristics must be observed.						
Ρ3			IO	programma For a pin co into high-in configured	15-bit bidirectional I/O port. It is bit-wise able for input or output via direction bits. onfigured as input, the output driver is put npedance state. Port 3 outputs can be as push/pull or open drain drivers. The serve for following alternate functions:					
P3.0	8	10								
P3.1	9	11	0	T6OUT	GPT2 Timer T6 Toggle Latch Output					
P3.2	10	12		CAPIN	GPT2 Register CAPREL Capture Input					
P3.3	11	13	0	T3OUT	GPT1 Timer T3 Toggle Latch Output					
P3.4	12	14		T3EUD	GPT1 Timer T3 Ext. Up/Down Ctrl Input					
P3.5	13	15		T4IN	GPT1 Timer T4					
		10		TOIN	Count/Gate/Reload/Capture Input					
P3.6	14	16		T3IN	GPT1 Timer T3 Count/Gate Input					
P3.7	15	17	1	T2IN	GPT1 Timer T2					
P3.8	16	18	I/O	MRST	Count/Gate/Reload/Capture Input SSC Master-Receive/Slave-Transmit					
P3.9	17	19	I/O	MTSR	Input/Output SSC Master-Transmit/Slave-Receive					
D0 40	10	20			Output/Input					
P3.10	18	20	0	TxD0	ASC0 Clock/Data Output (Asyn./Sync.)					
P3.11	19	21	1/0	RxD0	ASC0 Data Inp. (Asyn.) or In/Out (Sync)					
P3.12	20	22	0	BHE	Ext. Memory High Byte Enable Signal,					
D2 42	21	22	0		Ext. Memory High Byte Write Strobe					
P3.13	21	23	1/0	SCLK	SSC Master Cl. Output / Slave Cl. Input					
P3.15	22	24	0	CLKOUT	System Clock Output (= CPU Clock)					

Table 2Pin Definitions and Functions

Table 2Pin Definitions and Functions (cont'd)

Symbol	Pin Nr TQFP	Pin Nr MQFP	Input Outp.	Function						
NC	40	42	-	•	This pin is not connected in the C165. No connection to the PCB is required.					
PORT0 P0L.0-7	41-48	43-50	Ю	PORT0 consists of ports P0L and P0H	. It is bit-wise p	rogrammable for				
P0H.0-7	51-58	53-60		input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. In case of an external bus configuration, PORT0 serves as the address (A) and address/data (AD) bus in multiplexed bus modes and as the data (D) bus in demultiplexed bus modes. Demultiplexed bus modes: Data Path Width: 8-bit 16-bit POL.0 – POL.7: D0 – D7 D0 – D7 POH.0 – POH.7: I/O D8 – D15 Multiplexed bus modes: Data Path Width: 8-bit 16-bit POL.0 – POL.7: AD0 – AD7 AD0 – AD7 POH.0 – POL.7: AB – A15 AD8 – AD15						
PORT1 P1L.0-7	59-66	61-68	Ю	PORT1 consists of the two 8-bit bidirectional I/O ports P1L and P1H. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. PORT1 is used as the 16-bit address bus (A) in demultiplexed bus modes and also after switching from a demultiplexed bus mode to a multiplexed bus mode.						
P1H.0-7	67,68, 71-76	69-70, 73-78								

Memory Organization

The memory space of the C165 is configured in a Von Neumann architecture which means that code memory, data memory, registers and I/O ports are organized within the same linear address space which includes 16 MBytes. The entire memory space can be accessed bytewise or wordwise. Particular portions of the on-chip memory have additionally been made directly bitaddressable.

The C165 is prepared to incorporate on-chip program memory (not in the ROM-less derivatives, of course) for code or constant data. The internal ROM area can be mapped either to segment 0 or segment 1.

2 KBytes of on-chip Internal RAM (IRAM) are provided as a storage for user defined variables, for the system stack, general purpose register banks and even for code. A register bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0, ..., RL7, RH7) so-called General Purpose Registers (GPRs).

1024 bytes (2×512 bytes) of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are wordwide registers which are used for controlling and monitoring functions of the different on-chip units. Unused SFR addresses are reserved for future members of the C166 Family.

In order to meet the needs of designs where more memory is required than is provided on chip, up to 16 MBytes of external RAM and/or ROM can be connected to the microcontroller.

Central Processing Unit (CPU)

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C165's instructions can be executed in just one machine cycle which requires 80 ns at 25 MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a 16×16 bit multiplication in 5 cycles and a 32-/16 bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', allows reducing the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.

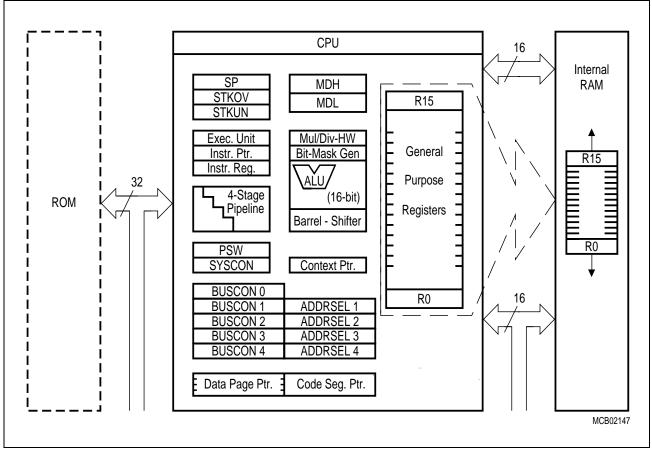


Figure 5

CPU Block Diagram

Instruction Set Summary

Table 5 lists the instructions of the C165 in a condensed way.

The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the **"C166 Family Instruction Set Manual"**.

This document also provides a detailed description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16-16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise XOR, (word/byte operands)	2/4
BCLR	Clear direct bit	2
BSET	Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND, BOR, BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/L	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL / SHR	Shift left/right direct word GPR	2
ROL / ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2

Table 5Instruction Set Summary

Table 6C165 Registers, Ordered by Name (cont'd)									
Name		Physical Address			Description	Reset Value			
XP1IC	b	F18E _H	Ε	C7 _H	Software Interrupt Control Register	0000 _H			
XP2IC	b	F196 _H	Ε	CB _H	Software Interrupt Control Register	0000 _H			
XP3IC	b	F19E _H	Ε	CF _H	Software Interrupt Control Register	0000 _H			
ZEROS	b	FF1C _H		8E _H	Constant Value 0's Register (read only)	0000 _H			

11 - IN ,

¹⁾ The system configuration is selected during reset.

 $^{\mbox{2)}}$ The reset value depends on the indicated reset source.

Absolute Maximum Ratings

Parameter	Symbol	Limit	Values	Unit	Notes
		min.	max.		
Storage temperature	T _{ST}	- 65	150	°C	-
Junction temperature	TJ	- 40	150	°C	under bias
Voltage on V_{DD} pins with respect to ground (V_{SS})	V _{DD}	- 0.5	6.5	V	_
Voltage on any pin with respect to ground (V_{SS})	V _{IN}	- 0.5	V _{DD} + 0.5	V	_
Input current on any pin during overload condition	-	- 10	10	mA	_
Absolute sum of all input currents during overload condition	-	-	100	mA	-
Power dissipation	P _{DISS}	-	1.5	W	-

Table 7 Absolute Maximum Rating Parameters

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$) the voltage on V_{DD} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C165 and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C165 will provide signals with the respective timing characteristics.

SR (System Requirement):

The external system must provide signals with the respective timing characteristics to the C165.

DC Characteristics (Standard Supply Voltage Range)

(Operating Conditions apply)¹⁾

Parameter	Symbol	Limit '	Values	Unit	Test Condition	
		min.	max.			
Input low voltage (TTL, all except XTAL1)	V _{IL} SR	- 0.5	0.2 V _{DD} - 0.1	V	_	
Input low voltage XTAL1	V_{IL2} SR	- 0.5	0.3 V _{DD}	V	-	
Input high voltage (TTL, all except RSTIN and XTAL1)	V _{IH} SR	0.2 V _{DD} + 0.9	V _{DD} + 0.5	V	_	
Input high voltage RSTIN (when operated as input)	V _{IH1} SR	0.6 V _{DD}	V _{DD} + 0.5	V	_	
Input high voltage XTAL1	V _{IH2} SR	0.7 V _{DD}	V _{DD} + 0.5	V	_	
Output low voltage (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, RSTOUT, RSTIN ²⁾)	V _{OL} CC	-	0.45	V	I _{OL} = 2.4 mA	
Output low voltage (all other outputs)	V _{OL1} CC	_	0.45	V	<i>I</i> _{OL} = 1.6 mA	
Output high voltage ³⁾	V _{OH} CC	2.4	_	V	I _{OH} = - 2.4 mA	
(PORT0, PORT1, Port 4, ALE, RD, WR, BHE, RSTOUT)		0.9 V _{DD}	_	V	I _{OH} = - 0.5 mA	
Output high voltage ³⁾	V _{OH1} CC	2.4	_	V	I _{OH} = - 1.6 mA	
(all other outputs)		0.9 V _{DD}	_	V	I _{OH} = - 0.5 mA	
Input leakage current (Port 5)	I _{OZ1} CC	-	± 200	nA	$0 V < V_{IN} < V_{DD}$	
Input leakage current (all other)	I _{OZ2} CC	_	± 500	nA	$0.45 \text{ V} < V_{\text{IN}} < V_{\text{E}}$	
RSTIN inactive current ⁴⁾	I _{RSTH} ⁵⁾	_	- 10	μA	$V_{\rm IN} = V_{\rm IH1}$	

DC Characteristics (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)¹⁾

Parameter	Symbol	Limit	Limit Values		Test Condition
		min.	max.		
PORT0 configuration current ⁸⁾	I _{P0H} ⁵⁾	_	- 5	μA	$V_{\rm IN} = V_{\rm IHmin}$
	$I_{P0L}^{6)}$	- 100	-	μA	$V_{\rm IN} = V_{\rm ILmax}$
XTAL1 input current	I _{IL} CC	; _	± 20	μA	$0 V < V_{IN} < V_{DD}$
Pin capacitance ⁹⁾ (digital inputs/outputs)	C _{IO} CC	; _	10	pF	f = 1 MHz T _A = 25 °C

¹⁾ Keeping signal levels within the levels specified in this table, ensures operation without overload conditions. For signal levels outside these specifications also refer to the specification of the overload current I_{OV} .

²⁾ Valid in bidirectional reset mode only.

³⁾ This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.

- ⁴⁾ These parameters describe the $\overline{\text{RSTIN}}$ pullup, which equals a resistance of ca. 50 to 250 k Ω .
- ⁵⁾ The maximum current may be drawn while the respective signal line remains inactive.
- ⁶⁾ The minimum current must be drawn in order to drive the respective signal line active.
- ⁷⁾ This specification is valid during Reset and during Hold-mode or Adapt-mode. During Hold-mode Port 6 pins are only affected, if they are used (configured) for CS output and the open drain function is not enabled. The READY-pullup is always active, except for Powerdown mode.
- ⁸⁾ This specification is valid during Reset and during Adapt-mode.
- ⁹⁾ Not 100% tested, guaranteed by design and characterization.

Multiplexed Bus (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (120 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		
		min.	max.	min.	max.		
Address float after RdCS, WrCS (with RW delay)	<i>t</i> ₄₄ CC	-	0	-	0	ns	
Address float after RdCS, WrCS (no RW delay)	<i>t</i> ₄₅ CC	-	20	_	TCL	ns	
RdCS to Valid Data In (with RW delay)	<i>t</i> ₄₆ SR	-	16 + <i>t</i> _C	_	2TCL - 24 + <i>t</i> _C	ns	
RdCS to Valid Data In (no RW delay)	<i>t</i> ₄₇ SR	-	$36 + t_{\rm C}$	-	3TCL - 24 + <i>t</i> _C	ns	
RdCS, WrCS Low Time (with RW delay)	<i>t</i> ₄₈ CC	$30 + t_{\rm C}$	-	2TCL - 10 + <i>t</i> _C	-	ns	
RdCS, WrCS Low Time (no RW delay)	<i>t</i> ₄₉ CC	50 + <i>t</i> _C	-	3TCL - 10 + <i>t</i> _C	_	ns	
Data valid to WrCS	<i>t</i> ₅₀ CC	$26 + t_{\rm C}$	-	2TCL - 14 + <i>t</i> _C	_	ns	
Data hold after RdCS	<i>t</i> ₅₁ SR	0	-	0	-	ns	
Data float after RdCS	<i>t</i> ₅₂ SR	-	$20 + t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	ns	
Address hold after RdCS, WrCS	<i>t</i> ₅₄ CC	20 + <i>t</i> _F	-	2TCL - 20 + <i>t</i> _F	-	ns	
Data hold after WrCS	<i>t</i> ₅₆ CC	20 + <i>t</i> _F	-	2TCL - 20 + <i>t</i> _F	-	ns	

¹⁾ These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

Multiplexed Bus (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (150 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CPU Clock = 20 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
Data float after RD	t ₁₉	SR	_	$36 + t_{\rm F}$	-	2TCL - 14 + <i>t</i> _F	ns
Data valid to \overline{WR}	t ₂₂	CC	$24 + t_{\rm C}$	-	2TCL - 26 + <i>t</i> _C	-	ns
Data hold after \overline{WR}	<i>t</i> ₂₃	CC	36 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE rising edge after \overline{RD} , \overline{WR}	t ₂₅	CC	36 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	-	ns
Address hold after RD, WR	t ₂₇	CC	36 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE falling edge to $\overline{\text{CS}}^{1)}$	t ₃₈	CC	- 8 - <i>t</i> _A	10 - <i>t</i> _A	- 8 - <i>t</i> _A	10 - <i>t</i> _A	ns
CS low to Valid Data In ¹⁾	t ₃₉	SR	_	$47 + t_{C} + 2t_{A}$	-	3TCL - 28 + <i>t</i> _C + 2 <i>t</i> _A	ns
\overline{CS} hold after \overline{RD} , $\overline{WR}^{(1)}$	<i>t</i> ₄₀	CC	57 + <i>t</i> _F	-	3TCL - 18 + <i>t</i> _F	-	ns
ALE fall. edge to RdCS, WrCS (with RW delay)	<i>t</i> ₄₂	CC	19 + <i>t</i> _A	-	TCL - 6 + <i>t</i> _A	-	ns
ALE fall. edge to RdCS, WrCS (no RW delay)	<i>t</i> ₄₃	CC	$-6 + t_{A}$	-	- 6 + <i>t</i> _A	-	ns
Address float after RdCS, WrCS (with RW delay)	<i>t</i> ₄₄	CC	_	0	-	0	ns
Address float after RdCS, WrCS (no RW delay)	t ₄₅	CC	_	25	-	TCL	ns
RdCS to Valid Data In (with RW delay)	<i>t</i> ₄₆	SR	_	$20 + t_{\rm C}$	-	2TCL - 30 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW delay)	<i>t</i> ₄₇	SR	_	$45 + t_{\rm C}$	-	3TCL - 30 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW delay)	t ₄₈	CC	$38 + t_{\rm C}$	-	2TCL - 12 + <i>t</i> _C	-	ns
RdCS, WrCS Low Time (no RW delay)	t ₄₉	CC	$63 + t_{\rm C}$	-	3TCL - 12 + <i>t</i> _C	-	ns

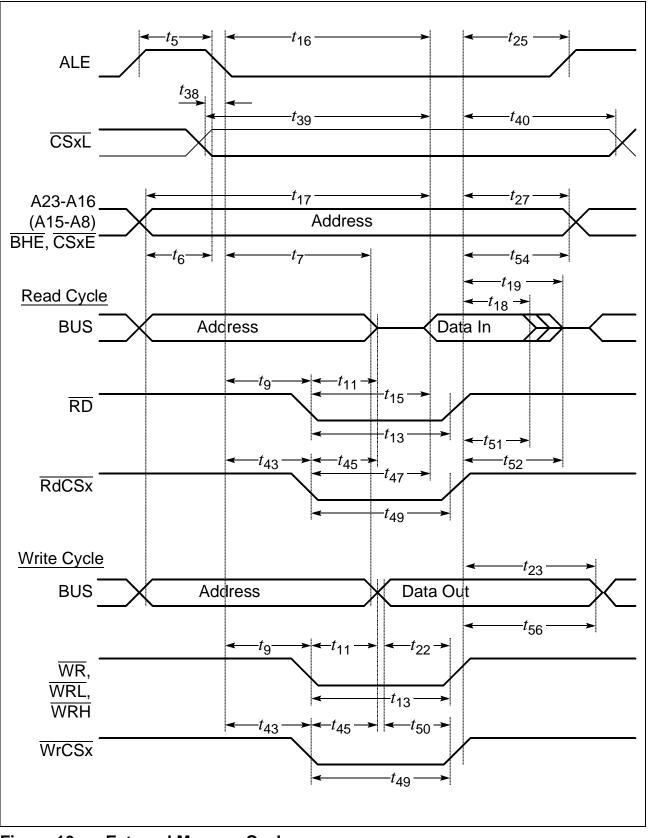
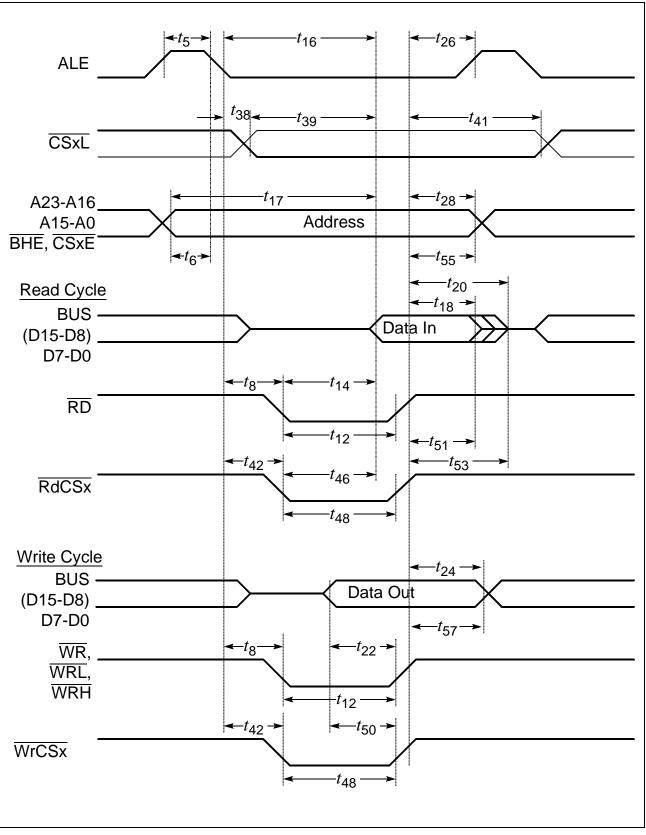


Figure 16 External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Extended ALE

AC Characteristics


Demultiplexed Bus (Reduced Supply Voltage Range)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (100 ns at 20 MHz CPU clock without waitstates)

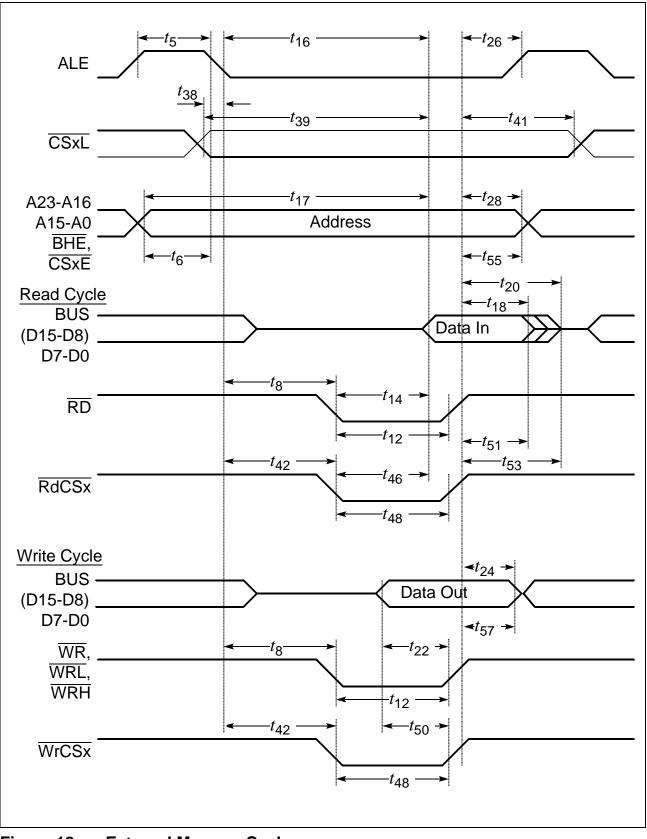

Parameter	Symbol			PU Clock) MHz	Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
ALE high time	<i>t</i> ₅	CC	$11 + t_A$	-	TCL - 14 + <i>t</i> _A	_	ns
Address setup to ALE	<i>t</i> ₆	CC	$5 + t_{A}$	_	TCL - 20 + <i>t</i> _A	-	ns
ALE falling edge to \overline{RD} , WR (with RW-delay)	<i>t</i> 8	CC	$15 + t_{A}$	_	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (no RW-delay)	t ₉	CC	- 10 + <i>t</i> _A	_	- 10 + <i>t</i> _A	-	ns
RD, WR low time (with RW-delay)	<i>t</i> ₁₂	CC	$34 + t_{\rm C}$	_	2TCL - 16 + <i>t</i> _C	-	ns
RD, WR low time (no RW-delay)	<i>t</i> ₁₃	CC	59 + $t_{\rm C}$	_	3TCL - 16 + <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	_	22 + t _C	-	2TCL - 28 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	_	$47 + t_{\rm C}$	-	3TCL - 28 + <i>t</i> _C	ns
ALE low to valid data in	<i>t</i> ₁₆	SR	_	$45 + t_A + t_C$	_	3TCL - 30 + <i>t</i> _A + <i>t</i> _C	ns
Address to valid data in	t ₁₇	SR	_	57 + $2t_{A} + t_{C}$	_	$4TCL - 43 + 2t_A + t_C$	ns
Data hold after RD rising edge	t ₁₈	SR	0	_	0	-	ns
Data float after \overline{RD} rising edge (with RW-delay ¹⁾)	<i>t</i> ₂₀	SR	_	$36 + 2t_A + t_F^{(1)}$	-	2TCL - 14 + $22t_A$ + $t_F^{(1)}$	ns
Data float after RD rising edge (no RW-delay ¹⁾)	<i>t</i> ₂₁	SR	_	$15 + 2t_A + t_F^{(1)}$	-	TCL - 10 + $22t_A$ + $t_F^{(1)}$	ns

Figure 17 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Normal ALE

Figure 18 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Extended ALE

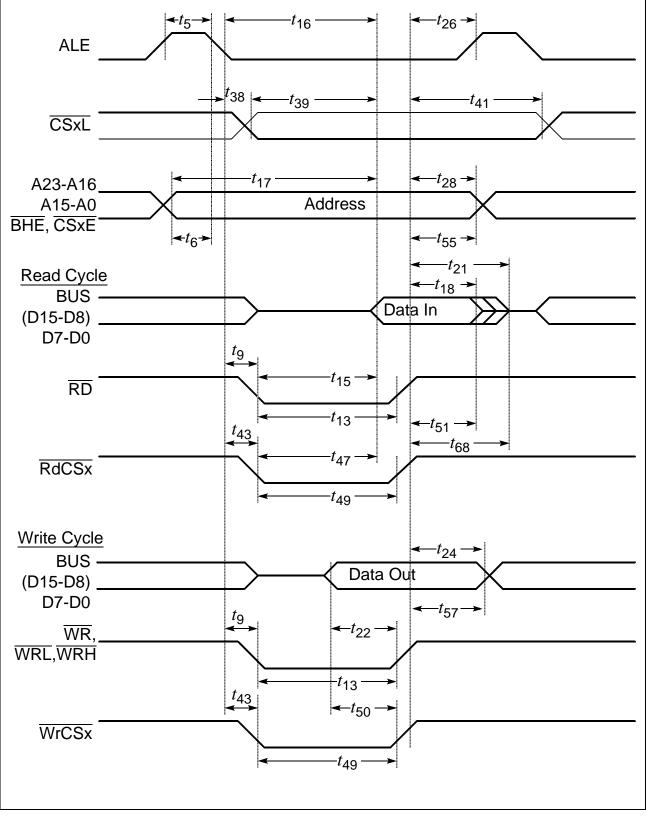
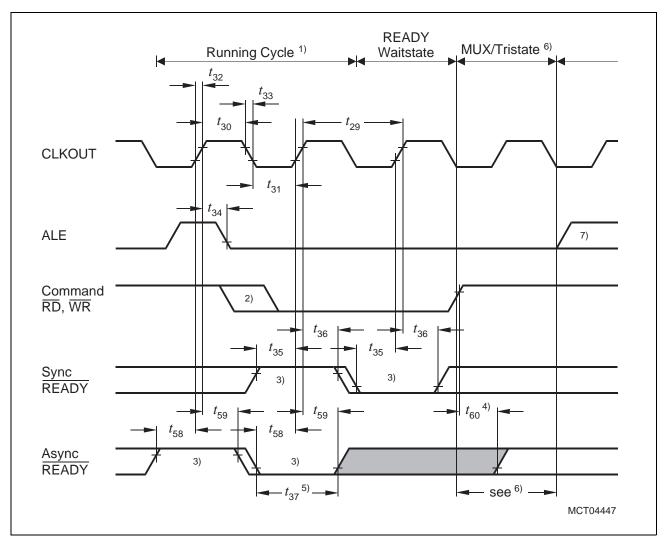



Figure 19 External Memory Cycle: Demultiplexed Bus, No Read/Write Delay, Normal ALE

Notes

- ¹⁾ Cycle as programmed, including MCTC waitstates (Example shows 0 MCTC WS).
- ²⁾ The leading edge of the respective command depends on <u>RW-del</u>ay.
- ³⁾ $\overline{\text{READY}}$ sampled HIGH at this sampling point generates a $\overline{\text{READY}}$ controlled waitstate,
- READY sampled LOW at this sampling point terminates the currently running bus cycle.
- ⁴⁾ \overrightarrow{READY} may be deactivated in response to the trailing (rising) edge of the corresponding command (\overrightarrow{RD} or \overrightarrow{WR}).
- ⁵⁾ If the Asynchronous READY signal does not fulfill the indicated setup and hold times with respect to CLKOUT (e.g. because CLKOUT is not enabled), it must fulfill t_{37} in order to be safely synchronized. This is guaranteed, if READY is removed in response to the command (see Note 4)).
- ⁶⁾ Multiplexed bus modes have a MUX waitstate added after a bus cycle, and an additional MTTC waitstate may be inserted here.

For a multiplexed bus with MTTC waitstate this delay is 2 CLKOUT cycles, for a demultiplexed bus without MTTC waitstate this delay is zero.

⁷⁾ The next external bus cycle may start here.

C165

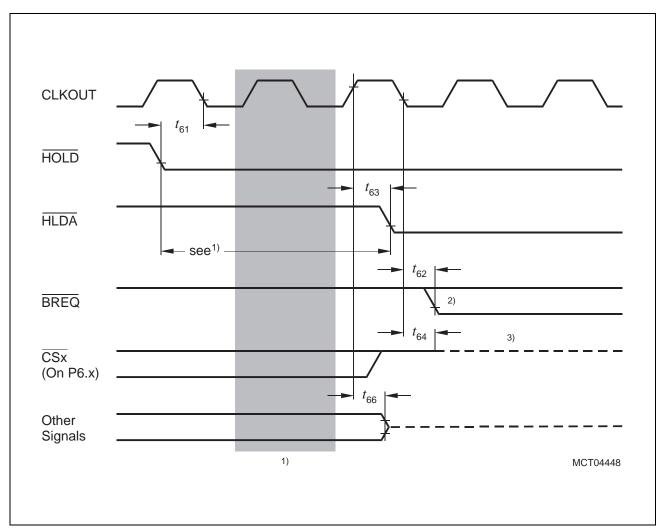


Figure 22 External Bus Arbitration, Releasing the Bus

Notes

- The C165 will complete the currently running bus cycle before granting bus access.
- ²⁾ This is the first possibility for BREQ to get active. ³⁾ The \overline{CS} outputs will be resistive high (pullup) after t_{64} .