

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	20MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	77
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	P-MQFP-100
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c165lmhafxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

The C165 is a derivative of the Infineon C166 Family of full featured single-chip CMOS microcontrollers. It combines high CPU performance (up to 12.5 million instructions per second) with peripheral functionality and enhanced IO-capabilities. The C165 is especially suited for cost sensitive applications.

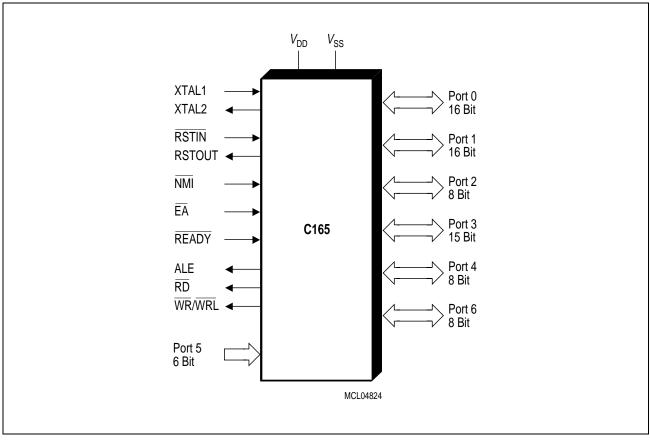


Figure 1 Logic Symbol

Pin Configuration TQFP Package

(top view)

Figure 2

Table 2	Pin Definitions and Functions (cont'd)
---------	--

Symbol	Pin Nr TQFP	Pin Nr MQFP	Input Outp.	Function
V _{DD}	7, 28, 38, 49, 69, 78	9, 30, 40, 51, 71, 80	_	Digital Supply Voltage: + 5 V or + 3 V during normal operation and idle mode. ≥ 2.5 V during power down mode.
V _{SS}	4, 27, 39, 50, 70, 77	6, 29, 41, 52, 72, 79	_	Digital Ground.

Note: The following behavioural differences must be observed when the bidirectional reset is active:

- Bit BDRSTEN in register SYSCON cannot be changed after EINIT and is cleared automatically after a reset.
- The reset indication flags always indicate a long hardware reset.
- The PORT0 configuration is treated like on a hardware reset. Especially the bootstrap loader may be activated when P0L.4 is low.
- Pin RSTIN may only be connected to external reset devices with an open drain output driver.
- A short hardware reset is extended to the duration of the internal reset sequence.

Interrupt System

With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of internal program execution), the C165 is capable of reacting very fast to the occurrence of non-deterministic events.

The architecture of the C165 supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source or the destination pointer. An individual PEC transfer counter is implicity decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The C165 has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via its related register, each source can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt sources has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge or both edges).

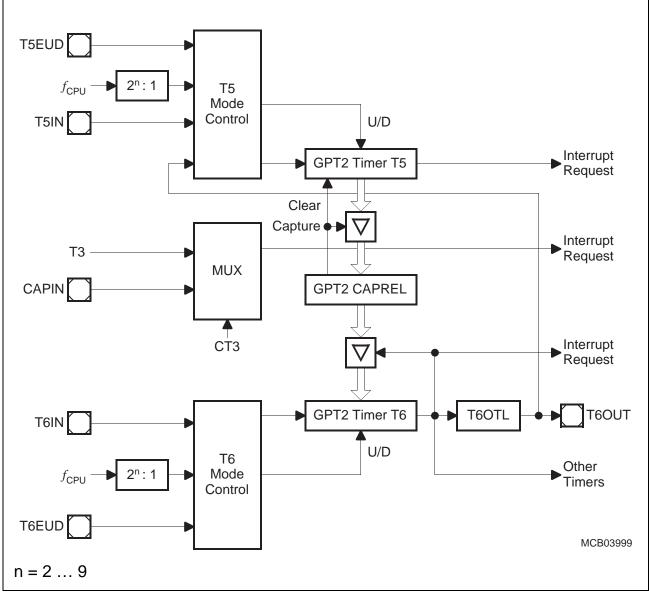

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

Table 3 shows all of the possible C165 interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Note: Interrupt nodes which are not used by associated peripherals, may be used to generate software controlled interrupt requests by setting the respective interrupt request bit (xIR).

The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of GPT1 timer T3's inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

Table 5 Ins	struction Set Summary (cont'd)	
Mnemonic	Description	Bytes
MOV(B)	Move word (byte) data	2/4
MOVBS	Move byte operand to word operand with sign extension	2/4
MOVBZ	Move byte operand to word operand. with zero extension	2/4
JMPA, JMPI, JMPR	Jump absolute/indirect/relative if condition is met	4
JMPS	Jump absolute to a code segment	4
J(N)B	Jump relative if direct bit is (not) set	4
JBC	Jump relative and clear bit if direct bit is set	4
JNBS	Jump relative and set bit if direct bit is not set	4
CALLA, CALLI, CALLR	Call absolute/indirect/relative subroutine if condition is met	4
CALLS	Call absolute subroutine in any code segment	4
PCALL	Push direct word register onto system stack and call absolute subroutine	4
TRAP	Call interrupt service routine via immediate trap number	2
PUSH, POP	Push/pop direct word register onto/from system stack	2
SCXT	Push direct word register onto system stack und update register with word operand	4
RET	Return from intra-segment subroutine	2
RETS	Return from inter-segment subroutine	2
RETP	Return from intra-segment subroutine and pop direct word register from system stack	2
RETI	Return from interrupt service subroutine	2
SRST	Software Reset	4
IDLE	Enter Idle Mode	4
PWRDN	Enter Power Down Mode (supposes MMI-pin being low)	4
SRVWDT	Service Watchdog Timer	4
DISWDT	Disable Watchdog Timer	4
EINIT	Signify End-of-Initialization on RSTOUT-pin	4
ATOMIC	Begin ATOMIC sequence	2
EXTR	Begin EXTended Register sequence	2
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4
NOP	Null operation	2

Special Function Registers Overview

The following table lists all SFRs which are implemented in the C165 in alphabetical order.

Bit-addressable SFRs are marked with the letter "**b**" in column "Name". SFRs within the **Extended SFR-Space** (ESFRs) are marked with the letter "**E**" in column "Physical Address". Registers within on-chip X-peripherals are marked with the letter "**X**" in column "Physical Address".

An SFR can be specified via its individual mnemonic name. Depending on the selected addressing mode, an SFR can be accessed via its physical address (using the Data Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).

Name	ame Physical Address			8-Bit Addr.	Description	Reset Value
ADDRSEL1		FE18 _H		0C _H	Address Select Register 1	0000 _H
ADDRSEL2	2	FE1A _H		0D _H	Address Select Register 2	0000 _H
ADDRSEL3	3	FE1C _H		0E _H	Address Select Register 3	0000 _H
ADDRSEL4	Ļ	FE1E _H		0F _H	Address Select Register 4	0000 _H
BUSCON0	b	FF0C _H		86 _H	Bus Configuration Register 0	0XX0 _H
BUSCON1	b	FF14 _H		8A _H	Bus Configuration Register 1	0000 _H
BUSCON2	b	FF16 _H		8B _H	Bus Configuration Register 2	0000 _H
BUSCON3	b	FF18 _H		8C _H	Bus Configuration Register 3	0000 _H
BUSCON4	b	FF1A _H		8D _H	Bus Configuration Register 4	0000 _H
CAPREL		FE4A _H		25 _H	GPT2 Capture/Reload Register	0000 _H
CC10IC	b	FF8C _H		C6 _H	EX2IN Interrupt Control Register	0000 _H
CC11IC	b	FF8E _H		C7 _H	EX3IN Interrupt Control Register	0000 _H
CC12IC	b	FF90 _H		C8 _H	EX4IN Interrupt Control Register	0000 _H
CC13IC	b	FF92 _H		C9 _H	EX5IN Interrupt Control Register	0000 _H
CC14IC	b	FF94 _H		CA _H	EX6IN Interrupt Control Register	0000 _H
CC15IC	b	FF96 _H		CB _H	EX7IN Interrupt Control Register	0000 _H
CC29IC	b	F184 _H	Ε	C2 _H	Software Interrupt Control Register	0000 _H
CC30IC	b	F18C _H	Е	C6 _H	Software Interrupt Control Register	0000 _H
CC31IC	b	F194 _H	Ε	CA _H	Software Interrupt Control Register	0000 _H
CC8IC	b	FF88 _H		C4 _H	EX0IN Interrupt Control Register	0000 _H
CC9IC	b	FF8A _H		C5 _H	EX1IN Interrupt Control Register	0000 _H

Table 6C165 Registers, Ordered by Name

Table 6C165 Registers, Ordered by Name (cont'd)									
lame		Physical Address	8-Bit Addr.	Description	Reset Value				
P1H	b	FF06 _H	83 _H	Port 1 High Reg. (Upper half of PORT1)	00 _H				
91L	b	FF04 _H	82 _H	Port 1 Low Reg.(Lower half of PORT1)	00 _H				
2	b	FFC0 _H	E0 _H	Port 2 Register	0000 _H				
v 3	b	FFC4 _H	E2 _H	Port 3 Register	0000 _H				
94	b	FFC8 _H	E4 _H	Port 4 Register (8 bits)	00 _H				
? 5	b	FFA2 _H	D1 _H	Port 5 Register (read only)	XXXX _H				
° 6	b	FFCC _H	E6 _H	Port 6 Register (8 bits)	00 _H				
PECC0		FEC0 _H	60 _H	PEC Channel 0 Control Register	0000 _H				
PECC1		FEC2 _H	61 _H	PEC Channel 1 Control Register	0000 _H				
PECC2		FEC4 _H	62 _H	PEC Channel 2 Control Register	0000 _H				
PECC3		FEC6 _H	63 _H	PEC Channel 3 Control Register	0000 _H				
PECC4		FEC8 _H	64 _H	PEC Channel 4 Control Register	0000 _H				
PECC5		FECA _H	65 _H	PEC Channel 5 Control Register	0000 _H				
PECC6		FECC _H	66 _H	PEC Channel 6 Control Register	0000 _H				
PECC7		FECE _H	67 _H	PEC Channel 7 Control Register	0000 _H				
PSW	b	FF10 _H	88 _H	CPU Program Status Word	0000 _H				
RP0H	b	F108 _H E	84 _H	System Startup Config. Reg. (Rd. only)	XX _H				
60BG		FEB4 _H	5A _H	Serial Channel 0 Baud Rate Generator Reload Register	0000 _H				
50CON	b	FFB0 _H	D8 _H	Serial Channel 0 Control Register	0000 _H				
SOEIC	b	FF70 _H	B8 _H	Serial Channel 0 Error Interrupt Ctrl. Reg	0000 _H				
ORBUF		FEB2 _H	59 _H	Serial Channel 0 Receive Buffer Reg. (read only)	XX _H				
SORIC	b	FF6E _H	B7 _H	Serial Channel 0 Receive Interrupt Control Register	0000 _H				
OTBIC	b	F19C _H E	CEH	Serial Channel 0 Transmit Buffer Interrupt Control Register	0000 _H				
OTBUF		FEB0 _H	58 _H	Serial Channel 0 Transmit Buffer Register (write only)	00 _H				
SOTIC	b	FF6C _H	B6 _H	Serial Channel 0 Transmit Interrupt Control Register	0000 _H				
	b			Register (write only) Serial Channel 0 Transmit Interrupt					

ame (cont'd)

Name Physical Address				8-Bit Addr.	Description	Reset Value
SP FE12 _H 09 _H CPU System				09 _H	CPU System Stack Pointer Register	FC00 _H
SSCBR		F0B4 _H	Ε	5A _H	SSC Baudrate Register	0000 _H
SSCCON	b	FFB2 _H		D9 _H	SSC Control Register	0000 _H
SSCEIC	b	FF76 _H BB _H SSC Error Interrupt Control Register			0000 _H	
SSCRB		F0B2 _H E 59 _H SSC Receive Buffer				XXXX _H
SSCRIC	b	FF74 _H BA _H SSC Receive Interrupt Control Register			0000 _H	
SSCTB		F0B0 _H	0000 _H			
SSCTIC	b	FF72 _H		B9 _H	SSC Transmit Interrupt Control Register	0000 _H
STKOV		FE14 _H		0A _H	CPU Stack Overflow Pointer Register	FA00 _H
STKUN		FE16 _H		0B _H	CPU Stack Underflow Pointer Register	FC00 _H
SYSCON	b	FF12 _H		89 _H	CPU System Configuration Register	¹⁾ 0XX0 _H
T2		FE40 _H		20 _H	GPT1 Timer 2 Register	0000 _H
T2CON	b	FF40 _H		A0 _H	GPT1 Timer 2 Control Register	0000 _H
T2IC	b	FF60 _H		B0 _H	GPT1 Timer 2 Interrupt Control Register	0000 _H
Т3		FE42 _H		21 _H	GPT1 Timer 3 Register	0000 _H
T3CON	b	FF42 _H		A1 _H	GPT1 Timer 3 Control Register	0000 _H
T3IC	b	FF62 _H		B1 _H	GPT1 Timer 3 Interrupt Control Register	0000 _H
T4		FE44 _H		22 _H	GPT1 Timer 4 Register	0000 _H
T4CON	b	FF44 _H		A2 _H	GPT1 Timer 4 Control Register	0000 _H
T4IC	b	FF64 _H		B2 _H	GPT1 Timer 4 Interrupt Control Register	0000 _H
Т5		FE46 _H		23 _H	GPT2 Timer 5 Register	0000 _H
T5CON	b	FF46 _H		A3 _H	GPT2 Timer 5 Control Register	0000 _H
T5IC	b	FF66 _H		B3 _H	GPT2 Timer 5 Interrupt Control Register	0000 _H
Т6		FE48 _H		24 _H	GPT2 Timer 6 Register	0000 _H
T6CON	b	FF48 _H		A4 _H	GPT2 Timer 6 Control Register	0000 _H
T6IC	b	FF68 _H		B4 _H	GPT2 Timer 6 Interrupt Control Register	0000 _H
TFR	b	FFAC _H D6 _H Trap Flag Register		0000 _H		
WDT		FEAE _H		57 _H	Watchdog Timer Register (read only)	0000 _H
WDTCON	b	FFAE _H		D7 _H	Watchdog Timer Control Register	²⁾ 00XX _H
XP0IC	b	F186 _H	Е	C3 _H	Software Interrupt Control Register	0000 _H

Absolute Maximum Ratings

Parameter	Symbol	Limit	Values	Unit	Notes
		min.	max.		
Storage temperature	T _{ST}	- 65	150	°C	-
Junction temperature	TJ	- 40	150	°C	under bias
Voltage on V_{DD} pins with respect to ground (V_{SS})	V _{DD}	- 0.5	6.5	V	_
Voltage on any pin with respect to ground (V_{SS})	V _{IN}	- 0.5	V _{DD} + 0.5	V	_
Input current on any pin during overload condition	-	- 10	10	mA	_
Absolute sum of all input currents during overload condition	-	-	100	mA	-
Power dissipation	P _{DISS}	-	1.5	W	-

Table 7 Absolute Maximum Rating Parameters

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$) the voltage on V_{DD} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the C165. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Parameter	Symbol	Limit	Values	Unit	Notes	
		min.	max.			
Standard digital supply voltage	V _{DD}	4.5	5.5	V	Active mode, $f_{CPUmax} = 25 \text{ MHz}$	
(5 V versions)		2.5 ¹⁾	5.5	V	PowerDown mode	
Reduced digital supply voltage	V _{DD}	3.0	3.6	V	Active mode, $f_{CPUmax} = 20 \text{ MHz}$	
(3 V versions)		2.5 ¹⁾	3.6	V	PowerDown mode	
Digital ground voltage	V _{SS}		0	V	Reference voltage	
Overload current	I _{OV}	_	± 5	mA	Per pin ²⁾³⁾	
Absolute sum of overload currents	$\Sigma I_{\rm OV} $	_	50	mA	3)	
External Load Capacitance	CL	_	100	pF	-	
Ambient temperature	T _A	0	70	°C	SAB-C165	
		- 40	85	°C	SAF-C165	
		- 40	125	°C	SAK-C165	

Table 8Operating Condition Parameters

¹⁾ Output voltages and output currents will be reduced when V_{DD} leaves the range defined for active mode.

²⁾ Overload conditions occur if the standard operatings conditions are exceeded, i.e. the voltage on any pin exceeds the specified range (i.e. V_{OV} > V_{DD} + 0.5 V or V_{OV} < V_{SS} - 0.5 V). The absolute sum of input overload currents on all pins may not exceed **50 mA**. The supply voltage must remain within the specified limits. Proper operation is not guaranteed if overload conditions occur on functional pins such as XTAL1, RD, WR, etc.

³⁾ Not 100% tested, guaranteed by design and characterization.

DC Characteristics (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)¹⁾

Parameter	Symbol	I Limit Values		Unit	Test Condition
		min.	max.		
RSTIN active current ⁴⁾	I _{RSTL} ⁶⁾	- 100	_	μA	$V_{\rm IN} = V_{\rm IL}$
READY/RD/WR inact. current ⁷⁾	$I_{\rm RWH}^{5)}$	-	- 40	μA	V_{OUT} = 2.4 V
READY/RD/WR active current ⁷⁾	$I_{\rm RWL}^{6)}$	- 500	_	μA	$V_{OUT} = V_{OLmax}$
ALE inactive current ⁷⁾	$I_{ALEL}^{(5)}$	-	40	μA	$V_{OUT} = V_{OLmax}$
ALE active current ⁷⁾	I _{ALEH} ⁶⁾	500	_	μA	V_{OUT} = 2.4 V
Port 6 inactive current ⁷⁾	I _{P6H} ⁵⁾	-	- 40	μA	V_{OUT} = 2.4 V
Port 6 active current ⁷⁾	I _{P6L} ⁶⁾	- 500	_	μA	$V_{\text{OUT}} = V_{\text{OL1max}}$
PORT0 configuration current ⁸⁾	I _{P0H} ⁵⁾	-	- 10	μA	$V_{\rm IN} = V_{\rm IHmin}$
	$I_{P0L}^{6)}$	- 100	_	μA	$V_{\rm IN} = V_{\rm ILmax}$
XTAL1 input current	I _{IL} CC	-	± 20	μA	$0 V < V_{IN} < V_{DD}$
Pin capacitance ⁹⁾ (digital inputs/outputs)	C _{IO} CC	-	10	pF	f = 1 MHz $T_A = 25 \text{ °C}$

¹⁾ Keeping signal levels within the levels specified in this table, ensures operation without overload conditions. For signal levels outside these specifications also refer to the specification of the overload current I_{OV} .

²⁾ Valid in bidirectional reset mode only.

- ³⁾ This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.
- ⁴⁾ These parameters describe the $\overline{\text{RSTIN}}$ pullup, which equals a resistance of ca. 50 to 250 k Ω .
- ⁵⁾ The maximum current may be drawn while the respective signal line remains inactive.
- ⁶⁾ The minimum current must be drawn in order to drive the respective signal line active.
- ⁷⁾ This specification is valid during Reset and during Hold-mode or Adapt-mode. During Hold-mode Port 6 pins are only affected, if they are used (configured) for CS output and the open drain function is not enabled. The READY-pullup is always active, except for Powerdown mode.
- ⁸⁾ This specification is valid during Reset and during Adapt-mode.
- ⁹⁾ Not 100% tested, guaranteed by design and characterization.

Multiplexed Bus (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (120 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CPU Clock = 25 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
RD, WR low time (no RW-delay)	<i>t</i> ₁₃	CC	$50 + t_{\rm C}$	-	3TCL - 10 + <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	-	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	_	$40 + t_{\rm C}$	-	3TCL - 20 + <i>t</i> _C	ns
ALE low to valid data in	t ₁₆	SR	_	$40 + t_A + t_C$	_	3TCL - 20 + <i>t</i> _A + <i>t</i> _C	ns
Address to valid data in	t ₁₇	SR	_	$50 + 2t_A + t_C$	_	$4TCL - 30 + 2t_A + t_C$	ns
Data hold after RD rising edge	t ₁₈	SR	0	_	0	-	ns
Data float after RD	t ₁₉	SR	_	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	ns
Data valid to WR	t ₂₂	CC	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	-	ns
Data hold after \overline{WR}	t ₂₃	CC	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	-	ns
$\frac{\text{ALE rising edge after }\overline{\text{RD}},}{\overline{\text{WR}}}$	t ₂₅	CC	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	-	ns
Address hold after RD, WR	t ₂₇	CC	26 + <i>t</i> _F	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE falling edge to $\overline{CS}^{1)}$	t ₃₈	CC	- 4 - t _A	10 - <i>t</i> _A	- 4 - t _A	10 - <i>t</i> _A	ns
CS low to Valid Data In ¹⁾	t ₃₉	SR	_	$40 + t_{C} + 2t_{A}$	-	$3TCL - 20 + t_C + 2t_A$	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{(1)}$	<i>t</i> ₄₀	CC	46 + <i>t</i> _F	-	3TCL - 14 + <i>t</i> _F	-	ns
ALE fall. edge to RdCS, WrCS (with RW delay)	<i>t</i> ₄₂	CC	16 + <i>t</i> _A	-	TCL - 4 + <i>t</i> _A	-	ns
ALE fall. edge to RdCS, WrCS (no RW delay)	t ₄₃	CC	$-4 + t_{A}$	-	- 4 + <i>t</i> _A	-	ns

Multiplexed Bus (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (120 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol	Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		Unit
		min.	max.	min.	max.	
Address float after RdCS, WrCS (with RW delay)	<i>t</i> ₄₄ CC	-	0	-	0	ns
Address float after RdCS, WrCS (no RW delay)	<i>t</i> ₄₅ CC	-	20	_	TCL	ns
RdCS to Valid Data In (with RW delay)	<i>t</i> ₄₆ SR	-	16 + <i>t</i> _C	_	2TCL - 24 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW delay)	<i>t</i> ₄₇ SR	-	36 + <i>t</i> _C	-	3TCL - 24 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW delay)	<i>t</i> ₄₈ CC	$30 + t_{\rm C}$	-	2TCL - 10 + <i>t</i> _C	-	ns
RdCS, WrCS Low Time (no RW delay)	<i>t</i> ₄₉ CC	50 + <i>t</i> _C	-	3TCL - 10 + <i>t</i> _C	_	ns
Data valid to WrCS	<i>t</i> ₅₀ CC	$26 + t_{\rm C}$	-	2TCL - 14 + <i>t</i> _C	_	ns
Data hold after RdCS	<i>t</i> ₅₁ SR	0	-	0	-	ns
Data float after RdCS	<i>t</i> ₅₂ SR	-	20 + $t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	ns
Address hold after RdCS, WrCS	<i>t</i> ₅₄ CC	20 + <i>t</i> _F	-	2TCL - 20 + <i>t</i> _F	-	ns
Data hold after WrCS	<i>t</i> ₅₆ CC	20 + <i>t</i> _F	-	2TCL - 20 + <i>t</i> _F	-	ns

¹⁾ These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

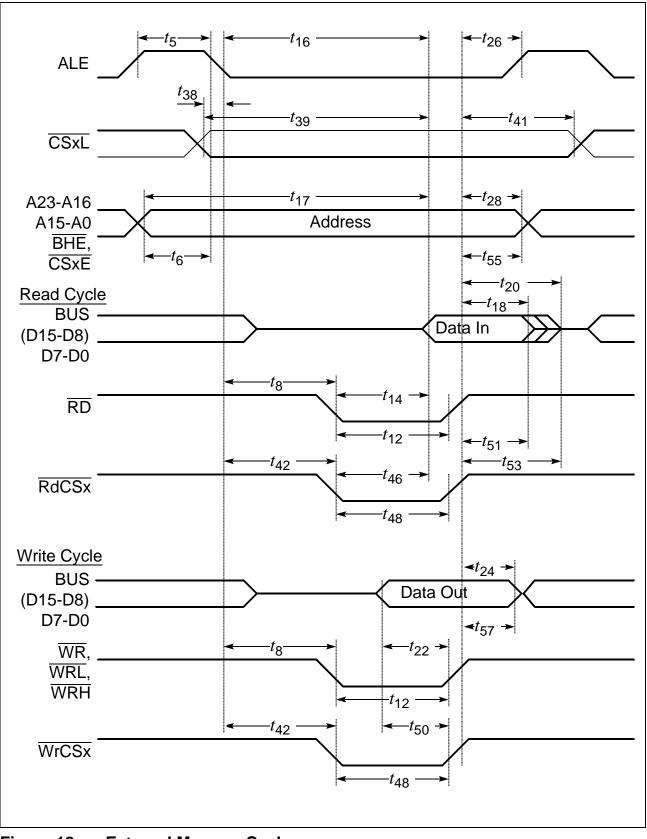
AC Characteristics

Demultiplexed Bus (Reduced Supply Voltage Range)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (100 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CPU Clock = 20 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
ALE high time	<i>t</i> ₅	CC	$11 + t_A$	-	TCL - 14 + <i>t</i> _A	_	ns
Address setup to ALE	<i>t</i> ₆	CC	$5 + t_A$	_	TCL - 20 + <i>t</i> _A	-	ns
ALE falling edge to \overline{RD} , WR (with RW-delay)	<i>t</i> 8	CC	$15 + t_A$	_	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to \overline{RD} , WR (no RW-delay)	t ₉	CC	- 10 + <i>t</i> _A	_	- 10 + <i>t</i> _A	-	ns
RD, WR low time (with RW-delay)	<i>t</i> ₁₂	CC	$34 + t_{\rm C}$	_	2TCL - 16 + <i>t</i> _C	-	ns
RD, WR low time (no RW-delay)	<i>t</i> ₁₃	CC	59 + $t_{\rm C}$	_	3TCL - 16 + <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	_	22 + <i>t</i> _C	-	2TCL - 28 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	_	$47 + t_{\rm C}$	-	3TCL - 28 + <i>t</i> _C	ns
ALE low to valid data in	<i>t</i> ₁₆	SR	_	$45 + t_A + t_C$	_	3TCL - 30 + <i>t</i> _A + <i>t</i> _C	ns
Address to valid data in	t ₁₇	SR	_	57 + $2t_{A} + t_{C}$	_	$4TCL - 43 + 2t_A + t_C$	ns
Data hold after RD rising edge	t ₁₈	SR	0	_	0	-	ns
Data float after \overline{RD} rising edge (with RW-delay ¹⁾)	<i>t</i> ₂₀	SR	_	$36 + 2t_A + t_F^{(1)}$	-	2TCL - 14 + $22t_A$ + $t_F^{(1)}$	ns
Data float after RD rising edge (no RW-delay ¹⁾)	<i>t</i> ₂₁	SR	_	$15 + 2t_A + t_F^{(1)}$	-	TCL - 10 + $22t_A$ + $t_F^{(1)}$	ns


Demultiplexed Bus (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (100 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbol	Max. CPU Clock = 20 MHz		Variable CPU Clock 1 / 2TCL = 1 to 20 MHz		Unit
		min.	max.	min.	max.	
Data valid to \overline{WR}	<i>t</i> ₂₂ CC	$24 + t_{\rm C}$	-	2TCL - 26 + <i>t</i> _C	-	ns
Data hold after \overline{WR}	<i>t</i> ₂₄ CC	15 + <i>t</i> _F	_	TCL - 10 + <i>t</i> _F	-	ns
ALE rising edge after RD, WR	<i>t</i> ₂₆ CC	- 12 + <i>t</i> _F	_	- 12 + <i>t</i> _F	-	ns
Address hold after $\overline{WR}^{2)}$	t ₂₈ CC	$0 + t_{F}$	-	$0 + t_{F}$	-	ns
ALE falling edge to $\overline{CS}^{3)}$	t ₃₈ CC	- 8 - t _A	10 - <i>t</i> _A	- 8 - <i>t</i> _A	10 - <i>t</i> _A	ns
$\overline{\text{CS}}$ low to Valid Data In ³⁾	<i>t</i> ₃₉ SR	_	$47 + t_{\rm C} + 2t_{\rm A}$	-	3TCL - 28 + <i>t</i> _C + 2 <i>t</i> _A	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{3)}$	<i>t</i> ₄₁ CC	9 + <i>t</i> _F	-	TCL - 16 + <i>t</i> _F	-	ns
ALE falling edge to RdCS, WrCS (with RW- delay)	t ₄₂ CC	19 + <i>t</i> _A	-	TCL - 6 + <i>t</i> _A	-	ns
ALE falling edge to RdCS, WrCS (no RW- delay)	t ₄₃ CC	$-6 + t_{A}$	_	$-6 + t_{A}$	_	ns
RdCS to Valid Data In (with RW-delay)	<i>t</i> ₄₆ SR	_	20 + $t_{\rm C}$	_	2TCL - 30 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW-delay)	<i>t</i> ₄₇ SR	_	45 + t _C	-	3TCL - 30 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW-delay)	<i>t</i> ₄₈ CC	$38 + t_{\rm C}$	_	2TCL - 12 + <i>t</i> _C	-	ns
RdCS, WrCS Low Time (no RW-delay)	<i>t</i> ₄₉ CC	$63 + t_{\rm C}$	_	3TCL - 12 + <i>t</i> _C	-	ns
Data valid to WrCS	<i>t</i> ₅₀ CC	28 + $t_{\rm C}$	-	2TCL - 22 + <i>t</i> _C	-	ns
Data hold after RdCS	<i>t</i> ₅₁ SR	0	-	0	-	ns

Figure 18 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Extended ALE

AC Characteristics

CLKOUT and READY (Reduced Supply Voltage)

(Operating Conditions apply)

Parameter	Symbol		Max. CPU Clock = 20 MHz		Variable CPU Clock 1 / 2TCL = 1 to 20 MHz		Unit
			min.	max.	min.	max.	
CLKOUT cycle time	t ₂₉	CC	50	50	2TCL	2TCL	ns
CLKOUT high time	<i>t</i> ₃₀	CC	15	-	TCL - 10	-	ns
CLKOUT low time	t ₃₁	CC	13	-	TCL - 12	-	ns
CLKOUT rise time	t ₃₂	CC	-	12	_	12	ns
CLKOUT fall time	<i>t</i> ₃₃	CC	-	8	-	8	ns
CLKOUT rising edge to ALE falling edge	t ₃₄	CC	$0 + t_A$	$8 + t_A$	$0 + t_A$	$8 + t_A$	ns
Synchronous READY setup time to CLKOUT	t ₃₅	SR	18	-	18	_	ns
Synchronous READY hold time after CLKOUT	t ₃₆	SR	4	-	4	_	ns
Asynchronous READY low time	t ₃₇	SR	68	-	2TCL + <i>t</i> ₅₈	_	ns
Asynchronous READY setup time ¹⁾	t ₅₈	SR	18	-	18	_	ns
Asynchronous READY hold time ¹⁾	t ₅₉	SR	4	-	4	_	ns
Async. READY hold time after RD, WR high (Demultiplexed Bus) ²⁾	<i>t</i> ₆₀	SR	0	0 + $2t_A$ + t_C + $t_F^{2)}$	0	$TCL - 25 + 2t_A + t_C + t_F^{2}$	ns

¹⁾ These timings are given for test purposes only, in order to assure recognition at a specific clock edge.

²⁾ Demultiplexed bus is the worst case. For multiplexed bus 2TCL are to be added to the maximum values. This adds even more time for deactivating READY.

The $2t_A$ and t_C refer to the next following bus cycle, t_F refers to the current bus cycle.

The maximum limit for t_{60} must be fulfilled if the next following bus cycle is **READY** controlled.

AC Characteristics

External Bus Arbitration (Standard Supply Voltage)

(Operating Conditions apply)

Parameter	Symbol	Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		Unit
		min.	max.	min.	max.	
HOLD input setup time to CLKOUT	<i>t</i> ₆₁ SR	20	-	20	-	ns
CLKOUT to HLDA high or BREQ low delay	<i>t</i> ₆₂ CC	-	20	-	20	ns
CLKOUT to HLDA low or BREQ high delay	<i>t</i> ₆₃ CC	-	20	-	20	ns
CSx release	<i>t</i> ₆₄ CC	-	20	_	20	ns
CSx drive	t ₆₅ CC	- 4	24	- 4	24	ns
Other signals release	t ₆₆ CC	-	20	-	20	ns
Other signals drive	t ₆₇ CC	- 4	24	- 4	24	ns

External Bus Arbitration (Reduced Supply Voltage)

(Operating Conditions apply)

Parameter	Symbol	Max. CPU Clock = 20 MHz		Variable CPU Clock 1 / 2TCL = 1 to 20 MHz		Unit
		min.	max.	min.	max.	
HOLD input setup time to CLKOUT	<i>t</i> ₆₁ SR	30	-	30	-	ns
CLKOUT to HLDA high or BREQ low delay	<i>t</i> ₆₂ CC	-	20	-	20	ns
CLKOUT to HLDA low or BREQ high delay	<i>t</i> ₆₃ CC	-	20	-	20	ns
CSx release	t ₆₄ CC	-	20	-	20	ns
CSx drive	t ₆₅ CC	- 4	30	- 4	30	ns
Other signals release	t ₆₆ CC	-	20	-	20	ns
Other signals drive	t ₆₇ CC	- 4	30	- 4	30	ns

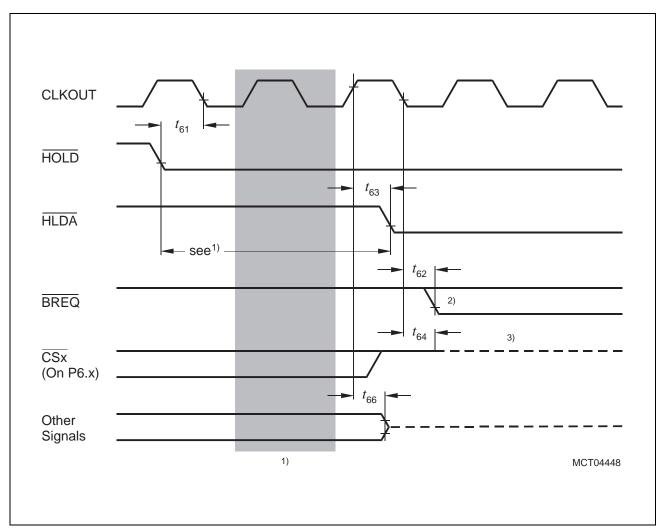


Figure 22 External Bus Arbitration, Releasing the Bus

Notes

- The C165 will complete the currently running bus cycle before granting bus access.
- ²⁾ This is the first possibility for BREQ to get active. ³⁾ The \overline{CS} outputs will be resistive high (pullup) after t_{64} .