
Silicon Labs - C8051F350-GQ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8051

Core Size 8-Bit

Speed 50MHz

Connectivity SMBus (2-Wire/I²C), SPI, UART/USART

Peripherals POR, PWM, Temp Sensor, WDT

Number of I/O 17

Program Memory Size 8KB (8K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 768 x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters A/D 8x24b; D/A 2x8b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 32-LQFP

Supplier Device Package 32-LQFP (7x7)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f350-gq

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f350-gq-4378660
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F350/1/2/3
1.4. 24 or 16-Bit Analog to Digital Converter (ADC0)

The C8051F350/1/2/3 include a fully-differential, 24-bit (C8051F350/1) or 16-bit (C8051F352/3) Sigma-
Delta Analog to Digital Converter (ADC) with on-chip calibration capabiliites. Two separate decimation fil-
ters can be programmed for throughputs of up to 1 kHz. An internal 2.5 V reference is available, or a differ-
ential external reference can be used for ratiometric measurements. A Programmable Gain Amplifier
(PGA) is included, with eight gain settings up to 128x. An analog front-end multiplexer connects the differ-
ential inputs to eight external pins, the internal temperature sensor, or AGND. The on-chip input buffers
can be used to provide a high input impedance for direct connection to sensitive transducers. An 8-bit off-
set DAC allows for correction of large input offset voltages.

Figure 1.7. ADC0 Block Diagram

AIN+

AIN-

AV+

AGND

Input
Buffers

8-Bit
Offset
DAC

Σ

Σ
PGA Modulator

SINC3 Filter

Fast Filter

Burnout
Current
Sources

1x to 128x

Internal
2.5V or
External
VREF

Temperature
Sensor

Eight
External
Inputs
24 Rev. 1.1

C8051F350/1/2/3
NOTES:
40 Rev. 1.1

C8051F350/1/2/3
5. 24 or 16-Bit Analog to Digital Converter (ADC0)
The C8051F350/1/2/3 include a fully-differential, 24-bit (C8051F350/1) or 16-bit (C8051F352/3) Sigma-
Delta Analog to Digital Converter (ADC) with on-chip calibration capabiliites. Two separate decimation fil-
ters can be programmed for throughputs of up to 1 kHz. An internal reference is available, or a differential
external reference can be used for ratiometric measurements. A Programmable Gain Amplifier (PGA) is
included, with eight gain settings up to 128x. The on-chip input buffers can be used to provide a high input
impedance for direct connection to sensitive transducers. An 8-bit offset DAC allows for correction of large
input offset voltages.

Figure 5.1. ADC0 Block Diagram

AIN+

AIN-

AV+

AGND

AD0BCE

AD0BCE
Input

Buffers

ADC0BUF

8-Bit
Offset
DAC

A
D

C
0D

A
C

Σ

Σ
PGA Modulator

ADC0CLK

÷
SYSCLK

M
D

C
L

K

SINC3 Filter

Fast Filter

Control and
Calibration

ADC0COH:M:L

ADC0CGH:M:L

ADC0H:M:L

ADC0FH:M:L

ADC0MD ADC0STA

ADC0DECH:L

ADC0CN

A
D

0
IS

E
L

A
D

0V
R

E
F

Voltage
Reference

ADC0CN

A
D

0
P

O
L

A
D

0B
C

E
A

D
0G

N
2

A
D

0G
N

1
A

D
0G

N
0

Rev. 1.1 41

C8051F350/1/2/3
SFR Definition 5.1. ADC0CN: ADC0 Control

Bits 7–5: Unused: Read = 000b, Write = don’t care.
Bit 4: AD0POL: ADC0 Polarity.

0: ADC operates in Unipolar mode (straight binary result).
1: ADC operates in Bipolar mode (2's compliment result).

Bit 3: AD0BCE: ADC0 Burnout Current Source Enable.
0: ADC Burnout current sources disabled.
1: ADC Burnout current sources enabled.

Bits 2:0 AD0GN: ADC0 Programmable Gain Setting.
000: PGA Gain = 1.
001: PGA Gain = 2.
010: PGA Gain = 4.
011: PGA Gain = 8.
100: PGA Gain = 16.
101: PGA Gain = 32.
110: PGA Gain = 64.
111: PGA Gain = 128.

This SFR can only be modified when ADC0 is in IDLE mode.

R R R R/W R/W R/W R/W R/W Reset Value

— — — AD0POL AD0BCE AD0GN 00010000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address: 0xF4
48 Rev. 1.1

C8051F350/1/2/3
Table 5.9. ADC0 Fast Filter Flicker-Free (Noise-Free) Resolution1
in Unipolar Mode (bits)

Decimation
Ratio

Output Word

Rate2

PGA Gain Setting

1 2 4 8 16 32 64 128

1920 10 Hz 16.26 16.11 15.90 15.49 14.95 14.24 13.37 12.32

768 25 Hz 14.37 14.24 13.98 13.64 13.05 12.24 11.34 10.39

640 30 Hz 13.63 13.64 13.57 13.10 12.57 11.82 10.86 9.93

384 50 Hz 11.83 11.93 11.85 11.72 11.32 10.69 9.84 8.93

320 60 Hz 11.11 11.04 11.11 11.00 10.74 10.16 9.36 8.44

192 100 Hz 9.43 9.28 9.40 9.34 9.17 8.86 8.21 7.39

Notes:
1. Flicker-free (Noise-free) Resolution =

where Full Input Range = in Unipolar mode and RMS Noise is obtained from Table 5.7.

2. Output Word Rate assuming Modular Clock frequency = 2.4576 MHz (sampling clock frequency = 19.2 kHz)

log2
FullInputRange V()
6.6 RMS Noise V()×
-- 
 

VREF

PGA Gain

Rev. 1.1 65

C8051F350/1/2/3
SFR Definition 9.2. CPT0MD: Comparator0 Mode Selection

Bits7–6: UNUSED. Read = 00b, Write = don’t care.
Bit5: CP0RIE: Comparator0 Rising-Edge Interrupt Enable.

0: Comparator0 Rising-edge interrupt disabled.
1: Comparator0 Rising-edge interrupt enabled.

Bit4: CP0FIE: Comparator0 Falling-Edge Interrupt Enable.
0: Comparator0 Falling-edge interrupt disabled.
1: Comparator0 Falling-edge interrupt enabled.

Bits3–2: UNUSED. Read = 00b, Write = don’t care.
Bits1–0: CP0MD1–CP0MD0: Comparator0 Mode Select

These bits select the response time for Comparator0.

R R R/W R/W R R R/W R/W Reset Value

— — CP0RIE CP0FIE — — CP0MD1 CP0MD0 00000010
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address: 0x9D

Mode CP0MD1 CP0MD0 Notes
0 0 0 Fastest Response Time
1 0 1 —
2 1 0 —

3 1 1
Lowest Power Consump-

tion
82 Rev. 1.1

C8051F350/1/2/3
10. CIP-51 Microcontroller
The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the
MCS-51™ instruction set. Standard 803x/805x assemblers and compilers can be used to develop soft-
ware. The C8051F35x family has a superset of all the peripherals included with a standard 8051. See Sec-
tion “1. System Overview’ on page 17 for more information about the available peripherals. The CIP-51
includes on-chip debug hardware which interfaces directly with the analog and digital subsystems, provid-
ing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as
additional custom peripherals and functions to extend its capability (see Figure 10.1 for a block diagram).
The CIP-51 core includes the following features:

Figure 10.1. CIP-51 Block Diagram

- Fully Compatible with MCS-51 Instruction
Set

- 50 MIPS Peak Throughput
- 256 Bytes of Internal RAM

- Extended Interrupt Handler
- Reset Input
- Power Management Modes
- Integrated Debug Logic

DATA BUS

TMP1 TMP2

PRGM. ADDRESS REG.

PC INCREMENTER

ALU
PSW

DATA BUS

D
A

T
A

B

U
S

MEMORY
INTERFACE

MEM_ADDRESSD8

PIPELINE

BUFFER

DATA POINTER

INTERRUPT
INTERFACE

SYSTEM_IRQs

EMULATION_IRQ

MEM_CONTROL

CONTROL
LOGIC

A16

PROGRAM COUNTER (PC)

STOP

CLOCK

RESET

IDLE
POWER CONTROL

REGISTER

D
A

T
A

B

U
S

SFR
BUS

INTERFACE

SFR_ADDRESS

SFR_CONTROL

SFR_WRITE_DATA

SFR_READ_DATA

D8

D8

B REGISTER

D
8

D
8

ACCUMULATOR

D
8

D8

D8

D8

D
8

D
8

D
8

D8

MEM_WRITE_DATA

MEM_READ_DATA

D
8
SRAM

ADDRESS
REGISTER

SRAM
(256 X 8)

D
8

STACK POINTER

D
8

Rev. 1.1 87

C8051F350/1/2/3
NOTES:
98 Rev. 1.1

C8051F350/1/2/3
NOTES:
114 Rev. 1.1

C8051F350/1/2/3
19.4.1. SMBus Configuration Register

The SMBus Configuration register (SMB0CF) is used to enable the SMBus Master and/or Slave modes,
select the SMBus clock source, and select the SMBus timing and timeout options. When the ENSMB bit is
set, the SMBus is enabled for all master and slave events. Slave events may be disabled by setting the
INH bit. With slave events inhibited, the SMBus interface will still monitor the SCL and SDA pins; however,
the interface will NACK all received addresses and will not generate any slave interrupts. When the INH bit
is set, all slave events will be inhibited following the next START (interrupts will continue for the duration of
the current transfer).

The SMBCS1–0 bits select the SMBus clock source, which is used only when operating as a master or
when the Free Timeout detection is enabled. When operating as a master, overflows from the selected
source determine the absolute minimum SCL low and high times as defined in Equation 19.1. Note that the
selected clock source may be shared by other peripherals so long as the timer is left running at all times.
For example, Timer 1 overflows may generate the SMBus and UART baud rates simultaneously. Timer
configuration is covered in Section “22. Timers’ on page 195.

Equation 19.1. Minimum SCL High and Low Times
The selected clock source should be configured to establish the minimum SCL High and Low times as per
Equation 19.1. When the interface is operating as a master (and SCL is not driven or extended by any
other devices on the bus), the typical SMBus bit rate is approximated by Equation 19.2.

Equation 19.2. Typical SMBus Bit Rate

Table 19.1. SMBus Clock Source Selection

SMBCS1 SMBCS0 SMBus Clock Source
0 0 Timer 0 Overflow
0 1 Timer 1 Overflow
1 0 Timer 2 High Byte Overflow
1 1 Timer 2 Low Byte Overflow

THighMin TLowMin
1

fClockSourceOverflow
--= =

BitRate
fClockSourceOverflow

3
--=
156 Rev. 1.1

C8051F350/1/2/3
19.4.2. SMB0CN Control Register

SMB0CN is used to control the interface and to provide status information (see SFR Definition 19.2). The
higher four bits of SMB0CN (MASTER, TXMODE, STA, and STO) form a status vector that can be used to
jump to service routines. MASTER and TXMODE indicate the master/slave state and transmit/receive
modes, respectively.

STA and STO indicate that a START and/or STOP has been detected or generated since the last SMBus
interrupt. STA and STO are also used to generate START and STOP conditions when operating as a mas-
ter. Writing a ‘1’ to STA will cause the SMBus interface to enter Master Mode and generate a START when
the bus becomes free (STA is not cleared by hardware after the START is generated). Writing a ‘1’ to STO
while in Master Mode will cause the interface to generate a STOP and end the current transfer after the
next ACK cycle. If STO and STA are both set (while in Master Mode), a STOP followed by a START will be
generated.

As a receiver, writing the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit
indicates the value received on the last ACK cycle. ACKRQ is set each time a byte is received, indicating
that an outgoing ACK value is needed. When ACKRQ is set, software should write the desired outgoing
value to the ACK bit before clearing SI. A NACK will be generated if software does not write the ACK bit
before clearing SI. SDA will reflect the defined ACK value immediately following a write to the ACK bit;
however SCL will remain low until SI is cleared. If a received slave address is not acknowledged, further
slave events will be ignored until the next START is detected.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface
is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condi-
tion. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or
when an arbitration is lost; see Table 19.3 for more details.

Important note about the SI bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and
the bus is stalled until software clears SI.

Table 19.3 lists all sources for hardware changes to the SMB0CN bits. Refer to Table 19.4 for SMBus sta-
tus decoding using the SMB0CN register.
Rev. 1.1 159

C8051F350/1/2/3
19.5. SMBus Transfer Modes

The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be
operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or
Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in
Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end
of all SMBus byte frames; however, note that the interrupt is generated before the ACK cycle when operat-
ing as a receiver, and after the ACK cycle when operating as a transmitter.

19.5.1. Master Transmitter Mode

Serial data is transmitted on SDA while the serial clock is output on SCL. The SMBus interface generates
the START condition and transmits the first byte containing the address of the target slave and the data
direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then transmits
one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by the
slave. The transfer is ended when the STO bit is set and a STOP is generated. Note that the interface will
switch to Master Receiver Mode if SMB0DAT is not written following a Master Transmitter interrupt.
Figure 19.5 shows a typical Master Transmitter sequence. Two transmit data bytes are shown, though any
number of bytes may be transmitted. Notice that the ‘data byte transferred’ interrupts occur after the ACK
cycle in this mode.

Figure 19.5. Typical Master Transmitter Sequence

A AAS W PData Byte Data ByteSLA

S = START
P = STOP
A = ACK
W = WRITE
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupt Interrupt InterruptInterrupt
Rev. 1.1 163

C8051F350/1/2/3
19.5.2. Master Receiver Mode

Serial data is received on SDA while the serial clock is output on SCL. The SMBus interface generates the
START condition and transmits the first byte containing the address of the target slave and the data direc-
tion bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the
slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial
data. After each byte is received, ACKRQ is set to ‘1’ and an interrupt is generated. Software must write
the ACK bit (SMB0CN.1) to define the outgoing acknowledge value (Note: writing a ‘1’ to the ACK bit gen-
erates an ACK; writing a ‘0’ generates a NACK). Software should write a ‘0’ to the ACK bit after the last
byte is received, to transmit a NACK. The interface exits Master Receiver Mode after the STO bit is set and
a STOP is generated. Note that the interface will switch to Master Transmitter Mode if SMB0DAT is written
while an active Master Receiver. Figure 19.6 shows a typical Master Receiver sequence. Two received
data bytes are shown, though any number of bytes may be received. Notice that the ‘data byte transferred’
interrupts occur before the ACK cycle in this mode.

Figure 19.6. Typical Master Receiver Sequence

Data ByteData Byte A NAS R PSLA

S = START
P = STOP
A = ACK
N = NACK
R = READ
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupt Interrupt InterruptInterrupt
164 Rev. 1.1

C8051F350/1/2/3
SFR Definition 20.2. SBUF0: Serial (UART0) Port Data Buffer

Bits7–0: SBUF0[7:0]: Serial Data Buffer Bits 7–0 (MSB–LSB)
This SFR accesses two registers; a transmit shift register and a receive latch register. When
data is written to SBUF0, it goes to the transmit shift register and is held for serial transmis-
sion. Writing a byte to SBUF0 initiates the transmission. A read of SBUF0 returns the con-
tents of the receive latch.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address: 0x99
Rev. 1.1 177

C8051F350/1/2/3
21.1. Signal Descriptions

The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below.

21.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It
is used to serially transfer data from the master to the slave. This signal is an output when SPI0 is operat-
ing as a master and an input when SPI0 is operating as a slave. Data is transferred most-significant bit
first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire
mode.

21.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device.
It is used to serially transfer data from the slave to the master. This signal is an input when SPI0 is operat-
ing as a master and an output when SPI0 is operating as a slave. Data is transferred most-significant bit
first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and when the SPI
operates in 4-wire mode as a slave that is not selected. When acting as a slave in 3-wire mode, MISO is
always driven by the MSB of the shift register.

21.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used
to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0 gen-
erates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is
not selected (NSS = 1) in 4-wire slave mode.

21.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0
bits in the SPI0CN register. There are three possible modes that can be selected with these bits:

1. NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and
NSS is disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode.
Since no select signal is present, SPI0 must be the only slave on the bus in 3-wire mode. This
is intended for point-to-point communication between a master and one slave.

2. NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and
NSS is enabled as an input. When operating as a slave, NSS selects the SPI0 device. When
operating as a master, a 1-to-0 transition of the NSS signal disables the master function of
SPI0 so that multiple master devices can be used on the same SPI bus.

3. NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as
an output. The setting of NSSMD0 determines what logic level the NSS pin will output. This
configuration should only be used when operating SPI0 as a master device.

See Figure 21.2, Figure 21.3, and Figure 21.4 for typical connection diagrams of the various operational
modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3-wire master or
3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will
be mapped to a pin on the device. See Section “18. Port Input/Output’ on page 137 for general purpose
port I/O and crossbar information.
182 Rev. 1.1

C8051F350/1/2/3
21.2. SPI0 Master Mode Operation

A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the
Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when
in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer
is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data
serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic
1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag
is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device
simultaneously transfers data to the SPI master on the MISO line in a full-duplex operation. Therefore, the
SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the
slave is transferred MSB-first into the master's shift register. When a byte is fully shifted into the register, it
is moved to the receive buffer where it can be read by the processor by reading SPI0DAT.

When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire
single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSS-
MD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and is
used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in this
mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and a
Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0
must be manually re-enabled in software under these circumstances. In multi-master systems, devices will
typically default to being slave devices while they are not acting as the system master device. In multi-mas-
ter mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins.
Figure 21.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this
mode, NSS is not used, and is not mapped to an external port pin through the crossbar. Any slave devices
that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 21.3
shows a connection diagram between a master device in 3-wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an
output pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value
of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be
addressed using general-purpose I/O pins. Figure 21.4 shows a connection diagram for a master device in
4-wire master mode and two slave devices.
Rev. 1.1 183

C8051F350/1/2/3
SFR Definition 21.4. SPI0DAT: SPI0 Data

Bits 7–0: SPI0DAT: SPI0 Transmit and Receive Data.
The SPI0DAT register is used to transmit and receive SPI0 data. Writing data to SPI0DAT
places the data into the transmit buffer and initiates a transfer when in Master Mode. A read
of SPI0DAT returns the contents of the receive buffer.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address: 0xA3
190 Rev. 1.1

C8051F350/1/2/3
23.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA
counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and
PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transi-
tion that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge),
or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn)
in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn
bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and
must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port
pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused
the capture.

Figure 23.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by
the hardware.

PCA0L

PCA0CPLn

PCA
Timebase

CEXn
CrossbarPort I/O

PCA0H

Capture

PCA0CPHn

0

1

0

1
(t

o
C

C
F

n)

PCA0CPMn
P
W
M
1
6
n

E
C
O
M
n

E
C
C
F
n

T
O
G
n

P
W
M
n

C
A
P
P
n

C
A
P
N
n

M
A
T
n

PCA0CN
C
F

C
R

C
C
F
0

C
C
F
2

C
C
F
1

C
C
F
4

C
C
F
3

PCA Interrupt

0 x 0 0 xx
214 Rev. 1.1

C8051F350/1/2/3
SFR Definition 23.6. PCA0CPLn: PCA Capture Module Low Byte

SFR Definition 23.7. PCA0CPHn: PCA Capture Module High Byte

Bits7–0: PCA0CPLn: PCA Capture Module Low Byte.
 The PCA0CPLn register holds the low byte (LSB) of the 16-bit capture module n.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address: PCA0CPL0: 0xE9, PCA0CPL1: 0xEB, PCA0CPL2: 0xED

Bits7–0: PCA0CPHn: PCA Capture Module High Byte.
 The PCA0CPHn register holds the high byte (MSB) of the 16-bit capture module n.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

SFR Address: PCA0CPH0: 0xEA, PCA0CPH1: 0xEB, PCA0CPH2: 0xEE
226 Rev. 1.1

C8051F350/1/2/3
C2 Register Definition 25.3. REVID: C2 Revision ID

C2 Register Definition 25.4. FPCTL: C2 Flash Programming Control

C2 Register Definition 25.5. FPDAT: C2 Flash Programming Data

This read-only register returns the 8-bit revision ID.

Reset Value

Variable
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bits7–0 FPCTL: Flash Programming Control Register.
This register is used to enable Flash programming via the C2 interface. To enable C2 Flash
programming, the following codes must be written in order: 0x02, 0x01. Note that once C2
Flash programming is enabled, a system reset must be issued to resume normal operation.

Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bits7–0: FPDAT: C2 Flash Programming Data Register.
This register is used to pass Flash commands, addresses, and data during C2 Flash
accesses. Valid commands are listed below.

Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Code Command
0x06 Flash Block Read
0x07 Flash Block Write
0x08 Flash Page Erase
0x03 Device Erase
230 Rev. 1.1

