

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x16b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f352-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.	System Overview	17
	1.1. CIP-51 [™] Microcontroller	21
	1.1.1. Fully 8051 Compatible Instruction Set	21
	1.1.2. Improved Throughput	21
	1.1.3. Additional Features	21
	1.2. On-Chip Debug Circuitry	22
	1.3. On-Chip Memory	23
	1.4. 24 or 16-Bit Analog to Digital Converter (ADC0)	24
	1.5. Two 8-bit Current-Mode DACs	25
	1.6. Programmable Comparator	26
	1.7. Serial Ports	26
	1.8. Port Input/Output	27
	1.9. Programmable Counter Array	28
2.	Absolute Maximum Ratings	29
3.	Global DC Electrical Characteristics	30
4.	Pinout and Package Definitions	31
5.	24 or 16-Bit Analog to Digital Converter (ADC0)	41
	5.1. Configuration	42
	5.1.1. Voltage Reference Selection	42
	5.1.2. Analog Inputs	42
	5.1.3. Modulator Clock	43
	5.1.4. Decimation Ratio	43
	5.2. Calibrating the ADC	44
	5.2.1. Internal Calibration	44
	5.2.2. System Calibration	44
	5.2.3. Calibration Coefficient Storage	44
	5.3. Performing Conversions	46
	5.3.1. Single Conversions	46
	5.3.2. Continuous Conversions	46
	5.3.3. ADC Output	46
	5.3.4. Error Conditions	47
	5.4. Offset DAC	47
	5.5. Burnout Current Sources	47
	5.6. Analog Multiplexer	59
6.	8-Bit Current Mode DACS (IDA0 and IDA1)	67
	6.1. IDAC Output Scheduling	68
	6.1.1. Update Output On-Demand	68
	6.1.2. Update Output Based on Timer Overflow	68
	6.1.3. Update Output Based on CNVSTR Edge	68
	6.2. IDAC Output Mapping	68
	6.3. IDAC External Pin Connections	71
7.	Voltage Reference	73
8.	Temperature Sensor	77

Figure 1.3. C8051F352 Block Diagram

1.6. Programmable Comparator

C8051F350/1/2/3 devices include a software-configurable voltage comparator with an input multiplexer. The Comparator offers programmable response time and hysteresis and two outputs that are optionally available at the Port pins: a synchronous "latched" output (CP0), or an asynchronous "raw" output (CP0A). Comparator interrupts may be generated on rising, falling, or both edges. When in IDLE mode, these interrupts may be used as a "wake-up" source for the processor. Comparator0 may also be configured as a reset source. A block diagram of the Comparator is shown in Figure 1.9.

Figure 1.9. Comparator0 Block Diagram

1.7. Serial Ports

The C8051F350/1/2/3 Family includes an SMBus/I2C interface, a full-duplex UART with enhanced baud rate configuration, and an Enhanced SPI interface. Each of the serial buses is fully implemented in hard-ware and makes extensive use of the CIP-51's interrupts, thus requiring very little CPU intervention.

5.3. Performing Conversions

The ADC offers two conversion modes: Single Conversion, and Continuous Conversion. In single conversion mode, a single conversion result is produced for each of the filters (SINC3 and Fast). In continuous conversion mode, the ADC will perform back-to-back conversions until the ADC mode is changed. Procedures for single and continuous conversion modes are detailed in the sections below.

5.3.1. Single Conversions

A single conversion is initiated by writing the ADC System Mode bits (AD0SM) to the "Single Conversion" option. Single conversion mode instructs the ADC to gather enough information to produce a result for the filter that is selected by the AD0ISEL bit. During the conversion, the AD0BUSY flag will be set to '1'. The Fast filter results will be available after one period of the ADC's conversion cycle (determined by the modulator clock and the decimation ratio). The SINC3 filter results will be available after three periods of the ADC's conversion cycle. The AD0ISEL bit in register ADC0CF determines when the end-of-conversion interrupt will occur, and return the ADC to Idle mode. If the AD0ISEL bit is set to '1', the AD0INT bit will be set to '1' when the Fast filter results are available. If the AD0ISEL bit is cleared to '0', the AD0INT bit will be set to '1' when the SINC3 filter results are available. The AD0SM bits will return to idle mode and the AD0BUSY bit will be cleared to '0' when the selected filter is finished. When using the SINC3 filter, a valid result will also be output by the Fast filter. When using the Fast filter in single-conversion mode, the SINC3 filter results will not be accurate.

5.3.2. Continuous Conversions

Continuous conversions are initiated by writing the ADC System Mode bits (AD0SM) to the "Continuous Conversion" option. In continuous conversion mode, the ADC will start a new conversion as soon as each conversion is completed. During the conversions, the AD0BUSY flag will be set to '1'. The Fast filter results will be available after one period of the ADC's conversion cycle, and on every conversion cycle thereafter (determined by the modulator clock and the decimation ratio). The first SINC3 filter results will be available after three periods of the ADC's conversion cycle, and subsequent SINC3 conversion results will be available after three periods of the ADC's conversion cycle, and subsequent SINC3 conversion results will be available at the end of every conversion cycle thereafter. The AD0ISEL bit in register ADC0CF determines when the end-of-conversion interrupts will occur. If the AD0ISEL bit is cleared to '0', the AD0INT bit will be set to '1' when SINC3 filter results are available. If the AD0ISEL bit is set to '1', the AD0INT bit will be set to '1' when Fast filter results are available. Regardless of the setting of the AD0ISEL bit, both filters will update their results registers when new results are available. To stop conversions and exit from continuous conversion mode, the AD0SM bits should be written to Idle mode.

5.3.3. ADC Output

The ADC's two filters each have their own output data registers. The SINC3 filter results are stored in the ADC0H, ADC0M, and ADC0L registers, while the Fast filter results are stored in the ADC0FH, ADC0FM, and ADC0FL registers. The ADC output can be configured for Unipolar or Bipolar mode using the AD0POL bit in register ADC0CN. Decoding of the ADC output words are shown in Table 5.1 and Table 5.2. The SINC3 filter uses information from the past three conversion cycles to produce an ADC output. The Fast filter reacts more quickly to changes on the analog input, while the SINC3 filter produces lower-noise results.

SFR Definition 5.8. ADC0BUF: ADC0 Input Buffer Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
AD0BPH	IE AD0BPLE	AD0	BPS	AD0BNHE	ADOBNLE	AD	BNS	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Addres	ss: 0xBD
Bit 7:	AD0BPHE: F	Positive Cha	annel High	Buffer Enab	le.			
	0: Positive C	hannel Hig	h Input But	ffer Disabled				
	1: Positive C	hannel Hig	h Input But	ffer Enabled				
Bit 6:	AD0BPLE: P	ositive Cha	annel Low I	Enable.				
	0: Positive C	hannel Lov	v Input Buf	fer Disabled.				
	1: Positive C	hannel Lov	v Input Buf	ter Enabled.				
BITS 5-4:	ADUBPS: PO	Incut Puffe		selection.				
	00 = Bypass 01 = Select I	ow Input P	uffer Ranc					
	10 = Select H	-liah Innut F	Buffer Rand	ле. Пе				
	11 = Reserve	ed.	Sanor Rang	y o.				
Bit 3:	AD0BNHE: N	legative Cl	nannel Hig	h Buffer Ena	ble.			
	0: Negative (Channel Hig	gh Input Bi	uffer Disable	d.			
	1: Negative (Channel Hig	gh Input Bu	uffer Enabled	ł.			
Bit 2:	AD0BNLE: N	legative Ch	nannel Low	Enable.				
	0: Negative (Channel Lo	w Input Bu	ffer Disable	J.			
	1: Negative (Channel Lo	w Input Bu	ffer Enabled	•			
Bits 1–0:	ADOBNS: Ne	egative Cha	annel Input	Selection.				
	00 = Bypass		er (default).					
	10 = Select L	-ow input E High Input F	Suffer Rang	је. 10				
	10 = Belect f 11 = Reserve	ngn mpur i ad		ye.				
	= 1000170							
This SFF	R can only be	modified	when ADC	0 is in IDLE	mode.			
	-							

_	_	_	_	_	_			_				
R	R	R	R	R	R	R/W	R/W	Reset Value				
—	—	—	_		—	BIASE	REFBE	0000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_				
							SFR Address	s: 0xD1				
NOTE: Modification of this register is not necessary in most applications. The appropriate circuitry is enabled when it is needed by a peripheral.												
Bits7–2:	Unused. Rea	ad = 00000	0b; Write =	don't care.								
Bit1:	BIASE: Inter	nal Oscillat	or Bias Ena	able.								
	This bit is Of	Red with the	e Internal C	scillator En	able bit to e	nable the ir	nternal osc	illator bias				
	generator.											
	0: Internal O	scillator Bia	as enable de	etermined b	y Internal C	Scillator En	able bit.					
Dire	1: Internal O	scillator Bia	as Generato	or On.								
Bit0:	REFBE: Inte	rnal Refere	ence Bias E	nable Bit.			<u>.</u>					
	This bit is Of	Red with the	e Enable bi	ts for ADC0	, IDAC0, ID	AC1, and th	ne Clock M	ultiplier to				
	0: Internal R	oforonco Ri	ias onablo (ator.	ov individus		nt					
	1: Internal R	eference B	ias enabled		by maividue							
	1. momune											

SFR Definition 7.1. REF0CN: Reference Control

SFR [Definition	9.3. C	PTOMX:	Comparator0	MUX Selection
-------	------------	--------	--------	-------------	----------------------

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CMX0N3	CMX0N2	2 CMX0N	1 CMX0N	0 CMX0	P3 CMX0P2	CMX0P1	CMX0P0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	2
							SFR Address:	0x9F
Bits7–4:	CMX0N3-0	CMX0N0: 0	Comparato	r0 Negative	e Input MUX Se	elect.		
-	These bits	select which	ch Port pin	is used as	the Comparate	or0 negative	e input.	
г	011/01/0		010/01/4					
-	CMX0N3	CMX0N2	CMX0N1	CMX0N0	Negative Inp	out		
-	0	0	0	0	P0.1			
-	0	0	0	1	P0.3			
	0	0	1	0	P0.5			
	0	0	1	1	P0.7			
	0	1	0	0	P1.1			
	0	1	0	1	P1.3			
	0	1	1	0	P1.5			
	0	1	1	1	P1.7			
	1	Х	Х	Х	None			
Bits3–0:	CMX0P3-0	CMX0P0: C	Comparato	r0 Positive	Input MUX Sel	ect.		
-	These bits	select whic	ch Port pin	is used as	the Comparate	or0 positive	input.	
Γ	CMX0P3	CMX0P2	CMX0P1	CMX0P0	Positive Inp	out		
-	0	0	0	0	P0.0			
-	0	0	0	1	P0.2			
-	0	0	1	0	P0.4			
ľ	0	0	1	1	P0.6			
ľ	0	1	0	0	P1.0			
-	0	1	0	1	P1.2			
-	0	1	1	0	P1.4			
-	0	1	1	1	P1.6			
-	1	Х	Х	Х	None			
L					•			

Mnemonic	Bytes	Clock	
			Cycles
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri, #data	Move immediate to indirect RAM	2	2
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2
	Boolean Manipulation		
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2
ANL C. bit	AND direct bit to Carry	2	2
ANL C. /bit	AND complement of direct bit to Carry	2	2
ORL C. bit	OR direct bit to carry	2	2
ORL C. /bit	OR complement of direct bit to Carry	2	2
MOV C. bit	Move direct bit to Carry	2	2
MOV bit. C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/3
JNC rel	Jump if Carry is not set	2	2/3
JB bit. rel	Jump if direct bit is set	3	3/4
JNB bit, rel	Jump if direct bit is not set	3	3/4
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4
	Program Branching	•	0, 1
ACALL addr11	Absolute subroutine call	2	3
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	5
RFTI	Return from interrupt	1	5
AJMP addr11	Absolute jump	2	3
I JMP addr16		3	4
SIMP rel	Short jump (relative address)	2	3
		1	3
		2	2/2
	lump if A does not equal zero	2	2/3
	Jump in A ubes not equal 2010	L 2	2/3

Table 10.1. CIP-51 Instruction Set Summary (Continued)

Table 11.2. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
TL0	0x8A	Timer/Counter 0 Low	202
TL1	0x8B	Timer/Counter 1 Low	202
TMOD	0x89	Timer/Counter Mode	200
TMR2CN	0xC8	Timer/Counter 2 Control	205
TMR2H	0xCD	Timer/Counter 2 High	206
TMR2L	0xCC	Timer/Counter 2 Low	206
TMR2RLH	0xCB	Timer/Counter 2 Reload High	206
TMR2RLL	0xCA	Timer/Counter 2 Reload Low	206
TMR3CN	0x91	Timer/Counter 3Control	209
TMR3H	0x95	Timer/Counter 3 High	210
TMR3L	0x94	Timer/Counter 3 Low	210
TMR3RLH	0x93	Timer/Counter 3 Reload High	210
TMR3RLL	0x92	Timer/Counter 3 Reload Low	210
VDM0CN	0xFF	V _{DD} Monitor Control	117
XBR0	0xE1	Port I/O Crossbar Control 0	142
XBR1	0xE2	Port I/O Crossbar Control 1	143

17. Oscillators

C8051F350/1/2/3 devices include a programmable internal oscillator, an external oscillator drive circuit, and a clock multiplier. The internal oscillator can be enabled/disabled and calibrated using the OSCICN and OSCICL registers, as shown in Figure 17.1. The system clock (SYSCLK) can be derived from the internal oscillator, external oscillator circuit, or the clock multiplier. The clock multiplier can produce three possible outputs: Internal Oscillator x 2, External Oscillator x 2, or External Oscillator x 4. Oscillator electrical specifications are given in Table 17.1 on page 136.

17.1. Programmable Internal Oscillator

All C8051F350/1/2/3 devices include a programmable internal oscillator that defaults as the system clock after a system reset. The internal oscillator period can be programmed via the OSCICL register, shown in SFR Definition 17.2. On C8051F350/1/2/3 devices, OSCICL is factory calibrated to obtain a 24.5 MHz frequency.

Electrical specifications for the precision internal oscillator are given in Table 17.1 on page 136. Note that the system clock may be derived from the programmed internal oscillator divided by 1, 2, 4, or 8, as defined by the IFCN bits in register OSCICN. The divide value defaults to 8 following a reset.

R/W	R	R	R	R	R	R/W	R/W	Reset Value
IOSCEN	I IFRDY		_	_	_	IFCN1	IFCN0	11000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
							SFR Address	:: 0xB2
Bit7: Bit6: Bits5–2: Bits1–0:	IOSCEN: Int 0: Internal O 1: Internal O IFRDY: Inter 0: Internal O 1: Internal O UNUSED. R IFCN1–0: Int 00: SYSCLK 01: SYSCLK 10: SYSCLK 11: SYSCLK	ernal Oscill scillator Dis scillator En nal Oscillat scillator is r scillator is r ead = 0000 ternal Oscil derived fro derived fro derived fro	ator Enable abled. or Frequent not running at p b, Write = c lator Freque om Internal om Internal om Internal	e Bit. cy Ready Fl at programmed don't care. ency Contro Oscillator di Oscillator di Oscillator di Oscillator di	ag. ned frequen frequency. I Bits. vided by 8. vided by 8. vided by 2. vided by 1.	ncy.		

SFR Definition 17.1. OSCICN: Internal Oscillator Control

SFR Definition 17.2. OSCICL: Internal Oscillator Calibration

The capacitors shown in the external crystal configuration provide the load capacitance required by the crystal for correct oscillation. These capacitors are "in series" as seen by the crystal and "in parallel" with the stray capacitance of the XTAL1 and XTAL2 pins.

Note: The load capacitance depends upon the crystal and the manufacturer. Please refer to the crystal datasheet when completing these calculations.

For example, a tuning-fork crystal of 32.768 kHz with a recommended load capacitance of 12.5 pF should use the configuration shown in Figure 17.1, Option 1. The total value of the capacitors and the stray capacitance of the XTAL pins should equal 25 pF. With a stray capacitance of 3 pF per pin, the 22 pF capacitors yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 17.2.

Figure 17.2. 32.768 kHz External Crystal Example

Important note on external crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

19.1. Supporting Documents

It is assumed the reader is familiar with or has access to the following supporting documents:

- 1. The I2C-Bus and How to Use It (including specifications), Philips Semiconductor.
- 2. The I2C-Bus Specification -- Version 2.0, Philips Semiconductor.
- 3. System Management Bus Specification -- Version 1.1, SBS Implementers Forum.

19.2. SMBus Configuration

Figure 19.2 shows a typical SMBus configuration. The SMBus specification allows any recessive voltage between 3.0 V and 5.0 V; different devices on the bus may operate at different voltage levels. The bi-directional SCL (serial clock) and SDA (serial data) lines must be connected to a positive power supply voltage through a pull-up resistor or similar circuit. Every device connected to the bus must have an open-drain or open-collector output for both the SCL and SDA lines, so that both are pulled high (recessive state) when the bus is free. The maximum number of devices on the bus is limited only by the requirement that the rise and fall times on the bus not exceed 300 ns and 1000 ns, respectively.

19.3. SMBus Operation

Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave receiver (WRITE), and data transfers from an addressed slave transmitter to a master receiver (READ). The master device initiates both types of data transfers and provides the serial clock pulses on SCL. The SMBus interface may operate as a master or a slave, and multiple master devices on the same bus are supported. If two or more masters attempt to initiate a data transfer simultaneously, an arbitration scheme is employed with a single master always winning the arbitration. Note that it is not necessary to specify one device as the Master in a system; any device who transmits a START and a slave address becomes the master for the duration of that transfer.

A typical SMBus transaction consists of a START condition followed by an address byte (Bits7–1: 7-bit slave address; Bit0: R/W direction bit), one or more bytes of data, and a STOP condition. Each byte that is received (by a master or slave) must be acknowledged (ACK) with a low SDA during a high SCL (see Figure 19.3). If the receiving device does not ACK, the transmitting device will read a NACK (not acknowledge), which is a high SDA during a high SCL.

SFR Definition 19.1. SMB0CF: SMBus Clock/Configuration

R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	Reset Value			
ENSMB	5 INH	BUSY	EXTHOLD	SMBTOE	SMBFTE	SMBCS1	SMBCS0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-			
	SFR Address: 0xC1										
Bit7:	ENSMB: SM	Bus Enable).								
	inis bit enables/disables the Sivibus interface. When enabled, the interface constantly mo										
	Itors the SDA and SUL pins.										
	0: SMBus in	terface disa	bled.								
Ditc		teriace enal									
ЫЮ.	When this hi	t is set to lo	ni. aic 1 tho S	MRue doos	not genera	to an interr	unt when a	avo ovonte			
		affectively re	yic I, the S	SMRue ela	ve from the	hue Maete	upt when si ar Mode inte				
	not affected			OMDUS SIA		bus. masic					
	0: SMBus S	ave Mode e	enabled.								
	1: SMBus SI	ave Mode i	nhibited.								
Bit5:	BUSY: SMB	us Busy Ind	licator.								
	This bit is se	t to logic 1	by hardware	e when a tra	ansfer is in	progress. It	is cleared t	o logic 0			
	when a STO	P or free-tir	neout is ser	nsed.							
Bit4:	EXTHOLD:	SMBus Setu	up and Hold	Time Exte	nsion Enab	le.					
	This bit cont	rols the SD	A setup and	hold times	according	to Table 19	.2.				
	0: SDA Exte	nded Setup	and Hold T	imes disab	led.						
D'10	1: SDA Exte	nded Setup	and Hold I	imes enab	led.						
Bit3:	SMBIOE: S		Limeout De		able.		ua farada Ti	mar 2 ta			
	reload while	SCL is high		Timer 3 to	set to logic		Low If Time				
	figured in sp	lit mode (T?	SPI IT is su	at) only the	high hyte o	of Timer 3 is	s low. If Tilli s held in rel	ad while			
	SCI is high	Timer 3 sh	ould be prov	arammed to	nigh byte t	nterrunts at	$25 \mathrm{ms}$ and	the			
	Timer 3 inter	rupt service	e routine sh	ould reset S	SMBus com	munication	. 20 1110, and				
Bit2:	SMBFTE: SI	MBus Free	Timeout De	tection Ena	ble.		-				
	When this bi	t is set to lo	gic 1, the bu	us will be co	nsidered fre	ee if SCL ar	nd SDA rem	ain high for			
	more than 1	0 SMBus cl	ock source	periods.				-			
Bits1–0:	SMBCS1-S	MBCS0: SN	Bus Clock	Source Sel	ection.						
	These two b	its select th	e SMBus cl	ock source	, which is u	sed to gene	erate the SM	1Bus bit			
	rate. The se	lected devic	e should be	e configured	d according	to Equation	า 19.1.				
	SMBCS1	SWBCSO	SM		Sourco						
		0			rflow						
	0	1	י ד	Timer 1 Ove	erflow						
	1	0	Timer	2 High Byte	e Overflow						
	1	1	Timer	2 Low Byte	Overflow						
	<u> </u>		1								

21.5. Serial Clock Timing

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between an active-high or active-low clock. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0 should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The clock and data line relationships are shown in Figure 21.5.

The SPI0 Clock Rate Register (SPI0CKR) as shown in SFR Definition 21.3 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz, whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency.

21.6. SPI Special Function Registers

SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following figures.

SFR Definition 21.1. SPI0CFG: SPI0 Configuration

R	R/W	R/W	R/W	R	R	R	R	Reset Value				
SPIBSY	MSTEN	CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT	00000111				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
							SFR Address	s: 0xA1				
Bit 7:	SPIBSY: SP	I Busy (read	d only).									
	This bit is set to logic 1 when a SPI transfer is in progress (Master or Slave Mode).											
Bit 6:	MSTEN: Master Mode Enable.											
	0: Disable master mode. Operate in slave mode.											
	1: Enable ma	aster mode.	Operate a	s a master.								
Bit 5:	CKPHA: SPI	0 Clock Ph	ase.									
	This bit cont	rols the SPI	0 clock pha	ase.								
	0: Data cent	ered on firs	t edge of S	CK period.*								
	1: Data cent	ered on sec	ond edge o	of SCK perio	od.*							
Bit 4:	CKPOL: SPI	0 Clock Po	larity.									
	This bit cont	rols the SPI	0 clock pol	arity.								
	0: SCK line I	ow in idle s	tate.									
Dito	1: SCK line I	high in idle s	state.									
Bit 3:	SLVSEL: SI	ave Selecte	d Flag (rea	d only).				tadalaria lt				
	I his bit is se		Whenever ti	ne NSS pin	IS IOW INDIC	ating SPIU I	is the selec	ted slave. It				
	instantanaa		ha NGS nir	ign (slave n). This bit u	oes not ind					
Bit 2.		IS value al l	ne NOO pir	i, but rather	a ue-giitori W		or the pirm	ipul.				
DIL Z.	This hit mimi	ice the insta	ntangous v	value that is	nresent on	the NSS n	ort nin at th	e time that				
	the register i	s read This	intaneous v	alue that is	d d	the NOO p	on pin at th	e une tiat				
Bit 1	SRMT Shift	Register Fr	noty (Valid	in Slave Mc	u. Ide read or	ulv)						
DR T.	This bit will b	ne set to loo	iic 1 when a	all data has	been transf	ferred in/ou	t of the shif	t register				
	and there is	no new info	ormation av	ailable to re	ad from the	transmit b	uffer or writ	e to the				
	receive buffe	er. It returns	to logic 0 v	vhen a data	bvte is trar	nsferred to t	the shift rec	sister from				
	the transmit	buffer or by	a transition	n on SCK.	· , · · · · · ·			,				
	NOTE: SRM	T = 1 when	in Master I	Mode.								
Bit 0:	RXBMT: Red	ceive Buffer	Empty (Va	lid in Slave	Mode, read	l only).						
	This bit will b	be set to log	jic 1 when t	he receive l	ouffer has b	een read a	nd contains	s no new				
	information.	If there is no	ew informat	ion availabl	e in the rec	eive buffer t	that has not	t been read,				
	this bit will re	eturn to logi	c 0.									
	NOTE: RXB	MT = 1 whe	en in Maste	r Mode.								
*Note: See	Table 21.1 for t	iming param	eters.									

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 21.9. SPI Slave Timing (CKPHA = 1)

23.2.5. 8-Bit Pulse Width Modulator Mode

Each module can be used independently to generate a pulse width modulated (PWM) output on its associated CEXn pin. The frequency of the output is dependent on the timebase for the PCA counter/timer. The duty cycle of the PWM output signal is varied using the module's PCA0CPLn capture/compare register. When the value in the low byte of the PCA counter/timer (PCA0L) is equal to the value in PCA0CPLn, the output on the CEXn pin will be set. When the count value in PCA0L overflows, the CEXn output will be reset (see Figure 23.8). Also, when the counter/timer low byte (PCA0L) overflows from 0xFF to 0x00, PCA0CPLn is reloaded automatically with the value stored in the module's capture/compare high byte (PCA0CPHn) without software intervention. Setting the ECOMn and PWMn bits in the PCA0CPMn register enables 8-Bit Pulse Width Modulator mode. The duty cycle for 8-Bit PWM Mode is given by Equation 23.2.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

$$DutyCycle = \frac{(256 - PCA0CPHn)}{256}$$

Equation 23.2. 8-Bit PWM Duty Cycle

Using Equation 23.2, the largest duty cycle is 100% (PCA0CPHn = 0), and the smallest duty cycle is 0.39% (PCA0CPHn = 0xFF). A 0% duty cycle may be generated by clearing the ECOMn bit to '0'.

Rev. 1.1

SFR Definition 23.4. PCA0L: PCA Counter/Timer Low Byte

SFR Definition 23.5. PCA0H: PCA Counter/Timer High Byte

C2 Register Definition 25.3. REVID: C2 Revision ID

C2 Register Definition 25.4. FPCTL: C2 Flash Programming Control

C2 Register Definition 25.5. FPDAT: C2 Flash Programming Data

