

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	20MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	77
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	P-MQFP-100
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c165Imhabxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Pin Nr TQFP	Pin Nr MQFP	Input Outp.	Function
P4			IO	Port 4 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. Port 4 can be used to output the segment address lines:
P4.0	23	25	0	A16 Least Significant Segment Address Line
P4.1	24	26	0	A17 Segment Address Line
P4.2	25	27	0	A18 Segment Address Line
P4.3	26	28	0	A19 Segment Address Line
P4.4	29	31	0	A20 Segment Address Line
P4.5	30	32	0	A21 Segment Address Line
P4.6	31	33	0	A22 Segment Address Line
P4.7	32	34	0	A23 Most Significant Segment Address Line
RD	33	35	0	External Memory Read Strobe. \overline{RD} is activated for every external instruction or data read access.
WR/ WRL	34	36	0	External Memory Write Strobe. In $\overline{\text{WR}}$ -mode this pin is activated for every external data write access. In $\overline{\text{WRL}}$ -mode this pin is activated for low byte data write accesses on a 16-bit bus, and for every data write access on an 8-bit bus. See WRCFG in register SYSCON for mode selection.
READY	35	37	1	Ready Input. When the Ready function is enabled, a high level at this pin during an external memory access will force the insertion of memory cycle waitstates until the pin returns to a low level. An internal pullup device holds this pin high when nothing is driving it.
ALE	36	38	0	Address Latch Enable Output. Can be used for latching the address into external memory or an address latch in the multiplexed bus modes.
EA	37	39	1	External Access Enable pin. A low level at this pin during and after Reset forces the C165 to begin instruction execution out of external memory. A high level forces execution out of the internal program memory.

Table 2Pin Definitions and Functions (cont'd)

Table 2Pin Definitions and Functions (cont'd)

Symbol	Pin Nr TQFP	Pin Nr MQFP	Input Outp.	Function					
NC	40	42	_	This pin is not connection to the	ected in the C1 e PCB is requir	65. ed.			
PORT0 P0L.0-7	41-48	43-50	IO	PORT0 consists of t ports P0L and P0H. input or output via di	the two 8-bit bic It is bit-wise pr rection bits. For	directional I/O ogrammable for a pin configured			
P0H.0-7	51-58	53-60		Input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. In case of an external bus configuration, PORT0 serves as the address (A) and address/data (AD) bus in multiplexed bus modes and as the data (D) bus in demultiplexed bus modes. Demultiplexed bus modes: Data Path Width: 8-bit 16-bit POL.0 – POL.7: D0 – D7 D0 – D7 POH.0 – POH.7: I/O D8 – D15 Multiplexed bus modes: Data Path Width: 8-bit 16-bit POL.0 – POL.7: AD0 AD7					
			10	POH.0 - POH.7:	A8 - A15	AD8 – AD15			
PORT1 P1L.0-7	59-66	61-68	10	ports P1L and P1H.	It is bit-wise pr rection bits. For	ogrammable for a pin configured			
P1H.0-7	67,68, 71-76	69-70, 73-78		as input, the output of state. PORT1 is use in demultiplexed bus from a demultiplexed mode.	driver is put into ed as the 16-bit s modes and als d bus mode to a	high-impedance address bus (A) to after switching multiplexed bus			

Table 2	Pin Definitions and Functions (cont'd)

Symbol	Pin Nr TQFP	Pin Nr MQFP	Input Outp.	Function
P6			IO	Port 6 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. Port 6 outputs can be configured as push/pull or open drain drivers. The Port 6 pins also serve for alternate functions:
P6.0 P6.1 P6.2 P6.3 P6.4 P6.5 P6.6 P6.7	82 83 84 85 86 87 88 89	84 85 86 87 88 89 90 91	0 0 0 0 1 1/0 0	CS0Chip Select 0 OutputCS1Chip Select 1 OutputCS2Chip Select 2 OutputCS3Chip Select 3 OutputCS4Chip Select 4 OutputHOLDExternal Master Hold Request InputHLDAHold Acknowledge Outp.(master mode)or Input (slave mode)BREQBus Request Output
P2.8 P2.9 P2.10 P2.11 P2.12 P2.13 P2.14 P2.15	90 91 92 93 94 95 96 97	92 93 94 95 96 97 98	IO I I I I I	Port 2 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. Port 2 outputs can be configured as push/pull or open drain drivers. The following Port 2 pins serve for alternate functions: EX0IN Fast External Interrupt 0 Input EX1IN Fast External Interrupt 1 Input EX2IN Fast External Interrupt 2 Input EX3IN Fast External Interrupt 3 Input EX4IN Fast External Interrupt 4 Input EX5IN Fast External Interrupt 5 Input EX6IN Fast External Interrupt 6 Input EX7IN Fast External Interrupt 6 Input
P5.10 P5.11 P5.12 P5.13 P5.14 P5.15	98 99 100 1 2 3	100 1 2 3 4 5	 	Port 5 is a 6-bit input-only port with Schmitt-Trigger char. The pins of Port 5 also serve as timer inputs:T6EUDGPT2 Timer T6 Ext. Up/Down Ctrl InputT5EUDGPT2 Timer T5 Ext. Up/Down Ctrl InputT6INGPT2 Timer T6 Count InputT5INGPT2 Timer T5 Count InputT4EUDGPT1 Timer T4 Ext. Up/Down Ctrl InputT2EUDGPT1 Timer T2 Ext. Up/Down Ctrl Input

Functional Description

The architecture of the C165 combines advantages of both RISC and CISC processors and of advanced peripheral subsystems in a very well-balanced way. In addition the on-chip memory blocks allow the design of compact systems with maximum performance.

The following block diagram gives an overview of the different on-chip components and of the advanced, high bandwidth internal bus structure of the C165.

Note: All time specifications refer to a CPU clock of 25 MHz (see definition in the AC Characteristics section).

Figure 4 Block Diagram

The program memory, the internal RAM (IRAM) and the set of generic peripherals are connected to the CPU via separate buses. A fourth bus, the XBUS, connects external resources as well as additional on-chip resources, the X-Peripherals (see Figure 4).

Interrupt System

With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of internal program execution), the C165 is capable of reacting very fast to the occurrence of non-deterministic events.

The architecture of the C165 supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source or the destination pointer. An individual PEC transfer counter is implicity decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The C165 has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via its related register, each source can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt sources has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge or both edges).

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

Table 3 shows all of the possible C165 interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Note: Interrupt nodes which are not used by associated peripherals, may be used to generate software controlled interrupt requests by setting the respective interrupt request bit (xIR).

	•				
Source of Interrupt or PEC Service Request	Request Flag	Enable Flag	Interrupt Vector	Vector Location	Trap Number
External Interrupt 0	CC8IR	CC8IE	CC8INT	00'0060 _H	18 _H
External Interrupt 1	CC9IR	CC9IE	CC9INT	00'0064 _H	19 _H
External Interrupt 2	CC10IR	CC10IE	CC10INT	00'0068 _H	1A _H
External Interrupt 3	CC11IR	CC11IE	CC11INT	00'006C _H	1B _H
External Interrupt 4	CC12IR	CC12IE	CC12INT	00'0070 _H	1C _H
External Interrupt 5	CC13IR	CC13IE	CC13INT	00'0074 _H	1D _H
External Interrupt 6	CC14IR	CC14IE	CC14INT	00'0078 _H	1E _H
External Interrupt 7	CC15IR	CC15IE	CC15INT	00'007C _H	1F _H
GPT1 Timer 2	T2IR	T2IE	T2INT	00'0088 _H	22 _H
GPT1 Timer 3	T3IR	T3IE	T3INT	00'008C _H	23 _H
GPT1 Timer 4	T4IR	T4IE	T4INT	00'0090 _H	24 _H
GPT2 Timer 5	T5IR	T5IE	T5INT	00'0094 _H	25 _H
GPT2 Timer 6	T6IR	T6IE	T6INT	00'0098 _H	26 _H
GPT2 CAPREL Reg.	CRIR	CRIE	CRINT	00'009C _H	27 _H
ASC0 Transmit	S0TIR	SOTIE	SOTINT	00'00A8 _H	2A _H
ASC0 Transmit Buffer	S0TBIR	SOTBIE	SOTBINT	00'011C _H	47 _H
ASC0 Receive	SORIR	SORIE	SORINT	00'00AC _H	2B _H
ASC0 Error	SOEIR	SOEIE	SOEINT	00'00B0 _H	2C _H
SSC Transmit	SCTIR	SCTIE	SCTINT	00'00B4 _H	2D _H
SSC Receive	SCRIR	SCRIE	SCRINT	00'00B8 _H	2E _H
SSC Error	SCEIR	SCEIE	SCEINT	00'00BC _H	2F _H
Unassigned node	XP0IR	XP0IE	XP0INT	00'0100 _H	40 _H
Unassigned node	XP1IR	XP1IE	XP1INT	00'0104 _H	41 _H
Unassigned node	XP2IR	XP2IE	XP2INT	00'0108 _H	42 _H
Unassigned node	XP3IR	XP3IE	XP3INT	00'010C _H	43 _H
Unassigned node	CC29IR	CC29IE	CC29INT	00'0110 _H	44 _H
Unassigned node	CC30IR	CC30IE	CC30INT	00'0114 _H	45 _H

Table 3C165 Interrupt Nodes

Unassigned node

46_H

00'0118_H

CC31IE

CC31INT

CC31IR

Table 6		C165 Regist	ers, Oro	dered by Name (cont'd)	
Name		Physical Address	8-Bit Addr.	Description	Reset Value
P1H	b	FF06 _H	83 _H	Port 1 High Reg. (Upper half of PORT1)	00 _H
P1L	b	FF04 _H	82 _H	Port 1 Low Reg.(Lower half of PORT1)	00 _H
P2	b	FFC0 _H	E0 _H	Port 2 Register	0000 _H
P3	b	FFC4 _H	E2 _H	Port 3 Register	0000 _H
P4	b	FFC8 _H	E4 _H	Port 4 Register (8 bits)	00 _H
P5	b	FFA2 _H	D1 _H	Port 5 Register (read only)	XXXX _H
P6	b	FFCC _H	E6 _H	Port 6 Register (8 bits)	00 _H
PECC0		FEC0 _H	60 _H	PEC Channel 0 Control Register	0000 _H
PECC1		FEC2 _H	61 _H	PEC Channel 1 Control Register	0000 _H
PECC2		FEC4 _H	62 _H	PEC Channel 2 Control Register	0000 _H
PECC3		FEC6 _H	63 _H	PEC Channel 3 Control Register	0000 _H
PECC4		FEC8 _H	64 _H	PEC Channel 4 Control Register	0000 _H
PECC5		FECA _H	65 _H	PEC Channel 5 Control Register	0000 _H
PECC6		FECCH	66 _H	PEC Channel 6 Control Register	0000 _H
PECC7		FECE _H	67 _H	PEC Channel 7 Control Register	0000 _H
PSW	b	FF10 _H	88 _H	CPU Program Status Word	0000 _H
RP0H	b	F108 _H E	84 _H	System Startup Config. Reg. (Rd. only)	XX _H
S0BG		FEB4 _H	5A _H	Serial Channel 0 Baud Rate Generator Reload Register	0000 _H
S0CON	b	FFB0 _H	D8 _H	Serial Channel 0 Control Register	0000 _H
S0EIC	b	FF70 _H	B8 _H	Serial Channel 0 Error Interrupt Ctrl. Reg	0000 _H
SORBUF		FEB2 _H	59 _H	Serial Channel 0 Receive Buffer Reg. (read only)	ХХ _Н
SORIC	b	FF6E _H	B7 _H	Serial Channel 0 Receive Interrupt Control Register	0000 _H
SOTBIC	b	F19C _H E	CEH	Serial Channel 0 Transmit Buffer Interrupt Control Register	0000 _H
S0TBUF		FEB0 _H	58 _H	Serial Channel 0 Transmit Buffer Register (write only)	00 _H
SOTIC	b	FF6C _H	B6 _H	Serial Channel 0 Transmit Interrupt Control Register	0000 _H

I able 6 C165 Registers, Ordered by Name (cont'd)								
Name		Physical Address		8-Bit Addr.	Description	Reset Value		
XP1IC	b	F18E _H	Ε	C7 _H	Software Interrupt Control Register	0000 _H		
XP2IC	b	F196 _H	Ε	CB _H	Software Interrupt Control Register	0000 _H		
XP3IC	b	F19E _H	Ε	CF _H	Software Interrupt Control Register	0000 _H		
ZEROS	b	FF1C _H		8E _H	Constant Value 0's Register (read only)	0000 _H		

11 - IN ,

¹⁾ The system configuration is selected during reset.

 $^{\mbox{2)}}$ The reset value depends on the indicated reset source.

Absolute Maximum Ratings

Parameter	Symbol	Limit	Values	Unit	Notes
		min.	max.		
Storage temperature	T _{ST}	- 65	150	°C	-
Junction temperature	TJ	- 40	150	°C	under bias
Voltage on V_{DD} pins with respect to ground (V_{SS})	V _{DD}	- 0.5	6.5	V	-
Voltage on any pin with respect to ground (V_{SS})	V _{IN}	- 0.5	V _{DD} + 0.5	V	-
Input current on any pin during overload condition	-	- 10	10	mA	-
Absolute sum of all input currents during overload condition	-	_	100	mA	_
Power dissipation	P _{DISS}	-	1.5	W	-

Table 7 Absolute Maximum Rating Parameters

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$) the voltage on V_{DD} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

DC Characteristics (Reduced Supply Voltage Range) (Operating Conditions apply)¹⁾

Parameter		bol	Limit	Values	Unit	Test Condition	
			min.	max.			
Input low voltage (TTL, all except XTAL1)	V_{IL}	SR	- 0.5	0.8	V	-	
Input low voltage XTAL1	V_{IL2}	SR	- 0.5	0.3 V _{DD}	V	_	
Input high voltage (TTL, all except RSTIN and XTAL1)	V_{IH}	SR	1.8	V _{DD} + 0.5	V	-	
Input high voltage RSTIN (when operated as input)	V _{IH1}	SR	0.6 V _{DD}	V _{DD} + 0.5	V	_	
Input high voltage XTAL1	V _{IH2}	SR	0.7 V _{DD}	V _{DD} + 0.5	V	_	
Output low voltage (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, RSTOUT, RSTIN ²⁾)	V _{OL}	CC	_	0.45	V	I _{OL} = 1.6 mA	
Output low voltage (all other outputs)	V _{OL1}	CC	_	0.45	V	<i>I</i> _{OL} = 1.0 mA	
Output high voltage ³⁾ (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, RSTOUT)	V _{OH}	CC	0.9 V _{DD}	_	V	I _{OH} = - 0.5 mA	
Output high voltage ³⁾ (all other outputs)	V _{OH1}	CC	0.9 V _{DD}	-	V	I _{OH} = - 0.25 mA	
Input leakage current (Port 5)	I _{OZ1}	CC	-	± 200	nA	$0 V < V_{IN} < V_{DD}$	
Input leakage current (all other)	I _{OZ2}	CC	-	± 500	nA	$0.45 \text{ V} < V_{\text{IN}} < V_{\text{DD}}$	
RSTIN inactive current ⁴⁾	IRST	5) 1	_	- 10	μΑ	$V_{\rm IN} = V_{\rm IH1}$	
RSTIN active current ⁴⁾	I _{RSTL}	6)	- 100	_	μΑ	$V_{\rm IN} = V_{\rm IL}$	
READY/RD/WR inact. current ⁷⁾	I _{RWH}	5)	_	- 10	μΑ	V_{OUT} = 2.4 V	
READY/RD/WR active current ⁷⁾	I _{RWL}	6)	- 500	_	μΑ	$V_{OUT} = V_{OLmax}$	
ALE inactive current ⁷⁾	IALEL	5)	_	20	μΑ	$V_{OUT} = V_{OLmax}$	
ALE active current ⁷⁾	IALEH	6) 1	500	_	μΑ	V_{OUT} = 2.4 V	
Port 6 inactive current ⁷⁾	I _{P6H} ⁵	5)	-	- 10	μA	V_{OUT} = 2.4 V	
Port 6 active current ⁷⁾	I _{P6L} ⁶)	- 500	_	μA	$V_{OUT} = V_{OL1max}$	

Figure 8 Supply/Idle Current as a Function of Operating Frequency

C165

Figure 10 External Clock Drive XTAL1

Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is limited to a range of 4 MHz to 40 MHz.

It is strongly recommended to measure the oscillation allowance (or margin) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier.

When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is guaranteed by design only (not 100% tested).

AC Characteristics

Multiplexed Bus (Reduced Supply Voltage Range)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (150 ns at 20 MHz CPU clock without waitstates)

Parameter		nbol	Max. CP = 20	PU Clock MHz	Variable (1 / 2TCL = 1	Unit	
			min.	max.	min.	max.	
ALE high time	<i>t</i> ₅	CC	$11 + t_A$	_	TCL - 14	_	ns
					$+ t_A$		
Address setup to ALE	<i>t</i> ₆	CC	$5 + t_A$	_	TCL - 20 + <i>t</i> _A	_	ns
Address hold after ALE	<i>t</i> ₇	CC	15 + <i>t</i> _A	_	TCL - 10 + <i>t</i> _A	_	ns
ALE falling edge to \overline{RD} , WR (with RW-delay)	<i>t</i> ₈	CC	$15 + t_A$	_	TCL - 10 + <i>t</i> _A	_	ns
ALE falling edge to RD, WR (no RW-delay)	t ₉	CC	- 10 + <i>t</i> _A	_	$-10 + t_{A}$	_	ns
Address float after RD, WR (with RW-delay)	<i>t</i> ₁₀	CC	_	6	-	6	ns
Address float after RD, WR (no RW-delay)	<i>t</i> ₁₁	CC	_	31	_	TCL + 6	ns
RD, WR low time (with RW-delay)	t ₁₂	CC	$34 + t_{\rm C}$	_	2TCL - 16 + <i>t</i> _C	_	ns
RD, WR low time (no RW-delay)	t ₁₃	CC	59 + t _C	_	3TCL - 16 + <i>t</i> _C	_	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	_	22 + $t_{\rm C}$	-	2TCL - 28 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	_	$47 + t_{\rm C}$	-	3TCL - 28 + <i>t</i> _C	ns
ALE low to valid data in	t ₁₆	SR	_	$45 + t_A + t_C$	-	3TCL - 30 + t_{A} + t_{C}	ns
Address to valid data in	t ₁₇	SR	-	$57 + 2t_A + t_C$	-	$4TCL - 43 + 2t_A + t_C$	ns
Data hold after RD rising edge	t ₁₈	SR	0	-	0	-	ns

Multiplexed Bus (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (150 ns at 20 MHz CPU clock without waitstates)

Parameter		nbol	Max. CP = 20	PU Clock MHz	Variable (1 / 2TCL = '	Unit	
			min.	max.	min.	max.	
Data float after RD	t ₁₉	SR	-	36 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	ns
Data valid to \overline{WR}	t ₂₂	CC	24 + $t_{\rm C}$	_	2TCL - 26 + <i>t</i> _C	-	ns
Data hold after WR	<i>t</i> ₂₃	CC	$36 + t_{F}$	_	2TCL - 14 + <i>t</i> _F	-	ns
ALE rising edge after \overline{RD} , \overline{WR}	t ₂₅	CC	36 + $t_{\rm F}$	_	2TCL - 14 + <i>t</i> _F	-	ns
Address hold after RD, WR	t ₂₇	CC	$36 + t_{F}$	_	2TCL - 14 + <i>t</i> _F	-	ns
ALE falling edge to $\overline{CS}^{1)}$	t ₃₈	CC	- 8 - t _A	10 - <i>t</i> _A	- 8 - <i>t</i> _A	10 - <i>t</i> _A	ns
CS low to Valid Data In ¹⁾	t ₃₉	SR	-	$47 + t_{C} + 2t_{A}$	-	3TCL - 28 + <i>t</i> _C + 2 <i>t</i> _A	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{(1)}$	<i>t</i> ₄₀	CC	57 + t _F	_	3TCL - 18 + <i>t</i> _F	-	ns
ALE fall. edge to RdCS, WrCS (with RW delay)	<i>t</i> ₄₂	CC	19 + t_{A}	_	TCL - 6 + <i>t</i> _A	-	ns
ALE fall. edge to RdCS, WrCS (no RW delay)	<i>t</i> ₄₃	CC	$-6 + t_{A}$	_	- 6 + <i>t</i> _A	_	ns
Address float after RdCS, WrCS (with RW delay)	<i>t</i> ₄₄	CC	_	0	_	0	ns
Address float after RdCS, WrCS (no RW delay)	<i>t</i> ₄₅	CC	-	25	-	TCL	ns
RdCS to Valid Data In (with RW delay)	<i>t</i> ₄₆	SR	_	$20 + t_{\rm C}$	-	2TCL - 30 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW delay)	<i>t</i> ₄₇	SR	-	45 + t _C	-	3TCL - 30 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW delay)	t ₄₈	CC	38 + <i>t</i> _C	_	2TCL - 12 + <i>t</i> _C	_	ns
RdCS, WrCS Low Time (no RW delay)	t ₄₉	CC	$63 + t_{\rm C}$	-	3TCL - 12 + <i>t</i> _C	_	ns

Multiplexed Bus (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (150 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbol	I Max. CPU Clock = 20 MHz		Variable CPU Clock 1 / 2TCL = 1 to 20 MHz		Unit
		min.	max.	min.	max.	
Data valid to WrCS	<i>t</i> ₅₀ CC	$28 + t_{\rm C}$	_	2TCL - 22 + <i>t</i> _C	-	ns
Data hold after RdCS	<i>t</i> ₅₁ SR	0	-	0	_	ns
Data float after RdCS	<i>t</i> ₅₂ SR	_	$30 + t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	ns
Address hold after RdCS, WrCS	<i>t</i> ₅₄ CC	$30 + t_{\rm F}$	_	2TCL - 20 + <i>t</i> _F	-	ns
Data hold after WrCS	<i>t</i> ₅₆ CC	$30 + t_{\rm F}$	_	2TCL - 20 + <i>t</i> _F	-	ns

¹⁾ These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

AC Characteristics

Demultiplexed Bus (Standard Supply Voltage Range)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (80 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		Unit
			min.	max.	min.	max.	
ALE high time	<i>t</i> 5	CC	$10 + t_{A}$	_	TCL - 10 + <i>t</i> _A	_	ns
Address setup to ALE	<i>t</i> ₆	CC	$4 + t_A$	_	TCL - 16 + <i>t</i> _A	_	ns
ALE falling edge to \overline{RD} , WR (with RW-delay)	t ₈	CC	$10 + t_{A}$	_	TCL - 10 + <i>t</i> _A	_	ns
ALE falling edge to \overline{RD} , WR (no RW-delay)	t ₉	CC	- 10 + <i>t</i> _A	-	- 10 + <i>t</i> _A	_	ns
RD, WR low time (with RW-delay)	t ₁₂	CC	$30 + t_{\rm C}$	-	2TCL - 10 + <i>t</i> _C	_	ns
RD, WR low time (no RW-delay)	t ₁₃	CC	$50 + t_{\rm C}$	-	3TCL - 10 + <i>t</i> _C	_	ns
RD to valid data in (with RW-delay)	t ₁₄	SR	_	20 + <i>t</i> _C	-	2TCL - 20 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	_	$40 + t_{\rm C}$	-	3TCL - 20 + <i>t</i> _C	ns
ALE low to valid data in	t ₁₆	SR	_	$40 + t_{A} + t_{C}$	_	3TCL - 20 + <i>t</i> _A + <i>t</i> _C	ns
Address to valid data in	t ₁₇	SR	_	$50 + 2t_A + t_C$	_	$4TCL - 30 + 2t_A + t_C$	ns
Data hold after RD rising edge	t ₁₈	SR	0	-	0	_	ns
Data float after RD rising edge (with RW-delay ¹⁾)	<i>t</i> ₂₀	SR	_	$26 + 2t_A + t_F^{(1)}$	_	2TCL - 14 + $22t_A$ + $t_F^{(1)}$	ns
Data float after RD rising edge (no RW-delay ¹⁾)	t ₂₁	SR	_	$10 + 2t_{A} + t_{F}^{(1)}$	-	TCL - 10 + $22t_A$ + $t_F^{(1)}$	ns

Figure 18 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Extended ALE

Figure 19 External Memory Cycle: Demultiplexed Bus, No Read/Write Delay, Normal ALE

Package Outlines

71

Infineon goes for Business Excellence

"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results.

Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction."

Dr. Ulrich Schumacher

http://www.infineon.com