

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x24b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f350-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1.1. C8051F350 Block Diagram

1.8. Port Input/Output

C8051F350/1/2/3 devices include 17 I/O pins. Port pins are organized as two byte-wide ports and one 1-bit port. The port pins behave like typical 8051 ports with a few enhancements. Each port pin can be configured as a digital or analog I/O pin. Pins selected as digital I/O can be configured for push-pull or open-drain operation. The "weak pull-ups" that are fixed on typical 8051 devices may be globally disabled to save power.

The Digital Crossbar allows mapping of internal digital system resources to port I/O pins. On-chip conter/timers, serial buses, hardware interrupts, and other digital signals can be configured to appear on the port pins using the Crossbar control resgiters. This allows the user to select the exact mix of general-purpose port I/O, digital, and analog resources needed for the application.

Figure 1.10. Port I/O Functional Block Diagram

1.9. Programmable Counter Array

The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and three 16-bit capture/compare modules. The counter/timer is driven by a programmable timebase that can select between six sources: system clock, system clock divided by four, system clock divided by twelve, the external oscillator clock source divided by 8, Timer 0 overflow, or an external clock signal on the External Clock nput (ECI) input pin.

Each capture/compare module may be configured to operate independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8-Bit PWM, or 16-Bit PWM. Additionally, PCA Module 2 may be used as a watchdog timer (WDT), and is enabled in this mode following a system reset. The PCA Capture/Compare Module I/O and the External Clock Input may be routed to Port I/O using the digital crossbar.

Figure 1.11. PCA Block Diagram

SFR Definition 5.13. ADC0CGH: ADC0 Gain Calibration Register High Byte

R/W GCAL23	R/W GCAL22	R/W GCAL21	R/W GCAL20	R/W GCAL19	R/W GCAL18	R/W GCAL17	R/W GCAL16	Reset Value Variable			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	10000000			
							SFR Address	0xAD			
Bits 7–0: G T	SFR Address: 0xAD Bits 7–0: GCAL[23:16]: ADC0 Gain Calibration Register High Byte. This register contains the high byte of the 24-bit ADC Gain Calibration Value.										

SFR Definition 5.14. ADC0CGM: ADC0 Gain Calibration Register Middle Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
GCAL15	GCAL14	GCAL13	GCAL12	GCAL11	GCAL10	GCAL9	GCAL8	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
							SFR Address	: 0xAC
Bits 7–0: 0	GCAL[15:8]:	ADC0 Gair	n Calibratio	n Register I	Middle Byte.			
Т	his register	contains th	e middle by	te of the 24	4-bit ADC G	ain Calibrat	tion Value.	

SFR Definition 5.15. ADC0CGL: ADC0 Gain Calibration Register Low Byte

I	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
	GCAL7	GCAL6	GCAL5	GCAL4	GCAL3	GCAL2	GCAL1	GCAL0	00000000		
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
								SFR Address	: 0xAB		
	SFR Address: 0XAB Bits 7–0: GCAL[7:0]: ADC0 Gain Calibration Register Low Byte. This register contains the low byte of the 24-bit ADC Gain Calibration Value.										

SFR Definition 5.16. ADC0H: ADC0 Conversion Register (SINC3 Filter) High Byte

	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
	ADC0H									
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
								SFR Addres	s: 0xC5	
E	Bits 7–0:	ADC0H: AD0 C8051F350/ result. C8051F352/ result.	C0 Convers 1 : This regi 3 : This regi	ion Registe ster contair ster contair	er (SINC3 F ns bits 23–1 ns bits 15–8	ilter) High B 6 of the 24- of the 16-b	yte. bit ADC SIN it ADC SIN(NC3 filter co	onversion	

SFR Definition 5.17. ADC0M: ADC0 Conversion Register (SINC3 Filter) Middle Byte

SFR Definition 5.18. ADC0L: ADC0 Conversion Register (SINC3 Filter) Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
			AD	C0L				0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Addres	s: 0xC3
Bits 7–0:	ADC0L: ADC C8051F350/ result. C8051F352/3	0 Convers 1: This regi 3: This regi	ion Registe ster contain ster contain	r (SINC3 Fi is bits 7–0 c is all zeros	lter) Low By of the 24-bit (00000000k	vte. ADC SINC:)).	3 filter con	version

Table 5.3. ADC0 Electrical Characteristics

 V_{DD} = AV+ = 3.0 V, VREF = 2.5 V External, PGA Gain = 1, MDCLK = 2.4576 MHz, Decimation Ratio = 1920, -40 to +85 °C unless otherwise noted.

Parameter	Conditions	Min	Тур	Max	Units
24-bit ADC (C8051F350/1)				I	
Resolution			24		bits
No Missing Codes			24		bits
16-bit ADC (C8051F352/3)					
Resolution			16		bits
No Missing Codes			16		bits
All Devices					
Integral Nonlinearity		—	—	±15	ppm FS
Offset Error (Calibrated)			±5	—	ppm
Offset Drift vs. Temperature		—	10		nV/ °C
Gain Error (Calibrated)			±0.002	—	%
Gain Drift vs. Temperature			±0.5		ppm/ °C
Modulator Clock (MDCLK)		_	2.4576	—	MHz
Modulator Sampling Frequency			Hz		
Output Word Rate		_	_	1000	sps
Analog Inputs					
Analog Input Voltage Range (AIN+ – AIN–)	PGA Gain = 1, Bipolar PGA Gain = 1, Unipolar	-VREF 0	_	+VREF +VREF	V
Absolute Voltage on AIN+ or AIN– pin with respect to AGND	Input Buffers OFF	0	—	AV+	V
Input Current	Input Buffer ON	_	± 1.5	30	nA
Input Impedance	Input Buffer OFF, Gain = 1	—	7		MΩ
Common Mode Rejection Ratio	DC 50/60 Hz	95	110 100		dB dB
Input Buffers					•
High Buffer Input Range with respect to AGND	PGA Gain = 1, 2, 4, or 8 PGA Gain = 16 PGA Gain = 32 PGA Gain = 64 or 128	1.4 1.45 1.5 1.6		AV+ - 0.1 AV+ - 0.15 AV+ - 0.2 AV+ - 0.25	V V V V
Low Buffer Input Range with respect to AGND	PGA Gain = 1, 2, 4, or 8 PGA Gain = 16 PGA Gain = 32 PGA Gain = 64 or 128	0.1 0.15 0.2 0.25		AV+ - 1.4 AV+ - 1.45 AV+ - 1.5 AV+ - 1.6	V V V V
Burnout Current Sources					
Positive (AIN+) Channel Current	VREF = 2.5 V	0.9	2	2.9	μA
Negative (AIN–) Channel Current	VREF = 2.5 V	-0.9	-2	-2.9	μA

Table 5.3. ADC0 Electrical Characteristics (Continued)

 V_{DD} = AV+ = 3.0 V, VREF = 2.5 V External, PGA Gain = 1, MDCLK = 2.4576 MHz, Decimation Ratio = 1920, -40 to +85 °C unless otherwise noted.

Parameter	Conditions	Min	Тур	Max	Units
Power Specifications					
AV+ Supply Current to ADC0		—	230	650	μA
AV+ Supply Current to Input Buffers (Each Enabled Buffer)			90	125	μA
Power Supply Rejection		80	—		dB

Table 5.4. ADC0 SINC3 Filter Typical RMS Noise (µV)

Decimation	Output Word				PGA Gai	n Setting	l			
Ratio	Rate*	1	2	4	8	16	32	64	128	
1920	10 Hz	2.38	1.23	0.68	0.41	0.24	0.16	0.12	0.11	
768	25 Hz	3.90	2.04	1.14	0.68	0.44	0.33	0.28	0.27	
640	30 Hz	4.50	2.39	1.31	0.81	0.54	0.42	0.36	0.36	
384	50 Hz	6.00	3.21	1.86	1.20	0.86	0.73	0.66	0.66	
320	60 Hz	7.26	3.96	2.32	1.51	1.11	0.97	0.89	0.89	
192	100 Hz	13.1	7.11	4.24	2.85	2.16	1.91	1.79	1.77	
80	240 Hz	93.2	47.7	24.8	13.9	9.34	7.61	6.97	6.67	
40	480 Hz	537	267	135	69.5	38.8	25.7	20.9	18.9	
20	960 Hz	2974	1586	771	379	196	108	70.0	45.4	
*Note: Output W (sampling	Note: Output Word Rate assuming Modulator Clock frequency = 2.4576 MHz (sampling clock frequency = 19.2 kHz)									

Table 7.1. Voltage Reference Electrical Characteristics V_{DD} = 3.0 V; -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Internal Reference	·				•
Output Voltage	25 °C ambient	2.35	2.45	2.50	V
VREF Short-Circuit Current	To AGND To AV+		9 20		mA μA
VREF Temperature Coefficient		_	15	—	ppm/°C
Load Regulation	Load = 0 to 200 µA to AGND		0.5		ppm/µA
VREF Turn-on Time 1 (0.01%)	4.7 μF tantalum, 0.1 μF ceramic bypass capacitors		3.9		ms
VREF Turn-on Time 2 (0.01%)	0.1 µF ceramic bypass capacitor	_	400	—	μs
VREF Turn-on Time 3 (0.01%)	no bypass capacitor	_	3	_	μs
Power Supply Rejection			50	_	dB
External Reference	·				
Input Voltage Range (VREF+ – VREF–)		1	2.5	AV+	V
Voltage on VREF+ or VREF– pin with respect to AGND		0	_	AV+	V
Input Current	VREF = 2.5 V	_	2	—	μA
Common Mode Rejection Ratio			120		dB
Power Specifications	·			•	•
Internal Reference Bias and Band Gap Generator			106	135	μA

SFR Definition 9.1. CPT0CN: Comparator0 Control

R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CP0OUT	CP0RIF	CP0FIF	CP0HYP1	CP0HYP0	CP0HYN1	CP0HYN0	00000000
Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
						SFR Address	: 0x9C
CP0EN: Cor	nparator0 E	nable Bit.					
0: Comparat	or0 Disable	d.					
1: Comparat	or0 Enable	d.					
CP0001: Co	omparator0	Output Sta	te Flag.				
0: Voltage or	1 CP0+ < C	PU					
T: Voltage of	1 CP0+ > C	PU Dioina Eda		the electron	hy coffwor	<u> </u>	
0. No Comp	arator0 Risi	na Edae ha	e riay. Mus	since this fl	an was last	e. cleared	
1: Comparat	or0 Rising I	Ing Luge na Edae has o	courred		ay was last	cleared.	
CPOFIE: Cor	nnarator0 F	-uge nas e Falling-Edg	e Flag. Mus	t he cleared	hv softwar	e	
0. No Comp	arator0 Falli	ina-Edae h	as occurred	since this f	lag was last	t cleared	
1: Comparat	or0 Falling-	Edge has o	occurred.		lag nao lao	c oloai o ai	
CP0HYP1-0	: Comparat	or0 Positiv	e Hysteresi	s Control Bi	ts.		
00: Positive	Hysteresis	Disabled.	,				
01: Positive	Hysteresis	= 5 mV.					
10: Positive	Hysteresis	= 10 mV.					
11: Positive I	Hysteresis :	= 20 mV.					
CP0HYN1-C): Compara	tor0 Negati	ve Hysteres	sis Control E	Bits.		
00: Negative	Hysteresis	Disabled.					
01: Negative	Hysteresis	= 5 mV.					
10: Negative	Hysteresis	= 10 mV.					
11: Negative	Hysteresis	= 20 mV.					
	R CPOEN: Cor Dit6 CPOEN: Cor O: Comparat 1: Comparat CPOOUT: Co O: Voltage or 1: Voltage or CPORIF: Cor O: No Compa 1: Comparat CPOFIF: Cor O: No Compa 1: Comparat CPOFIF: Cor O: No Compa 1: Comparat CPOFIF: Cor O: No Compa 1: Comparat CPOHYP1–0 O: Positive 1: Positive 10: Positive 11: Positive 11: Positive 11: Negative 11: Negative	RR/WCPOOUTCPORIFBit6Bit5CPOEN: Comparator0 E0: Comparator0 Disable1: Comparator0 Enable1: Comparator0 EnableCPOOUT: Comparator00: Voltage on CP0+ < C	RR/WR/WCP0OUTCP0RIFCP0FIFBit6Bit5Bit4CP0EN: Comparator0 Enable Bit. 0: Comparator0 Disabled. 1: Comparator0 Enabled. CP0OUT: Comparator0 Output Sta 0: Voltage on CP0+ < CP0 1: Voltage on CP0+ > CP0 CP0RIF: Comparator0 Rising Edge has o CP0FIF: Comparator0 Rising Edge has o CP0FIF: Comparator0 Falling-Edge has o CP0HYP1-0: Comparator0 Positiv 00: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 11: Negative Hysteresis = 10 mV. 11: Negative Hysteresis = 20 mV.	RR/WR/WR/WCPOOUTCPORIFCPOFIFCPOHYP1Bit6Bit5Bit4Bit3CP0EN: Comparator0 Enable Bit. 0: Comparator0 Disabled. 1: Comparator0 Enabled. CP0OUT: Comparator0 Output State Flag. 0: Voltage on CP0+ < CP0 1: Voltage on CP0+ > CP0 CP0RIF: Comparator0 Rising Edge has occurred 1: Comparator0 Rising Edge has occurred. CP0FIF: Comparator0 Falling-Edge Flag. Musi 0: No Comparator0 Falling-Edge has occurred. CP0FIF: Comparator0 Falling-Edge has occurred. CP0FIF: Comparator0 Falling-Edge has occurred. CP0FIF: Comparator0 Falling-Edge has occurred. CP0FIF: Comparator0 Falling-Edge has occurred. CP0HYP1-0: Comparator0 Positive Hysteresis 00: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis = 20 mV. CP0HYN1-0: Comparator0 Negative Hysteresis 00: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 20 mV. 11: Negative Hysteresis = 20 mV. 11: Negative Hysteresis = 20 mV.	RR/WR/WR/WR/WCPOOUTCPORIFCPOFIFCPOHYP1CPOHYP0Bit6Bit5Bit4Bit3Bit2CPOEN: Comparator0 Enable Bit0: Comparator0 Disabled1: Comparator0 EnabledCPOOUT: Comparator0 Output State Flag0: Voltage on CP0+ < CP0	RR/WR/WR/WR/WR/WCPOOUTCPORIFCPOFIFCPOHYP1CPOHYP0CPOHYN1Bit6Bit5Bit4Bit3Bit2Bit1CPOEN: Comparator0 Enable Bit. 0: Comparator0 Disabled. 1: Comparator0 Enabled. CPOOUT: Comparator0 Output State Flag. 0: Voltage on CP0+ < CP0 1: Voltage on CP0+ > CP0 CPORIF: Comparator0 Rising-Edge Flag. Must be cleared by softwar 0: No Comparator0 Rising Edge has occurred since this flag was last 1: Comparator0 Falling-Edge flag. Must be cleared by softwar 0: No Comparator0 Falling-Edge has occurred. CP0FIF: Comparator0 Falling-Edge has occurred since this flag was last 1: Comparator0 Falling-Edge has occurred. CP0HYP1-0: Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 20 mV. CP0HYN1-0: Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis = 10 mV. 11: Negative Hysteresis = 10 mV. 11: Negative Hysteresis = 20 mV.	RR/WR/WR/WR/WR/WR/WCP0OUTCP0RIFCP0FIFCP0HYP1CP0HYP0CP0HYN1CP0HYN0Bit6Bit5Bit4Bit3Bit2Bit1Bit0SFR AddressCP0EN: Comparator0 Enable Bit.0: Comparator0 Comparator0 Output State Flag.0: Voltage on CP0+ < CP0

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	Reset Value			
CY	AC	F0	RS1	RS0	OV	F1	PARITY	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit			
							SFR Address	s: 0xD0			
Bit7:	CY: Carry	Flag.									
	This bit is a	set when th	e last arithme	tic operatic	n resulted	in a carry (a	addition) or	a borrow			
	(subtractio	n). It is clea	ared to 0 by all	I other arith	metic oper	ations.	,				
Bit6:	AC: Auxilia	ary Carry Fl	ag								
	This bit is s	set when th	e last arithmet	ic operatio	n resulted in	n a carry inte	o (addition)	or a borrow			
	from (subti	action) the	high order nit	ble. It is cl	eared to 0	by all other	arithmetic of	operations.			
Bit5:	F0: User F	lag 0.									
	This is a bi	t-addressa	ble, general p	urpose flag	for use un	der softwar	e control.				
Bits4–3:	RS1–RS0:	Register E	Bank Select.								
	These bits	select which	ch register bar	ik is used o	during regis	ster accesse	es.				
		D 00									
	RS1	RSU	Register Bank	Add	ess						
	0	0	0	0x00 -	· 0x07						
	0	1	1	0x08 -	· 0x0F						
	1	0	2	0x10 -	- 0x17						
	1	1	3	0x18 -	0x1F						
Bit2:	OV: Overfl	ow Flag.		_							
	This bit is s	set to 1 und	der the followin	ng circumst	ances:						
	• An ADD,	ADDC, or	SUBB instruct	ion causes	a sign-cha	inge overflo	W.				
		Struction re	esuits in an ove		lit is greate	er than 255).					
	• A DIV INS	truction ca	to 0 by the AF				instruction	in all other			
		is cleared	to o by the AL	D, ADDC,	SUDD, IVIC	DL, and DIV	Instructions				
Rit1 ·	F1. Ilsor F	lan 1									
	This is a hit-addressable, general nurnose flag for use under software control										
Bit0:	PARITY: Parity Flag.										
2	This bit is set to 1 if the sum of the eight bits in the accumulator is odd and cleared if the sum										
	is even.			•							

SFR Definition 10.4. PSW: Program Status Word

12. Interrupt Handler

The C8051F35x family includes an extended interrupt system supporting a total of 12 interrupt sources with two priority levels. The allocation of interrupt sources between on-chip peripherals and external input pins varies according to the specific version of the device. Each interrupt source has one or more associated interrupt-pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regardless of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in the Interrupt Enable and Extended Interrupt Enable SFRs. However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interrupt enable settings. Note that interrupts which occur when the EA bit is set to logic 0 will be held in a pending state, and will not be serviced until the EA bit is set back to logic 1.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.

12.1. MCU Interrupt Sources and Vectors

The MCUs support 12 interrupt sources. Software can simulate an interrupt by setting any interrupt-pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources, associated vector addresses, priority order and control bits are summarized in Table 12.1 on page 106. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

12.2. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP or EIP1) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate, given in Table 12.1.

12.3. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5 system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Addres	s: 0xA4
its7–0:	Output Confi ter P0MDIN	guration Bi is logic 0. oding P0 n	ts for P0.7– Output is or	P0.0 (respe	ctively): igr	nored if cor	responding	bit in regis
its7–0:	Output Confi ter P0MDIN 0: Correspor 1: Correspor	guration Bi is logic 0. nding P0.n nding P0.n	ts for P0.7– Output is op Output is pu	P0.0 (respe ben-drain. ush-pull.	ctively): igr	nored if cor	responding	bit in regis
its7–0:	Output Confi ter P0MDIN 0: Correspor 1: Correspor (Note: When	iguration Bi is logic 0. nding P0.n nding P0.n SDA and	ts for P0.7– Output is op Output is pu SCL appear	P0.0 (respe ben-drain. ush-pull.	ctively): igr he Port I/O	nored if cor , each are o	responding open-drain	i bit in regis regardless

SFR Definition 18.5. P0MDOUT: Port0 Output Mode

SFR Definition 18.6. P0SKIP: Port0 Skip

19.3.2. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line LOW to extend the clock low period, effectively decreasing the serial clock frequency.

19.3.3. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than 25 ms as a "timeout" condition. Devices that have detected the timeout condition must reset the communication no later than 10 ms after detecting the timeout condition.

When the SMBTOE bit in SMB0CF is set, Timer 3 is used to detect SCL low timeouts. Timer 3 is forced to reload when SCL is high, and allowed to count when SCL is low. With Timer 3 enabled and configured to overflow after 25 ms (and SMBTOE set), the Timer 3 interrupt service routine can be used to reset (disable and re-enable) the SMBus in the event of an SCL low timeout.

19.3.4. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if the SCL and SDA lines remain high for more that 50 µs, the bus is designated as free. When the SMBFTE bit in SMB0CF is set, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods. If the SMBus is waiting to generate a Master START, the START will be generated following this timeout. Note that a clock source is required for free timeout detection, even in a slave-only implementation.

SFR Definition	19.2.	SMB0CN:	SMBus	Control
----------------	-------	---------	--------------	---------

R	R	R/W	R/W	R	R	R/W	R/W	Reset Value		
MASTE	R TXMODE	STA	STO	ACKRQ	ARBLOST	ACK	SI	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable		
							SFR Addres	s: 0xC0		
Bit7:	MASTER: SN	/Bus Mast	er/Slave Inc	dicator.						
	This read-onl	y bit indica	ates when th	ne SMBus	is operating a	s a maste	r.			
	1: SMBus operating in Master Mode.									
Bit6:	TXMODE: SI	MBus Tran	smit Mode I	ndicator.						
	This read-onl	y bit indica	ates when th	ne SMBus	is operating a	s a transm	nitter.			
	0: SMBus in	Receiver N	/lode.							
D:+C.	1: SMBus in	Transmitte	r Mode.							
BIID:	STA: SIVIBUS	Start Flag.								
	0: No Start ge	enerated.								
	1: When oper	rating as a	master, a S	TART cond	dition is transr	mitted if the	e bus is fre	e (If the bus		
	is not free, th	e START i	s transmitte	d after a S	TOP is receiv	red or a tin	neout is de	tected). If		
	STA is set by	software a	as an active	Master, a	repeated STA	ART will be	e generate	d after the		
	Read	Je.								
	0: No Start or	repeated	Start detect	ed.						
	1: Start or rep	beated Star	rt detected.							
Bit4:	STO: SMBus	Stop Flag								
	0. No STOP	condition is	s transmitte	4						
	1: Setting ST	O to logic	1 causes a	STOP con	dition to be tra	ansmitted	after the ne	ext ACK		
	cycle. When	the STOP	condition is	generated	, hardware cl	ears STO	to logic 0.	If both STA		
	and STO are	set, a STC	OP conditior	n is transm	itted followed	by a STAI	RT conditio	on.		
	Read:	ndition de	tected							
	1: Stop condi	tion detect	ed (if in Sla	ve Mode) (or pending (if	in Master	Mode).			
Bit3:	ACKRQ: SM	Bus Ackno	wledge Rec	juest	1 0 (,			
	This read-onl	y bit is set	to logic 1 w	hen the SI	MBus has rec	eived a by	te and nee	eds the ACK		
Bit2.		en with the	e correct AC	K respons	e value.					
DILZ.	This read-onl	v bit is set	to logic 1 w	hen the SI	MBus loses a	rbitration v	vhile opera	ting as a		
	transmitter. A	lost arbitr	ation while a	a slave ind	icates a bus e	error condi	tion.	ung de d		
Bit1:	ACK: SMBus	Acknowle	dge Flag.							
	This bit define	es the out-	going ACK	level and r	ecords incom	ing ACK le	evels. It sh	ould be writ-		
	0. A "not ack) a byte is i nowledge"	received (w has been re	nen ACKR	Q=1), or read in Transmitter	i alter eaci	n byte is tra R will be tra	ansmitted.		
	in Receiver M	/lode).								
	1: An "acknow	wledge" ha	as been rece	eived (if in	Transmitter M	lode) OR v	will be trans	smitted (if in		
Dire	Receiver Mo	de).								
Bit0:	SI: SMBus In	terrupt Fla	g. are under th	e conditio	ne lietad in Ta	hla 10.2 G	SI must bo	cleared by		
	software. Wh	ile SI is se	t, SCL is he	ld low and	the SMBus is	s stalled.				

19.5.3. Slave Receiver Mode

Serial data is received on SDA and the clock is received on SCL. When slave events are enabled (INH = 0), the interface enters Slave Receiver Mode when a START followed by a slave address and direction bit (WRITE in this case) is received. Upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. Software responds to the received slave address with an ACK, or ignores the received slave address with a NACK. If the received slave address is ignored, slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, zero or more data bytes are received. Software must write the ACK bit after each received byte to ACK or NACK the received byte. The interface exits Slave Receiver Mode after receiving a STOP. Note that the interface will switch to Slave Transmitter Mode if SMB0DAT is written while an active Slave Receiver. Figure 19.7 shows a typical Slave Receiver sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur **before** the ACK cycle in this mode.

Figure 19.7. Typical Slave Receiver Sequence

NOTES:

The C/T0 bit (TMOD.2) selects the counter/timer's clock source. When C/T0 is set to logic 1, high-to-low transitions at the selected Timer 0 input pin (T0) increment the timer register (Refer to Section "18.1. Priority Crossbar Decoder' on page 139 for information on selecting and configuring external I/O pins). Clearing C/T selects the clock defined by the T0M bit (CKCON.3). When T0M is set, Timer 0 is clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see SFR Definition 22.3).

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or the input signal /INT0 is active as defined by bit IN0PL in register IT01CF (see SFR Definition 12.5). Setting GATE0 to '1' allows the timer to be controlled by the external input signal /INT0 (see Section "12.4. Interrupt Register Descriptions' on page 107), facilitating pulse width measurements.

TR0	GATE0	/INT0	Counter/Timer			
0	Х	Х	Disabled			
1	0	Х	Enabled			
1	1	0	Disabled			
1	1	1	1 Enabled			
X = Do	n't Care					

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal /INT1 is used with Timer 1; the /INT1 polarity is defined by bit IN1PL in register IT01CF (see SFR Definition 12.5).

22.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

SFR Definition 22.1. TCON: Timer Contro

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit		
							SER Addres			
Bit7:	TF1: Timer '	Overflow F	-lag.							
	Set by hard	vare when T	Timer 1 ove	rflows. This	s flag can be	e cleared by	software	but is auto-		
	matically cle	matically cleared when the CPU vectors to the Timer 1 interrupt service routine.								
	0: No Timer	1 overflow (detected.							
Bit6.	TR1 Timer 1 h	as overnow	ea. rol							
Dito.	0: Timer 1 d	isabled.	01.							
	1: Timer 1 e	nabled.								
Bit5:	TF0: Timer () Overflow F	-lag.							
	Set by hard	vare when	Fimer 0 ove	erflows. This	flag can be	e cleared by	software	but is auto-		
	0: No Timer	0 overflow	the CPU ve detected	ectors to the	rimer u int	errupt servi	ce routine.			
	1: Timer 0 h	as overflow	ed.							
Bit4:	TR0: Timer) Run Conti	rol.							
	0: Timer 0 d	sabled.								
D:+2.	1: Timer 0 e	nabled.								
DIIJ.	This flag is s	et by hardw	vare when a	in edge/leve	al of type de	fined by IT1	is detecte	d It can be		
	cleared by s	oftware but	is automati	cally cleare	d when the	CPU vector	s to the Ex	kternal Inter-		
	rupt 1 servic	e routine if	IT1 = 1. Wł	nen ÍT1 = 0,	this flag is	set to '1' wh	nen /INT1 i	s active as		
	defined by b	it IN1PL in	register IT0	1CF (see S	FR Definition	on 12.5).				
Bit2:	IT1: Interrup	t 1 Type Se	lect.	urad /INIT1 ;	ntorrunt will	ha adaa ar				
	is configured	active low	or high by	the IN1PL b	hierrupt will hit in the IT0	De euge of 1CE registe	evel sens	R Definition		
	12.5).		or night by			ror registe		Deminion		
	0: /INT1 is le	vel triggere	ed.							
544	1: /INT1 is e	dge triggere	ed.							
Bit1:	IE0: Externa	I Interrupt 0). Iaro whon c	n odgo/lov/	al of type de	fined by IT() ic dotocto	d It can be		
	cleared by s	oftware but	is automati	cally cleare	d when the	CPU vector	s to the Ex	ternal Inter-		
	rupt 0 servic	e routine if	IT0 = 1. Wr	nen ITO = 0,	this flag is	set to '1' wh	nen /INT0 i	s active as		
	defined by b	it IN0PL in i	register IT0	1CF (see S	FR Definitio	on 12.5).				
Bit0:	IT0: Interrup	t 0 Type Se	lect.							
	I his bit sele	cts whether	the configu	Ired /INTUT	nterrupt will	be edge or		Sitive. /IN10		
	12.5).		or night by		ni il registe		CC OFR D			
	0: /INT0 is le	evel triggere	ed.							
	1: /INT0 is e	dge triggere	ed.							

SFR Definition 22.3. CKCON: Clock Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
T3MH	T3ML	T2MH	T2ML	T1M	TOM	SCA1	SCA0	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
							SFR Address	s: 0x8E	
Bit7:	T3MH: Time	r 3 High By	te Clock Se	lect.					
	This bit sele	cts the cloc	k supplied t	o the Timer	3 high byte	e if Timer 3 i	s configure	ed in split 8-	
	bit timer mo	de. T3MH is	s ignored if	Timer 3 is ir	any other	mode.	-		
	0: Timer 3 high byte uses the clock defined by the T3XCLK bit in TMR3CN.								
	1: Timer 3 high byte uses the system clock.								
Bit6:	T3ML: Time	r 3 Low Byte	e Clock Sel	ect.					
	This bit sele	cts the cloc	k supplied t	o Timer 3. I	f Timer 3 is	configured	in split 8-b	it timer	
	mode, this b	it selects th	e clock sup	plied to the	lower 8-bit	timer.			
	0: Timer 3 lo	w byte use	s the clock	defined by t	he I3XCLK	K bit in TMR	3CN.		
Dite		W Dyte use:	s the syster	n clock.					
DIID.	T2IVIT. TIME	te the clea	le Clock Se	elect. A tha Timor	2 high byte	if Timor 2 i	e configure	d in colit 9	
	hit timer mo	do T2MH id	k supplied t	U lite Tittlei Timor 2 is ir	2 nigh byte		s configure	eu in spiit o-	
	0. Timer 2 h	ah hyte use	s the clock	defined hv	the T2XCI	K hit in TMF	R2CN		
	1: Timer 2 h	igh byte use	es the syste	m clock			12011.		
Bit4:	T2ML: Time	r 2 Low Byte	e Clock Sel	ect.					
	This bit sele	cts the cloc	k supplied t	o Timer 2. I	f Timer 2 is	configured	in split 8-b	it timer	
	mode, this b	it selects th	e clock sup	plied to the	lower 8-bit	timer.	·		
	0: Timer 2 lo	w byte use	s the clock	defined by t	he T2XCLK	K bit in TMR	2CN.		
	1: Timer 2 lo	w byte use	s the syster	n clock.					
Bit3:	T1M: Timer	1 Clock Sel	ect.						
	This select t	he clock so	urce supplie	ed to Timer	1. T1M is ig	nored wher	n C/T1 is se	et to logic 1.	
	0: Timer 1 u	ses the cloc	k defined b	y the presc	ale bits, SC	A1–SCA0.			
D:40	1: Limer 1 u	ses the syst	tem clock.						
BItZ:	TUM: Timer	U CIOCK Sei		nalied to Ti	mar O TOM	ia ignorady	when C/TO	io oot to	
		cis the cloc	k source su	pplied to Ti	ner u. Tuw	is ignored	when C/TU	is set to	
	0. Counter/T	imer () uses	the clock (defined by t	ne nrescale	hits SCA1	-SCA0		
	1: Counter/T	imer 0 uses	s the system	n clock	ic preseate	, bits, 00A1	0040.		
Bits1–0:	SCA1–SCA): Timer 0/1	Prescale E	Bits.					
	These bits c	ontrol the d	ivision of th	e clock sup	olied to Tim	er 0 and Tir	mer 1 if cor	nfigured to	
	use prescale	ed clock inp	uts.	•				5	
	SCA1	SCA0	Presc	aled Clock					
	0	0	System clo	ck divided k	by 12				
	0	1	System clo	ock divided	by 4				
	1	0	System clo	ck divided k	oy 48				
	1	1	External cl	ock divided	by 8				
	Note: External clock divided by 8 is synchronized with the								
	system clock.								

23.2.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 23.1.

$$F_{CEXn} = \frac{F_{PCA}}{2 \times PCA0CPHn}$$

Note: A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.

Equation 23.1. Square Wave Frequency Output

Where F_{PCA} is the frequency of the clock selected by the CPS2–0 bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register.

Figure 23.7. PCA Frequency Output Mode

