

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	20MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	77
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	P-MQFP-100
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c165Im3vhafxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Central Processing Unit (CPU)

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C165's instructions can be executed in just one machine cycle which requires 80 ns at 25 MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a 16×16 bit multiplication in 5 cycles and a 32-/16 bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', allows reducing the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.

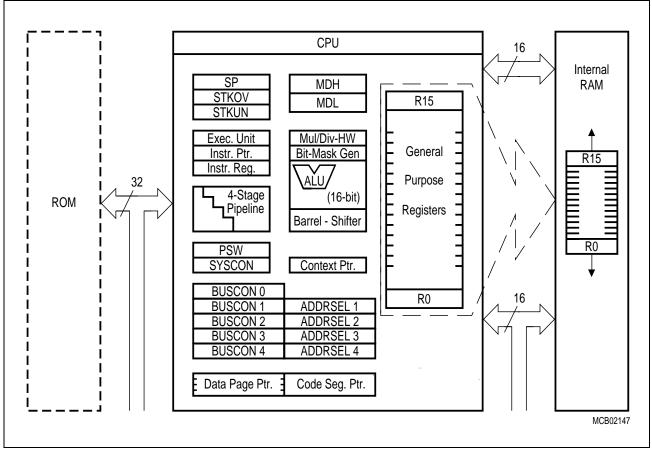


Figure 5

CPU Block Diagram

The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal. These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer (CP) register determines the base address of the active register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 1024 words is provided as a storage for temporary data. The system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient C165 instruction set which includes the following instruction classes:

- Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

Interrupt System

With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of internal program execution), the C165 is capable of reacting very fast to the occurrence of non-deterministic events.

The architecture of the C165 supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source or the destination pointer. An individual PEC transfer counter is implicity decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The C165 has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via its related register, each source can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt sources has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge or both edges).

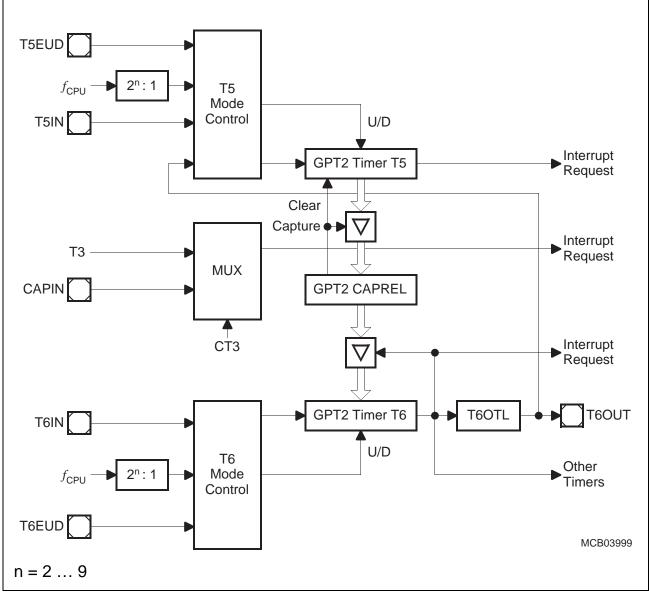

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

Table 3 shows all of the possible C165 interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Note: Interrupt nodes which are not used by associated peripherals, may be used to generate software controlled interrupt requests by setting the respective interrupt request bit (xIR).

The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of GPT1 timer T3's inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

Instruction Set Summary

Table 5 lists the instructions of the C165 in a condensed way.

The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the **"C166 Family Instruction Set Manual"**.

This document also provides a detailed description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16-16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise XOR, (word/byte operands)	2/4
BCLR	Clear direct bit	2
BSET	Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND, BOR, BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/L	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL / SHR	Shift left/right direct word GPR	2
ROL / ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2

Table 5Instruction Set Summary

Table 6C165 Registers, Ordered by Name (cont'd)								
Name Physical Address		8-Bit Addr.	Description	Reset Value				
СР		FE10 _H		08 _H	CPU Context Pointer Register	FC00 _H		
CRIC	b	FF6A _H		B5 _H	GPT2 CAPREL Interrupt Ctrl. Reg.	0000 _H		
CSP		FE08 _H		04 _H	CPU Code Seg. Pointer Reg. (read only)	0000 _H		
DP0H	b	F102 _H	Ε	81 _H	P0H Direction Control Register	00 _H		
DP0L	b	F100 _H	Ε	80 _H	P0L Direction Control Register	00 _H		
DP1H	b	F106 _H	Ε	83 _H	P1H Direction Control Register	00 _H		
DP1L	b	F104 _H	Ε	82 _H	P1L Direction Control Register	00 _H		
DP2	b	FFC2 _H		E1 _H	Port 2 Direction Control Register	0000 _H		
DP3	b	FFC6 _H		E3 _H	Port 3 Direction Control Register	0000 _H		
DP4	b	FFCA _H		E5 _H	Port 4 Direction Control Register	00 _H		
DP6	b	FFCE _H		E7 _H	Port 6 Direction Control Register	00 _H		
DPP0		FE00 _H		00 _H	CPU Data Page Pointer 0 Reg. (10 bits)	0000 _H		
DPP1		FE02 _H		01 _H	CPU Data Page Pointer 1 Reg. (10 bits)	0001 _H		
DPP2		FE04 _H		02 _H	CPU Data Page Pointer 2 Reg. (10 bits)	0002 _H		
DPP3		FE06 _H		03 _H	CPU Data Page Pointer 3 Reg. (10 bits)	0003 _H		
EXICON	b	F1C0 _H	Ε	E0 _H	External Interrupt Control Register	0000 _H		
IDCHIP		F07C _H	Ε	3E _H	Identifier	05XX _H		
IDMANUF		F07E _H	Ε	3F _H	Identifier	1820 _H		
IDMEM		F07A _H	Ε	3D _H	Identifier	0000 _H		
IDMEM2		F076 _H	Ε	3B _H	Identifier	0000 _H		
IDPROG		F078 _H	Ε	3C _H	Identifier	0000 _H		
MDC	b	FF0E _H		87 _H	CPU Multiply Divide Control Register	0000 _H		
MDH		FE0C _H		06 _H	CPU Multiply Divide Reg. – High Word	0000 _H		
MDL		FE0E _H		07 _H	CPU Multiply Divide Reg. – Low Word	0000 _H		
ODP2	b	F1C2 _H	Ε	E1 _H	Port 2 Open Drain Control Register	0000 _H		
ODP3	b	F1C6 _H	Ε	E3 _H	Port 3 Open Drain Control Register	0000 _H		
ODP6	b	F1CE _H	Ε	E7 _H	Port 6 Open Drain Control Register	00 _H		
ONES	b	FF1E _H		8F _H	Constant Value 1's Register (read only)	FFFF _H		
		1		1				

P0H

P0L

00_H

00_H

Port 0 High Reg. (Upper half of PORT0)

Port 0 Low Reg. (Lower half of PORT0)

81_H

80_H

FF02_H

 $FF00_{H}$

b

b

Table 6C165 Registers, Ordered by Name (cont'd)								
lame		Physical Address	8-Bit Addr.	Description	Reset Value			
P1H	b	FF06 _H	83 _H	Port 1 High Reg. (Upper half of PORT1)	00 _H			
91L	b	FF04 _H	82 _H	Port 1 Low Reg.(Lower half of PORT1)	00 _H			
2	b	FFC0 _H	E0 _H	Port 2 Register	0000 _H			
v 3	b	FFC4 _H	E2 _H	Port 3 Register	0000 _H			
94	b	FFC8 _H	E4 _H	Port 4 Register (8 bits)	00 _H			
? 5	b	FFA2 _H	D1 _H	Port 5 Register (read only)	XXXX _H			
° 6	b	FFCC _H	E6 _H	Port 6 Register (8 bits)	00 _H			
PECC0		FEC0 _H	60 _H	PEC Channel 0 Control Register	0000 _H			
PECC1		FEC2 _H	61 _H	PEC Channel 1 Control Register	0000 _H			
PECC2		FEC4 _H	62 _H	PEC Channel 2 Control Register	0000 _H			
PECC3		FEC6 _H	63 _H	PEC Channel 3 Control Register	0000 _H			
PECC4		FEC8 _H	64 _H					
PECC5		FECA _H	65 _H	PEC Channel 5 Control Register	0000 _H			
PECC6		FECC _H	66 _H	PEC Channel 6 Control Register	0000 _H			
PECC7		FECE _H	67 _H	PEC Channel 7 Control Register	0000 _H			
PSW	b	FF10 _H	88 _H	CPU Program Status Word	0000 _H			
RP0H	b	F108 _H E	84 _H	System Startup Config. Reg. (Rd. only)	XX _H			
60BG		FEB4 _H	5A _H	Serial Channel 0 Baud Rate Generator Reload Register	0000 _H			
50CON	b	FFB0 _H	D8 _H	Serial Channel 0 Control Register	0000 _H			
SOEIC	b	FF70 _H	B8 _H	Serial Channel 0 Error Interrupt Ctrl. Reg	0000 _H			
ORBUF		FEB2 _H	59 _H	Serial Channel 0 Receive Buffer Reg. (read only)	XX _H			
SORIC	b	FF6E _H	B7 _H	7 _H Serial Channel 0 Receive Interrupt Control Register				
OTBIC	b	F19C _H E	CEH	Serial Channel 0 Transmit Buffer Interrupt Control Register	0000 _H			
OTBUF		FEB0 _H	58 _H	Serial Channel 0 Transmit Buffer Register (write only)	00 _H			
SOTIC	b	FF6C _H	B6 _H	Serial Channel 0 Transmit Interrupt Control Register	0000 _H			
	b			Register (write only) Serial Channel 0 Transmit Interrupt				

ame (cont'd)

Name Physical Address				8-Bit Addr.	Description	Reset Value		
SP		FE12 _H		09 _H	CPU System Stack Pointer Register	FC00 _H		
SSCBR		F0B4 _H	Ε	5A _H	SSC Baudrate Register	0000 _H		
SSCCON	b	FFB2 _H		D9 _H	SSC Control Register	0000 _H		
SSCEIC	b	FF76 _H		BB _H	SSC Error Interrupt Control Register	0000 _H		
SSCRB		F0B2 _H	Ε	59 _H	SSC Receive Buffer	XXXX _H		
SSCRIC	b	FF74 _H		BA _H	SSC Receive Interrupt Control Register	0000 _H		
SSCTB		F0B0 _H	Ε	58 _H	SSC Transmit Buffer	0000 _H		
SSCTIC	b	FF72 _H		B9 _H	SSC Transmit Interrupt Control Register	0000 _H		
STKOV		FE14 _H		0A _H	CPU Stack Overflow Pointer Register	FA00 _H		
STKUN		FE16 _H		0B _H	CPU Stack Underflow Pointer Register	FC00 _H		
SYSCON	b	FF12 _H		89 _H	CPU System Configuration Register	¹⁾ 0XX0 _H		
T2		FE40 _H		20 _H	GPT1 Timer 2 Register	0000 _H		
T2CON	b	FF40 _H	A0 _H A0 _H GPT1 Timer 2 Control Register					
T2IC	b	FF60 _H B0 _H GPT1 Time			GPT1 Timer 2 Interrupt Control Register	0000 _H		
Т3		FE42 _H		21 _H	GPT1 Timer 3 Register	0000 _H		
T3CON	b	FF42 _H		A1 _H	GPT1 Timer 3 Control Register	0000 _H		
T3IC	b	FF62 _H	B1 _H		F62 _H B1 _H GPT1 Timer :		GPT1 Timer 3 Interrupt Control Register	0000 _H
T4		FE44 _H		22 _H	GPT1 Timer 4 Register	0000 _H		
T4CON	b	FF44 _H		A2 _H	GPT1 Timer 4 Control Register	0000 _H		
T4IC	b	FF64 _H		B2 _H	GPT1 Timer 4 Interrupt Control Register	0000 _H		
Т5		FE46 _H		23 _H	GPT2 Timer 5 Register	0000 _H		
T5CON	b	FF46 _H		A3 _H	GPT2 Timer 5 Control Register	0000 _H		
T5IC	b	FF66 _H		B3 _H	GPT2 Timer 5 Interrupt Control Register	0000 _H		
Т6		FE48 _H		24 _H	GPT2 Timer 6 Register	0000 _H		
T6CON	b	FF48 _H		A4 _H	GPT2 Timer 6 Control Register	0000 _H		
T6IC	b	FF68 _H		B4 _H	GPT2 Timer 6 Interrupt Control Register	0000 _H		
TFR	b	FFAC _H		D6 _H	Trap Flag Register	0000 _H		
WDT		FEAE _H		57 _H	Watchdog Timer Register (read only)	0000 _H		
WDTCON	b	FFAE _H		D7 _H	Watchdog Timer Control Register	²⁾ 00XX _H		
XP0IC	b	F186 _H	Е	C3 _H	Software Interrupt Control Register	0000 _H		

Absolute Maximum Ratings

Parameter	Symbol	Limit	Values	Unit	Notes
		min.	max.		
Storage temperature	T _{ST}	- 65	150	°C	-
Junction temperature	TJ	- 40	150	°C	under bias
Voltage on V_{DD} pins with respect to ground (V_{SS})	V _{DD}	- 0.5	6.5	V	_
Voltage on any pin with respect to ground (V_{SS})	V _{IN}	- 0.5	V _{DD} + 0.5	V	_
Input current on any pin during overload condition	-	- 10	10	mA	_
Absolute sum of all input currents during overload condition	-	-	100	mA	-
Power dissipation	P _{DISS}	-	1.5	W	-

Table 7 Absolute Maximum Rating Parameters

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$) the voltage on V_{DD} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the C165. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Parameter	Symbol	Limit	Values	Unit	Notes	
		min.	max.			
Standard digital supply voltage	V _{DD}	4.5	5.5	V	Active mode, $f_{CPUmax} = 25 \text{ MHz}$	
(5 V versions)		2.5 ¹⁾	5.5	V	PowerDown mode	
Reduced digital supply voltage	V _{DD}	3.0	3.6	V	Active mode, $f_{CPUmax} = 20 \text{ MHz}$	
(3 V versions)		2.5 ¹⁾	3.6	V	PowerDown mode	
Digital ground voltage	V _{SS}		0	V	Reference voltage	
Overload current	I _{OV}	_	± 5	mA	Per pin ²⁾³⁾	
Absolute sum of overload currents	$\Sigma I_{\rm OV} $	_	50	mA	3)	
External Load Capacitance	CL	_	100	pF	-	
Ambient temperature	T _A	0	70	°C	SAB-C165	
		- 40	85	°C	SAF-C165	
		- 40	125	°C	SAK-C165	

Table 8Operating Condition Parameters

¹⁾ Output voltages and output currents will be reduced when V_{DD} leaves the range defined for active mode.

²⁾ Overload conditions occur if the standard operatings conditions are exceeded, i.e. the voltage on any pin exceeds the specified range (i.e. V_{OV} > V_{DD} + 0.5 V or V_{OV} < V_{SS} - 0.5 V). The absolute sum of input overload currents on all pins may not exceed **50 mA**. The supply voltage must remain within the specified limits. Proper operation is not guaranteed if overload conditions occur on functional pins such as XTAL1, RD, WR, etc.

³⁾ Not 100% tested, guaranteed by design and characterization.

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C165 and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C165 will provide signals with the respective timing characteristics.

SR (System Requirement):

The external system must provide signals with the respective timing characteristics to the C165.

DC Characteristics (Standard Supply Voltage Range)

(Operating Conditions apply)¹⁾

Parameter	Symbol	Limit '	Values	Unit	Test Condition	
		min.	max.			
Input low voltage (TTL, all except XTAL1)	V _{IL} SR	- 0.5	0.2 V _{DD} - 0.1	V	-	
Input low voltage XTAL1	V_{IL2} SR	- 0.5	0.3 V _{DD}	V	-	
Input high voltage (TTL, all except RSTIN and XTAL1)	V _{IH} SR	0.2 V _{DD} + 0.9	V _{DD} + 0.5	V	_	
Input high voltage RSTIN (when operated as input)	V _{IH1} SR	0.6 V _{DD}	V _{DD} + 0.5	V	_	
Input high voltage XTAL1	V _{IH2} SR	0.7 V _{DD}	V _{DD} + 0.5	V	_	
Output low voltage (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, RSTOUT, RSTIN ²⁾)	V _{OL} CC	-	0.45	V	I _{OL} = 2.4 mA	
Output low voltage (all other outputs)	V _{OL1} CC	_	0.45	V	<i>I</i> _{OL} = 1.6 mA	
Output high voltage ³⁾	V _{OH} CC	2.4	_	V	I _{OH} = - 2.4 mA	
(PORT0, PORT1, Port 4, ALE, RD, WR, BHE, RSTOUT)		0.9 V _{DD}	_	V	I _{OH} = - 0.5 mA	
Output high voltage ³⁾	V _{OH1} CC	2.4	_	V	I _{OH} = - 1.6 mA	
(all other outputs)		0.9 V _{DD}	_	V	I _{OH} = - 0.5 mA	
Input leakage current (Port 5)	I _{OZ1} CC	-	± 200	nA	$0 V < V_{IN} < V_{DD}$	
Input leakage current (all other)	I _{OZ2} CC	_	± 500	nA	$0.45 \text{ V} < V_{\text{IN}} < V_{\text{E}}$	
RSTIN inactive current ⁴⁾	I _{RSTH} ⁵⁾	_	- 10	μA	$V_{\rm IN} = V_{\rm IH1}$	

DC Characteristics (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)¹⁾

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
PORT0 configuration current ⁸⁾	I _{P0H} ⁵⁾	_	- 5	μA	$V_{\rm IN} = V_{\rm IHmin}$
	<i>I</i> _{P0L} ⁶⁾	- 100	_	μA	$V_{\rm IN} = V_{\rm ILmax}$
XTAL1 input current	I _{IL} CC	_	± 20	μA	$0 V < V_{IN} < V_{DD}$
Pin capacitance ⁹⁾ (digital inputs/outputs)	C _{IO} CC	_	10	pF	f = 1 MHz $T_A = 25 \text{ °C}$

¹⁾ Keeping signal levels within the levels specified in this table, ensures operation without overload conditions. For signal levels outside these specifications also refer to the specification of the overload current I_{OV} .

²⁾ Valid in bidirectional reset mode only.

³⁾ This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.

- ⁴⁾ These parameters describe the $\overline{\text{RSTIN}}$ pullup, which equals a resistance of ca. 50 to 250 k Ω .
- ⁵⁾ The maximum current may be drawn while the respective signal line remains inactive.
- ⁶⁾ The minimum current must be drawn in order to drive the respective signal line active.
- ⁷⁾ This specification is valid during Reset and during Hold-mode or Adapt-mode. During Hold-mode Port 6 pins are only affected, if they are used (configured) for CS output and the open drain function is not enabled. The READY-pullup is always active, except for Powerdown mode.
- ⁸⁾ This specification is valid during Reset and during Adapt-mode.
- ⁹⁾ Not 100% tested, guaranteed by design and characterization.

Power Consumption C165 (Standard Supply Voltage Range)

(Operating Conditions apply)

Parameter	Symbol	Lim	it Values	Unit	Test Condition	
		min.	max.			
Power supply current (active) with all peripherals active	I _{DD5}	-	15 + 1.8 × <i>f</i> _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IL}}$ $f_{\text{CPU}} \text{ in } [\text{MHz}]^{1)}$	
Idle mode supply current with all peripherals active	I _{IDX5}	_	2 + 0.4 × f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{CPU}} \text{ in } [\text{MHz}]^{1)}$	
Power-down mode supply current	I _{PDO5}	-	50	μA	$V_{\rm DD} = V_{\rm DDmax}^{2)}$	

¹⁾ The supply current is a function of the operating frequency. This dependency is illustrated in Figure 8. These parameters are tested at V_{DDmax} and maximum CPU clock with all outputs disconnected and all inputs at V_{IL} or V_{IH}.

²⁾ This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DD} – 0.1 V to V_{DD} , all outputs (including pins configured as outputs) disconnected.

Power Consumption C165 (Reduced Supply Voltage Range)

(Operating Conditions apply)

Parameter	Symbol	Lim	it Values	Unit	Test Condition	
		min.	max.			
Power supply current (active) with all peripherals active	I _{DD3}	-	3 + 1.3 × f _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IL}}$ $f_{\text{CPU}} \text{ in [MHz]}^{1)}$	
Idle mode supply current with all peripherals active	I _{IDX3}	-	1 + 0.4 × f _{CPU}	mA	$\frac{\text{RSTIN} = V_{\text{IH1}}}{f_{\text{CPU}} \text{ in } [\text{MHz}]^{1)}}$	
Power-down mode supply current	I _{PDO3}	-	30	μA	$V_{\rm DD} = V_{\rm DDmax}^{2)}$	

¹⁾ The supply current is a function of the operating frequency. This dependency is illustrated in Figure 8. These parameters are tested at V_{DDmax} and maximum CPU clock with all outputs disconnected and all inputs at V_{IL} or V_{IH}.

²⁾ This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DD} – 0.1 V to V_{DD} , all outputs (including pins configured as outputs) disconnected.

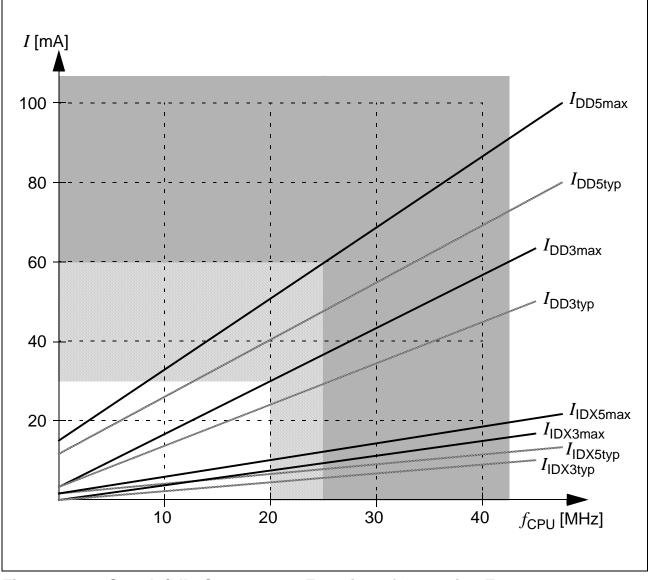


Figure 8 Supply/Idle Current as a Function of Operating Frequency

C165

Testing Waveforms

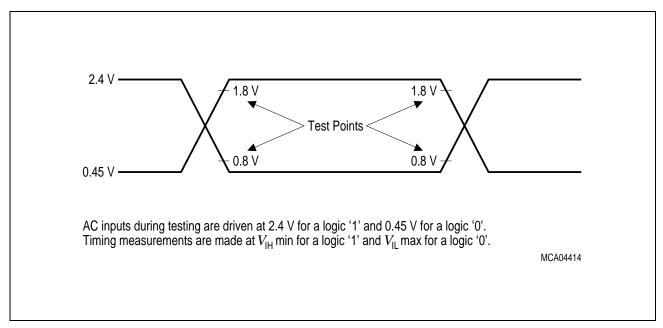


Figure 11 Input Output Waveforms

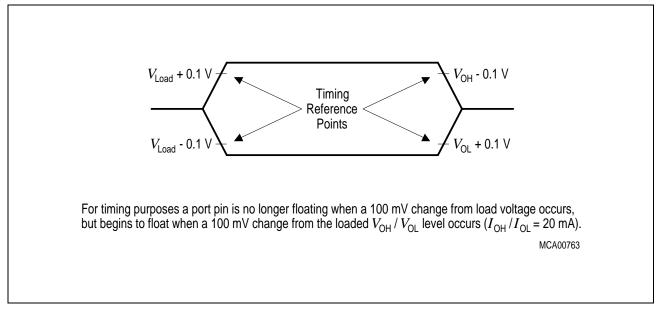


Figure 12 Float Waveforms

Multiplexed Bus (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (150 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CPU Clock = 20 MHz		Variable CPU Clock 1 / 2TCL = 1 to 20 MHz		Unit
			min.	max.	min.	max.	
Data float after RD	t ₁₉	SR	_	$36 + t_{\rm F}$	-	2TCL - 14 + <i>t</i> _F	ns
Data valid to \overline{WR}	t ₂₂	CC	$24 + t_{\rm C}$	-	2TCL - 26 + <i>t</i> _C	-	ns
Data hold after \overline{WR}	<i>t</i> ₂₃	CC	36 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE rising edge after \overline{RD} , \overline{WR}	t ₂₅	CC	36 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	-	ns
Address hold after RD, WR	t ₂₇	CC	36 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE falling edge to $\overline{\text{CS}}^{1)}$	t ₃₈	CC	- 8 - <i>t</i> _A	10 - <i>t</i> _A	- 8 - <i>t</i> _A	10 - <i>t</i> _A	ns
CS low to Valid Data In ¹⁾	t ₃₉	SR	_	$47 + t_{C} + 2t_{A}$	-	3TCL - 28 + <i>t</i> _C + 2 <i>t</i> _A	ns
\overline{CS} hold after \overline{RD} , $\overline{WR}^{(1)}$	<i>t</i> ₄₀	CC	57 + <i>t</i> _F	-	3TCL - 18 + <i>t</i> _F	-	ns
ALE fall. edge to RdCS, WrCS (with RW delay)	<i>t</i> ₄₂	CC	19 + <i>t</i> _A	-	TCL - 6 + <i>t</i> _A	-	ns
ALE fall. edge to RdCS, WrCS (no RW delay)	<i>t</i> ₄₃	CC	$-6 + t_{A}$	-	- 6 + <i>t</i> _A	-	ns
Address float after RdCS, WrCS (with RW delay)	<i>t</i> ₄₄	CC	_	0	-	0	ns
Address float after RdCS, WrCS (no RW delay)	t ₄₅	CC	_	25	-	TCL	ns
RdCS to Valid Data In (with RW delay)	<i>t</i> ₄₆	SR	_	$20 + t_{\rm C}$	-	2TCL - 30 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW delay)	<i>t</i> ₄₇	SR	_	$45 + t_{\rm C}$	-	3TCL - 30 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW delay)	t ₄₈	CC	$38 + t_{\rm C}$	-	2TCL - 12 + <i>t</i> _C	-	ns
RdCS, WrCS Low Time (no RW delay)	t ₄₉	CC	$63 + t_{\rm C}$	-	3TCL - 12 + <i>t</i> _C	-	ns

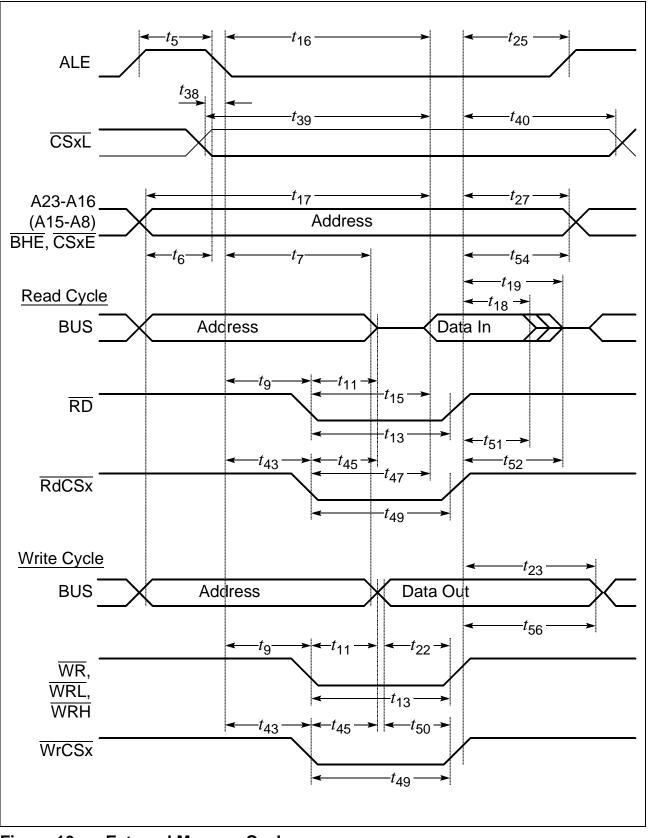


Figure 16 External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Extended ALE

Demultiplexed Bus (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)

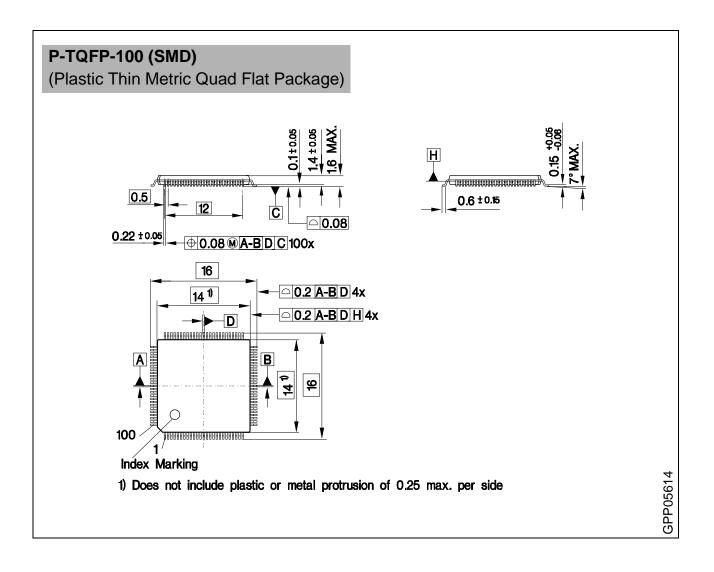
ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (80 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol	Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		Unit
		min.	max.	min.	max.	
Data valid to \overline{WR}	<i>t</i> ₂₂ CC	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	-	ns
Data hold after \overline{WR}	<i>t</i> ₂₄ CC	10 + <i>t</i> _F	-	TCL - 10 + <i>t</i> _F	-	ns
ALE rising edge after RD, WR	<i>t</i> ₂₆ CC	- 10 + <i>t</i> _F	_	- 10 + <i>t</i> _F	_	ns
Address hold after $\overline{WR}^{2)}$	t ₂₈ CC	$0 + t_{F}$	_	$0 + t_{F}$	_	ns
ALE falling edge to $\overline{CS}^{3)}$	t ₃₈ CC	- 4 - t _A	10 - <i>t</i> _A	- 4 - t _A	10 - <i>t</i> _A	ns
$\overline{\text{CS}}$ low to Valid Data In ³⁾	<i>t</i> ₃₉ SR	-	$40 + t_{C} + 2t_{A}$	-	$3TCL - 20 + t_C + 2t_A$	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{3)}$	<i>t</i> ₄₁ CC	$6 + t_{F}$	-	TCL - 14 + <i>t</i> _F	-	ns
ALE falling edge to RdCS, WrCS (with RW- delay)	t ₄₂ CC	16 + <i>t</i> _A	-	TCL - 4 + <i>t</i> _A	-	ns
ALE falling edge to RdCS, WrCS (no RW- delay)	t ₄₃ CC	$-4 + t_{A}$	-	-4 + t_A	-	ns
RdCS to Valid Data In (with RW-delay)	<i>t</i> ₄₆ SR	-	16 + <i>t</i> _C	-	2TCL - 24 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW-delay)	<i>t</i> ₄₇ SR	-	$36 + t_{\rm C}$	_	3TCL - 24 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW-delay)	<i>t</i> ₄₈ CC	$30 + t_{\rm C}$	-	2TCL - 10 + <i>t</i> _C	-	ns
RdCS, WrCS Low Time (no RW-delay)	<i>t</i> ₄₉ CC	$50 + t_{\rm C}$	-	3TCL - 10 + <i>t</i> _C	-	ns
Data valid to \overline{WrCS}	<i>t</i> ₅₀ CC	$26 + t_{\rm C}$	-	2TCL - 14 + <i>t</i> _C	-	ns
Data hold after RdCS	<i>t</i> ₅₁ SR	0	—	0	—	ns

Demultiplexed Bus (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (80 ns at 25 MHz CPU clock without waitstates)


Parameter	Symbol	Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		Unit
		min.	max.	min.	max.	
Data float after RdCS (with RW-delay) ¹⁾	<i>t</i> ₅₃ SR	_	20 + <i>t</i> _F	-	2TCL - 20 + $2t_A + t_F$ 1)	ns
Data float after RdCS (no RW-delay) ¹⁾	<i>t</i> ₆₈ SR	-	0 + <i>t</i> _F	-	TCL - 20 + $2t_A + t_F$ 1)	ns
Address hold after RdCS, WrCS	<i>t</i> ₅₅ CC	- 6 + <i>t</i> _F	-	- 6 + <i>t</i> _F	-	ns
Data hold after WrCS	<i>t</i> ₅₇ CC	6 + <i>t</i> _F	_	TCL - 14 + <i>t</i> _F	_	ns

¹⁾ RW-delay and t_A refer to the next following bus cycle (including an access to an on-chip X-Peripheral).

2) Read data are latched with the same clock edge that triggers the address change and the rising RD edge. Therefore address changes before the end of RD have no impact on read cycles.

³⁾ These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device

Dimensions in mm