# E·XFL



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                    |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | C166                                                                        |
| Core Size                  | 16-Bit                                                                      |
| Speed                      | 20MHz                                                                       |
| Connectivity               | EBI/EMI, SPI, UART/USART                                                    |
| Peripherals                | POR, PWM, WDT                                                               |
| Number of I/O              | 77                                                                          |
| Program Memory Size        | -                                                                           |
| Program Memory Type        | ROMIess                                                                     |
| EEPROM Size                | -                                                                           |
| RAM Size                   | 2K x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                   |
| Data Converters            | -                                                                           |
| Oscillator Type            | External                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 100-LQFP                                                                    |
| Supplier Device Package    | PG-TQFP-100                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/c165lf3vhafxuma1 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### C165

| <b>Revision</b> H | listory:                                                                 | 2000-12                                                                              | Ň                                      | V2.0     |  |  |  |  |
|-------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------|----------|--|--|--|--|
| Previous Version: |                                                                          | 1998-12Update 0.5μ technology01.963 Volt Addendum07.9525 MHz Addendum09.94Data Sheet |                                        |          |  |  |  |  |
| Page              | Subjects (m                                                              | najor changes                                                                        | since last revision)                   |          |  |  |  |  |
| All               | Converted to                                                             | Converted to Infineon layout                                                         |                                        |          |  |  |  |  |
| 2                 | ROM derivatives removed, 25-MHz derivatives and 3 V derivatives included |                                                                                      |                                        |          |  |  |  |  |
| <mark>6</mark> ff | Pin numbers for TQFP added                                               |                                                                                      |                                        |          |  |  |  |  |
| 14                | Address win                                                              | dow arbitration                                                                      | and master/slave mode introduced       |          |  |  |  |  |
| 32                | New standa                                                               | rd layout for se                                                                     | ction "Absolute Maximum Ratings"       |          |  |  |  |  |
| 33                | Section "Op                                                              | erating Condition                                                                    | ons" added                             |          |  |  |  |  |
| <b>34</b> f       | Parameter "                                                              | RSTIN pullup" I                                                                      | replaced by "RSTIN current"            |          |  |  |  |  |
| <b>36</b> f       | DC Characte                                                              | eristics for redu                                                                    | ced supply voltage added               |          |  |  |  |  |
| <mark>38</mark> f | Separate sp                                                              | ecification for p                                                                    | ower consumption with greatly improved | d values |  |  |  |  |
| <b>40</b> ff      | Description                                                              | of clock genera                                                                      | tion improved                          |          |  |  |  |  |
| 45, 55, 65        | Timing adap                                                              | ted to 25 MHz                                                                        |                                        |          |  |  |  |  |
| 48, 58, 66        | Timing for re                                                            | educed supply v                                                                      | voltage added                          |          |  |  |  |  |

#### We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

#### mcdocu.comments@infineon.com





#### Pin Configuration TQFP Package

(top view)



Figure 2

![](_page_3_Picture_0.jpeg)

#### Pin Configuration MQFP Package

(top view)

![](_page_3_Figure_3.jpeg)

#### Figure 3

![](_page_4_Picture_0.jpeg)

| Table 2 | Pin Definitions and Functions | (cont'd)  |  |
|---------|-------------------------------|-----------|--|
|         |                               | (00::: 0) |  |

| Symbol     | Pin Nr<br>TQFP | Pin Nr<br>MQFP | Input<br>Outp. | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------|----------------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RSTIN      | 79             | 81             | I/O            | Reset Input with Schmitt-Trigger characteristics. A<br>low level at this pin while the oscillator is running<br>resets the C165. An internal pullup resistor permits<br>power-on reset using only a capacitor connected to<br>$V_{SS}$ . A spike filter suppresses input pulses < 10 ns.<br>Input pulses >100 ns safely pass the filter. The<br>minimum duration for a safe recognition should be<br>100 ns + 2 CPU clock cycles.<br>In bidirectional reset mode (enabled by setting bit<br>BDRSTEN in register SYSCON) the RSTIN line is<br>internally pulled low for the duration of the internal<br>reset sequence upon any reset (HW, SW, WDT).<br>See note below this table. |
|            |                |                |                | Note: To let the reset configuration of PORT0 settle<br>a reset duration of ca. 1 ms is recommended.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RST<br>OUT | 80             | 82             | 0              | Internal Reset Indication Output. This pin is set to a<br>low level when the part is executing either a<br>hardware-, a software- or a watchdog timer reset.<br>RSTOUT remains low until the EINIT (end of<br>initialization) instruction is executed.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NMI        | 81             | 83             | 1              | Non-Maskable Interrupt Input. A high to low<br>transition at this pin causes the CPU to vector to the<br>NMI trap routine. When the PWRDN (power down)<br>instruction is executed, the NMI pin must be low in<br>order to force the C165 to go into power down mode.<br>If NMI is high, when PWRDN is executed, the part<br>will continue to run in normal mode.<br>If not used, pin NMI should be pulled high externally.                                                                                                                                                                                                                                                        |

![](_page_5_Picture_0.jpeg)

![](_page_5_Picture_1.jpeg)

#### **Memory Organization**

The memory space of the C165 is configured in a Von Neumann architecture which means that code memory, data memory, registers and I/O ports are organized within the same linear address space which includes 16 MBytes. The entire memory space can be accessed bytewise or wordwise. Particular portions of the on-chip memory have additionally been made directly bitaddressable.

The C165 is prepared to incorporate on-chip program memory (not in the ROM-less derivatives, of course) for code or constant data. The internal ROM area can be mapped either to segment 0 or segment 1.

2 KBytes of on-chip Internal RAM (IRAM) are provided as a storage for user defined variables, for the system stack, general purpose register banks and even for code. A register bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0, ..., RL7, RH7) so-called General Purpose Registers (GPRs).

1024 bytes ( $2 \times 512$  bytes) of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are wordwide registers which are used for controlling and monitoring functions of the different on-chip units. Unused SFR addresses are reserved for future members of the C166 Family.

In order to meet the needs of designs where more memory is required than is provided on chip, up to 16 MBytes of external RAM and/or ROM can be connected to the microcontroller.

![](_page_6_Picture_1.jpeg)

#### Serial Channels

Serial communication with other microcontrollers, processors, terminals or external peripheral components is provided by two serial interfaces with different functionality, an Asynchronous/Synchronous Serial Channel (**ASC0**) and a High-Speed Synchronous Serial Channel (**SSC**).

**The ASC0** is upward compatible with the serial ports of the Infineon 8-bit microcontroller families and supports full-duplex asynchronous communication at up to 781 KBaud and half-duplex synchronous communication at up to 3.1 MBaud (@ 25 MHz CPU clock).

A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception and error handling 4 separate interrupt vectors are provided. In asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by a start bit and terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish address from data bytes has been included (8-bit data plus wake up bit mode).

In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a shift clock which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop back option is available for testing purposes.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. A parity bit can automatically be generated on transmission or be checked on reception. Framing error detection allows to recognize data frames with missing stop bits. An overrun error will be generated, if the last character received has not been read out of the receive buffer register at the time the reception of a new character is complete.

**The SSC** supports full-duplex synchronous communication at up to 6.25 MBaud (@ 25 MHz CPU clock). It may be configured so it interfaces with serially linked peripheral components. A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception, and error handling three separate interrupt vectors are provided.

The SSC transmits or receives characters of 2 ... 16 bits length synchronously to a shift clock which can be generated by the SSC (master mode) or by an external master (slave mode). The SSC can start shifting with the LSB or with the MSB and allows the selection of shifting and latching clock edges as well as the clock polarity.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. Transmit and receive error supervise the correct handling of the data buffer. Phase and baudrate error detect incorrect serial data.

![](_page_7_Picture_0.jpeg)

#### Watchdog Timer

The Watchdog Timer represents one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after a reset of the chip, and can only be disabled in the time interval until the EINIT (end of initialization) instruction has been executed. Thus, the chip's start-up procedure is always monitored. The software has to be designed to service the Watchdog Timer before it overflows. If, due to hardware or software related failures, the software fails to do so, the Watchdog Timer overflows and generates an internal hardware reset and pulls the RSTOUT pin low in order to allow external hardware components to be reset.

The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by 2/128. The high byte of the Watchdog Timer register can be set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the high byte of the Watchdog Timer is reloaded. Thus, time intervals between 20  $\mu$ s and 336 ms can be monitored (@ 25 MHz).

The default Watchdog Timer interval after reset is 5.24 ms (@ 25 MHz).

#### **Parallel Ports**

The C165 provides up to 77 I/O lines which are organized into six input/output ports and one input port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. The output drivers of three I/O ports can be configured (pin by pin) for push/pull operation or open-drain operation via control registers. During the internal reset, all port pins are configured as inputs.

All port lines have programmable alternate input or output functions associated with them. All port lines that are not used for these alternate functions may be used as general purpose IO lines.

PORT0 and PORT1 may be used as address and data lines when accessing external memory, while Port 4 outputs the additional segment address bits A23/19/17 ... A16 in systems where segmentation is enabled to access more than 64 KBytes of memory. Port 6 provides optional chip select signals.

Port 3 includes alternate functions of timers, serial interfaces, the optional bus control signal BHE/WRH, and the system clock output CLKOUT.

Port 5 is used for timer control signals.

![](_page_8_Picture_1.jpeg)

| Table 6 |   | C165 Regist         | ers, Oro        | dered by Name (cont'd)                                         |                   |
|---------|---|---------------------|-----------------|----------------------------------------------------------------|-------------------|
| Name    |   | Physical<br>Address | 8-Bit<br>Addr.  | Description                                                    | Reset<br>Value    |
| P1H     | b | FF06 <sub>H</sub>   | 83 <sub>H</sub> | Port 1 High Reg. (Upper half of PORT1)                         | 00 <sub>H</sub>   |
| P1L     | b | FF04 <sub>H</sub>   | 82 <sub>H</sub> | Port 1 Low Reg.(Lower half of PORT1)                           | 00 <sub>H</sub>   |
| P2      | b | FFC0 <sub>H</sub>   | E0 <sub>H</sub> | Port 2 Register                                                | 0000 <sub>H</sub> |
| P3      | b | FFC4 <sub>H</sub>   | E2 <sub>H</sub> | Port 3 Register                                                | 0000 <sub>H</sub> |
| P4      | b | FFC8 <sub>H</sub>   | E4 <sub>H</sub> | Port 4 Register (8 bits)                                       | 00 <sub>H</sub>   |
| P5      | b | FFA2 <sub>H</sub>   | D1 <sub>H</sub> | Port 5 Register (read only)                                    | XXXX <sub>H</sub> |
| P6      | b | FFCC <sub>H</sub>   | E6 <sub>H</sub> | Port 6 Register (8 bits)                                       | 00 <sub>H</sub>   |
| PECC0   |   | FEC0 <sub>H</sub>   | 60 <sub>H</sub> | PEC Channel 0 Control Register                                 | 0000 <sub>H</sub> |
| PECC1   |   | FEC2 <sub>H</sub>   | 61 <sub>H</sub> | PEC Channel 1 Control Register                                 | 0000 <sub>H</sub> |
| PECC2   |   | FEC4 <sub>H</sub>   | 62 <sub>H</sub> | PEC Channel 2 Control Register                                 | 0000 <sub>H</sub> |
| PECC3   |   | FEC6 <sub>H</sub>   | 63 <sub>H</sub> | PEC Channel 3 Control Register                                 | 0000 <sub>H</sub> |
| PECC4   |   | FEC8 <sub>H</sub>   | 64 <sub>H</sub> | PEC Channel 4 Control Register                                 | 0000 <sub>H</sub> |
| PECC5   |   | FECA <sub>H</sub>   | 65 <sub>H</sub> | PEC Channel 5 Control Register                                 | 0000 <sub>H</sub> |
| PECC6   |   | FECCH               | 66 <sub>H</sub> | PEC Channel 6 Control Register                                 | 0000 <sub>H</sub> |
| PECC7   |   | FECE <sub>H</sub>   | 67 <sub>H</sub> | PEC Channel 7 Control Register                                 | 0000 <sub>H</sub> |
| PSW     | b | FF10 <sub>H</sub>   | 88 <sub>H</sub> | CPU Program Status Word                                        | 0000 <sub>H</sub> |
| RP0H    | b | F108 <sub>H</sub> E | 84 <sub>H</sub> | System Startup Config. Reg. (Rd. only)                         | XX <sub>H</sub>   |
| S0BG    |   | FEB4 <sub>H</sub>   | 5A <sub>H</sub> | Serial Channel 0 Baud Rate Generator<br>Reload Register        | 0000 <sub>H</sub> |
| S0CON   | b | FFB0 <sub>H</sub>   | D8 <sub>H</sub> | Serial Channel 0 Control Register                              | 0000 <sub>H</sub> |
| S0EIC   | b | FF70 <sub>H</sub>   | B8 <sub>H</sub> | Serial Channel 0 Error Interrupt Ctrl. Reg                     | 0000 <sub>H</sub> |
| SORBUF  |   | FEB2 <sub>H</sub>   | 59 <sub>H</sub> | Serial Channel 0 Receive Buffer Reg.<br>(read only)            | ХХ <sub>Н</sub>   |
| SORIC   | b | FF6E <sub>H</sub>   | B7 <sub>H</sub> | Serial Channel 0 Receive Interrupt<br>Control Register         | 0000 <sub>H</sub> |
| SOTBIC  | b | F19C <sub>H</sub> E | CEH             | Serial Channel 0 Transmit Buffer<br>Interrupt Control Register | 0000 <sub>H</sub> |
| S0TBUF  |   | FEB0 <sub>H</sub>   | 58 <sub>H</sub> | Serial Channel 0 Transmit Buffer<br>Register (write only)      | 00 <sub>H</sub>   |
| SOTIC   | b | FF6C <sub>H</sub>   | B6 <sub>H</sub> | Serial Channel 0 Transmit Interrupt<br>Control Register        | 0000 <sub>H</sub> |

![](_page_9_Picture_0.jpeg)

#### **Operating Conditions**

The following operating conditions must not be exceeded in order to ensure correct operation of the C165. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

| Parameter                          | Symbol            | Limit             | Values | Unit | Notes                                 |  |
|------------------------------------|-------------------|-------------------|--------|------|---------------------------------------|--|
|                                    |                   | min.              | max.   |      |                                       |  |
| Standard<br>digital supply voltage | V <sub>DD</sub>   | 4.5               | 5.5    | V    | Active mode,<br>$f_{CPUmax}$ = 25 MHz |  |
| (5 V versions)                     |                   | 2.5 <sup>1)</sup> | 5.5    | V    | PowerDown mode                        |  |
| Reduced<br>digital supply voltage  | V <sub>DD</sub>   | 3.0               | 3.6    | V    | Active mode,<br>$f_{CPUmax}$ = 20 MHz |  |
| (3 V versions)                     |                   | 2.5 <sup>1)</sup> | 3.6    | V    | PowerDown mode                        |  |
| Digital ground voltage             | V <sub>SS</sub>   | (                 | 0      | V    | Reference voltage                     |  |
| Overload current                   | I <sub>OV</sub>   | _                 | ± 5    | mA   | Per pin <sup>2)3)</sup>               |  |
| Absolute sum of overload currents  | $\Sigma  I_{OV} $ | -                 | 50     | mA   | 3)                                    |  |
| External Load<br>Capacitance       | CL                | -                 | 100    | pF   | -                                     |  |
| Ambient temperature                | T <sub>A</sub>    | 0                 | 70     | °C   | SAB-C165                              |  |
|                                    |                   | - 40              | 85     | °C   | SAF-C165                              |  |
|                                    |                   | - 40              | 125    | °C   | SAK-C165                              |  |

#### Table 8Operating Condition Parameters

<sup>1)</sup> Output voltages and output currents will be reduced when  $V_{\text{DD}}$  leaves the range defined for active mode.

<sup>2)</sup> Overload conditions occur if the standard operatings conditions are exceeded, i.e. the voltage on any pin exceeds the specified range (i.e. V<sub>OV</sub> > V<sub>DD</sub> + 0.5 V or V<sub>OV</sub> < V<sub>SS</sub> - 0.5 V). The absolute sum of input overload currents on all pins may not exceed **50 mA**. The supply voltage must remain within the specified limits. Proper operation is not guaranteed if overload conditions occur on functional pins such as XTAL1, RD, WR, etc.

<sup>3)</sup> Not 100% tested, guaranteed by design and characterization.

![](_page_10_Picture_1.jpeg)

## DC Characteristics (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)<sup>1)</sup>

| Parameter                                                 | Symbol                          | Limit | Values | Unit | Test Condition                      |
|-----------------------------------------------------------|---------------------------------|-------|--------|------|-------------------------------------|
|                                                           |                                 | min.  | max.   |      |                                     |
| RSTIN active current <sup>4)</sup>                        | I <sub>RSTL</sub> <sup>6)</sup> | - 100 | _      | μA   | $V_{\rm IN} = V_{\rm IL}$           |
| READY/RD/WR inact. current <sup>7)</sup>                  | I <sub>RWH</sub> <sup>5)</sup>  | -     | - 40   | μA   | $V_{OUT}$ = 2.4 V                   |
| READY/RD/WR active current <sup>7)</sup>                  | $I_{\rm RWL}^{6)}$              | - 500 | -      | μA   | $V_{OUT} = V_{OLmax}$               |
| ALE inactive current <sup>7)</sup>                        | $I_{ALEL}^{(5)}$                | -     | 40     | μA   | $V_{OUT} = V_{OLmax}$               |
| ALE active current <sup>7)</sup>                          | I <sub>ALEH</sub> <sup>6)</sup> | 500   | _      | μA   | $V_{OUT}$ = 2.4 V                   |
| Port 6 inactive current <sup>7)</sup>                     | I <sub>P6H</sub> <sup>5)</sup>  | -     | - 40   | μA   | $V_{OUT}$ = 2.4 V                   |
| Port 6 active current <sup>7)</sup>                       | I <sub>P6L</sub> <sup>6)</sup>  | - 500 | _      | μA   | $V_{\rm OUT} = V_{\rm OL1max}$      |
| PORT0 configuration current <sup>8)</sup>                 | I <sub>P0H</sub> <sup>5)</sup>  | -     | - 10   | μA   | $V_{\rm IN} = V_{\rm IHmin}$        |
|                                                           | $I_{P0L}^{6)}$                  | - 100 | _      | μA   | $V_{\rm IN} = V_{\rm ILmax}$        |
| XTAL1 input current                                       | I <sub>IL</sub> CC              | -     | ± 20   | μA   | $0 V < V_{IN} < V_{DD}$             |
| Pin capacitance <sup>9)</sup><br>(digital inputs/outputs) | C <sub>IO</sub> CC              | _     | 10     | pF   | f = 1  MHz<br>$T_A = 25 \text{ °C}$ |

<sup>1)</sup> Keeping signal levels within the levels specified in this table, ensures operation without overload conditions. For signal levels outside these specifications also refer to the specification of the overload current  $I_{OV}$ .

<sup>2)</sup> Valid in bidirectional reset mode only.

- <sup>3)</sup> This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.
- <sup>4)</sup> These parameters describe the  $\overline{\text{RSTIN}}$  pullup, which equals a resistance of ca. 50 to 250 k $\Omega$ .
- <sup>5)</sup> The maximum current may be drawn while the respective signal line remains inactive.
- <sup>6)</sup> The minimum current must be drawn in order to drive the respective signal line active.
- <sup>7)</sup> This specification is valid during Reset and during Hold-mode or Adapt-mode. During Hold-mode Port 6 pins are only affected, if they are used (configured) for CS output and the open drain function is not enabled. The READY-pullup is always active, except for Powerdown mode.
- <sup>8)</sup> This specification is valid during Reset and during Adapt-mode.
- <sup>9)</sup> Not 100% tested, guaranteed by design and characterization.

![](_page_11_Picture_1.jpeg)

## DC Characteristics (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)<sup>1)</sup>

| Parameter                                                 | Symb                           | ool | Limit Values |      | Unit | Test Condition                      |
|-----------------------------------------------------------|--------------------------------|-----|--------------|------|------|-------------------------------------|
|                                                           |                                |     | min.         | max. |      |                                     |
| PORT0 configuration current <sup>8)</sup>                 | I <sub>P0H</sub> 5)            | )   | _            | - 5  | μA   | $V_{\rm IN} = V_{\rm IHmin}$        |
|                                                           | I <sub>P0L</sub> <sup>6)</sup> |     | - 100        | _    | μA   | $V_{\rm IN} = V_{\rm ILmax}$        |
| XTAL1 input current                                       | $I_{IL}$                       | CC  | _            | ± 20 | μA   | $0 V < V_{IN} < V_{DD}$             |
| Pin capacitance <sup>9)</sup><br>(digital inputs/outputs) | C <sub>IO</sub>                | CC  | _            | 10   | pF   | f = 1 MHz<br>T <sub>A</sub> = 25 °C |

<sup>1)</sup> Keeping signal levels within the levels specified in this table, ensures operation without overload conditions. For signal levels outside these specifications also refer to the specification of the overload current  $I_{OV}$ .

<sup>2)</sup> Valid in bidirectional reset mode only.

<sup>3)</sup> This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.

- <sup>4)</sup> These parameters describe the  $\overline{\text{RSTIN}}$  pullup, which equals a resistance of ca. 50 to 250 k $\Omega$ .
- <sup>5)</sup> The maximum current may be drawn while the respective signal line remains inactive.
- <sup>6)</sup> The minimum current must be drawn in order to drive the respective signal line active.
- <sup>7)</sup> This specification is valid during Reset and during Hold-mode or Adapt-mode. During Hold-mode Port 6 pins are only affected, if they are used (configured) for CS output and the open drain function is not enabled. The READY-pullup is always active, except for Powerdown mode.
- <sup>8)</sup> This specification is valid during Reset and during Adapt-mode.
- <sup>9)</sup> Not 100% tested, guaranteed by design and characterization.

![](_page_12_Picture_0.jpeg)

#### **AC Characteristics**

# Table 10External Clock Drive XTAL1 (Standard Supply Voltage Range)<br/>(Operating Conditions apply)

| Parameter Symbol        |                       | bol | Diı              | rect Drive<br>1:1 | P    | Prescaler<br>2:1 |    |  |
|-------------------------|-----------------------|-----|------------------|-------------------|------|------------------|----|--|
|                         |                       |     | min.             | max.              | min. | max.             |    |  |
| Oscillator period       | t <sub>OSC</sub>      | SR  | 40               | -                 | 20   | _                | ns |  |
| High time <sup>1)</sup> | <i>t</i> <sub>1</sub> | SR  | 20 <sup>2)</sup> | -                 | 6    | _                | ns |  |
| Low time <sup>1)</sup>  | <i>t</i> <sub>2</sub> | SR  | 20 <sup>2)</sup> | -                 | 6    | _                | ns |  |
| Rise time <sup>1)</sup> | t <sub>3</sub>        | SR  | _                | 10                | -    | 6                | ns |  |
| Fall time <sup>1)</sup> | <i>t</i> <sub>4</sub> | SR  | _                | 10                | -    | 6                | ns |  |

<sup>1)</sup> The clock input signal must reach the defined levels  $V_{\text{IL2}}$  and  $V_{\text{IH2}}$ .

<sup>2)</sup> The minimum high and low time refers to a duty cycle of 50%. The maximum operating frequency ( $f_{CPU}$ ) in direct drive mode depends on the duty cycle of the clock input signal.

# Table 11External Clock Drive XTAL1 (Reduced Supply Voltage Range)<br/>(Operating Conditions apply)

| Parameter               | Symbol                |    | Direct Drive<br>1:1 |      | Pres | scaler<br>2:1 | Unit |
|-------------------------|-----------------------|----|---------------------|------|------|---------------|------|
|                         |                       |    | min.                | max. | min. | max.          |      |
| Oscillator period       | t <sub>OSC</sub>      | SR | 50                  | -    | 25   | -             | ns   |
| High time <sup>1)</sup> | t <sub>1</sub>        | SR | 25 <sup>2)</sup>    | -    | 8    | -             | ns   |
| Low time <sup>1)</sup>  | <i>t</i> <sub>2</sub> | SR | 25 <sup>2)</sup>    | -    | 8    | -             | ns   |
| Rise time <sup>1)</sup> | t <sub>3</sub>        | SR | -                   | 10   | -    | 6             | ns   |
| Fall time <sup>1)</sup> | <i>t</i> <sub>4</sub> | SR | -                   | 10   | -    | 6             | ns   |

<sup>1)</sup> The clock input signal must reach the defined levels  $V_{\rm IL2}$  and  $V_{\rm IH2}$ .

<sup>2)</sup> The minimum high and low time refers to a duty cycle of 50%. The maximum operating frequency ( $f_{CPU}$ ) in direct drive mode depends on the duty cycle of the clock input signal.

![](_page_13_Picture_0.jpeg)

#### **AC Characteristics**

## Multiplexed Bus (Reduced Supply Voltage Range)

(Operating Conditions apply)

ALE cycle time = 6 TCL +  $2t_A$  +  $t_C$  +  $t_F$  (150 ns at 20 MHz CPU clock without waitstates)

| Parameter                                                   |                        | nbol | Max. CPU Clock<br>= 20 MHz   |                   | Variable (<br>1 / 2TCL = 1           | Unit                                 |    |
|-------------------------------------------------------------|------------------------|------|------------------------------|-------------------|--------------------------------------|--------------------------------------|----|
|                                                             |                        |      | min.                         | max.              | min.                                 | max.                                 |    |
| ALE high time                                               | <i>t</i> <sub>5</sub>  | CC   | $11 + t_A$                   | _                 | TCL - 14                             | _                                    | ns |
|                                                             |                        |      |                              |                   | $+ t_A$                              |                                      |    |
| Address setup to ALE                                        | <i>t</i> <sub>6</sub>  | CC   | $5 + t_{A}$                  | _                 | TCL - 20<br>+ <i>t</i> <sub>A</sub>  | _                                    | ns |
| Address hold after ALE                                      | <i>t</i> <sub>7</sub>  | CC   | 15 + <i>t</i> <sub>A</sub>   | _                 | TCL - 10<br>+ <i>t</i> <sub>A</sub>  | _                                    | ns |
| ALE falling edge to $\overline{RD}$ ,<br>WR (with RW-delay) | <i>t</i> <sub>8</sub>  | CC   | $15 + t_A$                   | _                 | TCL - 10<br>+ <i>t</i> <sub>A</sub>  | _                                    | ns |
| ALE falling edge to RD,<br>WR (no RW-delay)                 | t <sub>9</sub>         | CC   | - 10 + <i>t</i> <sub>A</sub> | _                 | $-10 + t_{A}$                        | _                                    | ns |
| Address float after RD,<br>WR (with RW-delay)               | <i>t</i> <sub>10</sub> | CC   | _                            | 6                 | -                                    | 6                                    | ns |
| Address float after RD,<br>WR (no RW-delay)                 | <i>t</i> <sub>11</sub> | CC   | _                            | 31                | _                                    | TCL + 6                              | ns |
| RD, WR low time<br>(with RW-delay)                          | t <sub>12</sub>        | CC   | $34 + t_{C}$                 | _                 | 2TCL - 16<br>+ <i>t</i> <sub>C</sub> | _                                    | ns |
| RD, WR low time<br>(no RW-delay)                            | t <sub>13</sub>        | CC   | 59 + t <sub>C</sub>          | _                 | 3TCL - 16<br>+ <i>t</i> <sub>C</sub> | _                                    | ns |
| RD to valid data in<br>(with RW-delay)                      | <i>t</i> <sub>14</sub> | SR   | _                            | 22 + $t_{\rm C}$  | -                                    | 2TCL - 28<br>+ <i>t</i> <sub>C</sub> | ns |
| RD to valid data in<br>(no RW-delay)                        | t <sub>15</sub>        | SR   | _                            | $47 + t_{\rm C}$  | -                                    | 3TCL - 28<br>+ <i>t</i> <sub>C</sub> | ns |
| ALE low to valid data in                                    | t <sub>16</sub>        | SR   | _                            | $45 + t_A + t_C$  | -                                    | 3TCL - 30<br>+ $t_{A}$ + $t_{C}$     | ns |
| Address to valid data in                                    | t <sub>17</sub>        | SR   | _                            | $57 + 2t_A + t_C$ | -                                    | $4TCL - 43 + 2t_A + t_C$             | ns |
| Data hold after RD<br>rising edge                           | t <sub>18</sub>        | SR   | 0                            | -                 | 0                                    | -                                    | ns |

![](_page_14_Picture_1.jpeg)

### Multiplexed Bus (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL +  $2t_A$  +  $t_C$  +  $t_F$  (150 ns at 20 MHz CPU clock without waitstates)

| Parameter                        | Symbol                    | Max. CP<br>= 20  | PU Clock<br>MHz  | Variable (<br>1 / 2TCL = '           | Unit                                 |    |
|----------------------------------|---------------------------|------------------|------------------|--------------------------------------|--------------------------------------|----|
|                                  |                           | min.             | max.             | min.                                 | max.                                 |    |
| Data valid to WrCS               | <i>t</i> <sub>50</sub> CC | $28 + t_{\rm C}$ | _                | 2TCL - 22<br>+ <i>t</i> <sub>C</sub> | -                                    | ns |
| Data hold after RdCS             | <i>t</i> <sub>51</sub> SR | 0                | -                | 0                                    | _                                    | ns |
| Data float after RdCS            | <i>t</i> <sub>52</sub> SR | _                | $30 + t_{\rm F}$ | -                                    | 2TCL - 20<br>+ <i>t</i> <sub>F</sub> | ns |
| Address hold after<br>RdCS, WrCS | <i>t</i> <sub>54</sub> CC | $30 + t_{\rm F}$ | _                | 2TCL - 20<br>+ <i>t</i> <sub>F</sub> | -                                    | ns |
| Data hold after WrCS             | <i>t</i> <sub>56</sub> CC | $30 + t_{\rm F}$ | _                | 2TCL - 20<br>+ <i>t</i> <sub>F</sub> | _                                    | ns |

<sup>1)</sup> These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

![](_page_15_Picture_1.jpeg)

### Demultiplexed Bus (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 4 TCL +  $2t_A$  +  $t_C$  +  $t_F$  (100 ns at 20 MHz CPU clock without waitstates)

| Parameter                                                                              | Symbol                 |    | Max. CPU Clock<br>= 20 MHz   |                            | Variable CPU Clock<br>1 / 2TCL = 1 to 20 MHz |                                                                | Unit |
|----------------------------------------------------------------------------------------|------------------------|----|------------------------------|----------------------------|----------------------------------------------|----------------------------------------------------------------|------|
|                                                                                        |                        |    | min.                         | max.                       | min.                                         | max.                                                           |      |
| Data valid to $\overline{WR}$                                                          | t <sub>22</sub>        | CC | $24 + t_{C}$                 | -                          | 2TCL - 26                                    | _                                                              | ns   |
|                                                                                        |                        |    |                              |                            | + t <sub>C</sub>                             |                                                                |      |
| Data hold after $\overline{WR}$                                                        | t <sub>24</sub>        | CC | 15 + <i>t</i> <sub>F</sub>   | _                          | TCL - 10<br>+ <i>t</i> <sub>F</sub>          | _                                                              | ns   |
| ALE rising edge after<br>RD, WR                                                        | t <sub>26</sub>        | CC | - 12 + <i>t</i> <sub>F</sub> | -                          | - 12 + <i>t</i> <sub>F</sub>                 | _                                                              | ns   |
| Address hold after $\overline{WR}^{2)}$                                                | t <sub>28</sub>        | CC | $0 + t_{F}$                  | -                          | $0 + t_{F}$                                  | _                                                              | ns   |
| ALE falling edge to $\overline{CS}^{3)}$                                               | t <sub>38</sub>        | CC | - 8 - <i>t</i> <sub>A</sub>  | 10 - <i>t</i> <sub>A</sub> | - 8 - <i>t</i> <sub>A</sub>                  | 10 - <i>t</i> <sub>A</sub>                                     | ns   |
| CS low to Valid Data In <sup>3)</sup>                                                  | t <sub>39</sub>        | SR | _                            | $47 + t_{C} + 2t_{A}$      | _                                            | 3TCL - 28<br>+ <i>t</i> <sub>C</sub> + 2 <i>t</i> <sub>A</sub> | ns   |
| $\overline{\text{CS}}$ hold after $\overline{\text{RD}}$ , $\overline{\text{WR}}^{3)}$ | <i>t</i> <sub>41</sub> | CC | 9 + <i>t</i> <sub>F</sub>    | _                          | TCL - 16<br>+ <i>t</i> <sub>F</sub>          | _                                                              | ns   |
| ALE falling edge to<br>RdCS, WrCS (with RW-<br>delay)                                  | t <sub>42</sub>        | CC | 19 + <i>t</i> <sub>A</sub>   | -                          | TCL - 6<br>+ <i>t</i> <sub>A</sub>           | -                                                              | ns   |
| ALE falling edge to<br>RdCS, WrCS (no RW-<br>delay)                                    | t <sub>43</sub>        | CC | $-6 + t_{A}$                 | -                          | - 6<br>+ <i>t</i> <sub>A</sub>               | -                                                              | ns   |
| RdCS to Valid Data In (with RW-delay)                                                  | t <sub>46</sub>        | SR | _                            | $20 + t_{\rm C}$           | -                                            | 2TCL - 30<br>+ <i>t</i> <sub>C</sub>                           | ns   |
| RdCS to Valid Data In (no RW-delay)                                                    | t <sub>47</sub>        | SR | _                            | 45 + t <sub>C</sub>        | -                                            | 3TCL - 30<br>+ <i>t</i> <sub>C</sub>                           | ns   |
| RdCS, WrCS Low Time<br>(with RW-delay)                                                 | t <sub>48</sub>        | CC | 38 + t <sub>C</sub>          | _                          | 2TCL - 12<br>+ <i>t</i> <sub>C</sub>         | _                                                              | ns   |
| RdCS, WrCS Low Time<br>(no RW-delay)                                                   | t <sub>49</sub>        | CC | $63 + t_{\rm C}$             | _                          | 3TCL - 12<br>+ <i>t</i> <sub>C</sub>         | _                                                              | ns   |
| Data valid to WrCS                                                                     | t <sub>50</sub>        | CC | 28 + <i>t</i> <sub>C</sub>   | _                          | 2TCL - 22<br>+ <i>t</i> <sub>C</sub>         | _                                                              | ns   |
| Data hold after RdCS                                                                   | t <sub>51</sub>        | SR | 0                            | -                          | 0                                            | -                                                              | ns   |

![](_page_16_Picture_1.jpeg)

### Demultiplexed Bus (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 4 TCL +  $2t_A$  +  $t_C$  +  $t_F$  (100 ns at 20 MHz CPU clock without waitstates)

| Parameter                                            | Symbol          | Max. CPU Clock<br>= 20 MHz |                              | Variable CPU Clock<br>1 / 2TCL = 1 to 20 MHz |                                     | Unit                              |    |
|------------------------------------------------------|-----------------|----------------------------|------------------------------|----------------------------------------------|-------------------------------------|-----------------------------------|----|
|                                                      |                 |                            | min.                         | max.                                         | min.                                | max.                              |    |
| Data float after RdCS (with RW-delay) <sup>1)</sup>  | t <sub>53</sub> | SR                         | _                            | 30 + <i>t</i> <sub>F</sub>                   | -                                   | 2TCL - 20<br>+ $2t_A + t_F$<br>1) | ns |
| Data float after RdCS<br>(no RW-delay) <sup>1)</sup> | t <sub>68</sub> | SR                         | _                            | 5 + <i>t</i> <sub>F</sub>                    | _                                   | TCL - 20<br>+ $2t_A + t_F$<br>1)  | ns |
| Address hold after<br>RdCS, WrCS                     | t <sub>55</sub> | CC                         | - 16 + <i>t</i> <sub>F</sub> | -                                            | - 16 + <i>t</i> <sub>F</sub>        | -                                 | ns |
| Data hold after WrCS                                 | t <sub>57</sub> | CC                         | 9 + <i>t</i> <sub>F</sub>    | -                                            | TCL - 16<br>+ <i>t</i> <sub>F</sub> | -                                 | ns |

<sup>1)</sup> RW-delay and  $t_A$  refer to the next following bus cycle (including an access to an on-chip X-Peripheral).

<sup>2)</sup> Read data are latched with the same clock edge that triggers the address change and the rising RD edge. Therefore address changes before the end of RD have no impact on read cycles.

<sup>3)</sup> These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

![](_page_17_Picture_0.jpeg)

![](_page_17_Figure_1.jpeg)

#### Figure 18 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Extended ALE

![](_page_18_Picture_0.jpeg)

![](_page_18_Figure_2.jpeg)

Figure 19 External Memory Cycle: Demultiplexed Bus, No Read/Write Delay, Normal ALE

![](_page_19_Picture_0.jpeg)

![](_page_19_Figure_1.jpeg)

#### Figure 20 External Memory Cycle: Demultiplexed Bus, No Read/Write Delay, Extended ALE

![](_page_20_Picture_0.jpeg)

![](_page_20_Figure_1.jpeg)

Figure 22 External Bus Arbitration, Releasing the Bus

#### Notes

- The C165 will complete the currently running bus cycle before granting bus access.
- <sup>2)</sup> This is the first possibility for BREQ to get active. <sup>3)</sup> The  $\overline{CS}$  outputs will be resistive high (pullup) after  $t_{64}$ .