E. Keniconductor Corporation - LAMX01200E-3FTN256E Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Active
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5.1 ns
Voltage Supply - Internal	1.14V ~ 1.26V
Number of Logic Elements/Blocks	-
Number of Macrocells	600
Number of Gates	-
Number of I/O	211
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lamxo1200e-3ftn256e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM, and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7, and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B

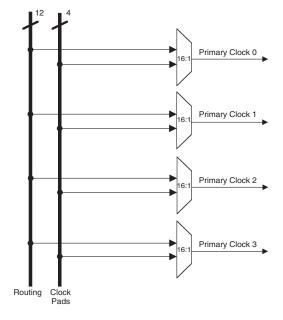
Two additional signals, Carry Generate and Carry Propagate, are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The ispLEVER design tool supports the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in LA-MachXO devices, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

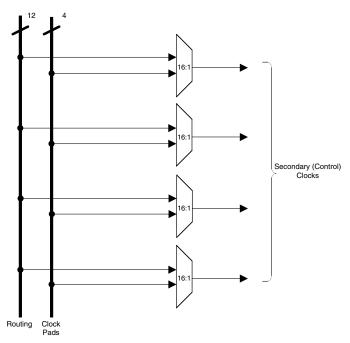
	SPR16x2	DPR16x2
Number of Slices	1	2


Note: SPR = Single Port RAM, DPR = Dual Port RAM

The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

Clock/Control Distribution Network

The LA-MachXO automotive family of devices provides global signals that are available to all PFUs. These signals consist of four primary clocks and four secondary clocks. Primary clock signals are generated from four 16:1 muxes as shown in Figure 2-7 and Figure 2-8. The available clock sources for the LA-MachXO256 and LA-MachXO640 devices are four dual function clock pins and 12 internal routing signals. The available clock sources for the LA-MachXO2280 devices are four dual function clock pins, up to nine internal routing signals and up to six PLL outputs.



Primary Clock 0 Primary Clock 1 16:1 Primary Clock 1 16:1 Primary Clock 2 16:1 Primary Clock 3 Bouting Clock PLL Pads Outputs

Figure 2-8. Primary Clocks for LA-MachXO1200 and LA-MachXO2280 Devices

Four secondary clocks are generated from four 16:1 muxes as shown in Figure 2-9. Four of the secondary clock sources come from dual function clock pins and 12 come from internal routing.

Figure 2-9. Secondary Clocks for LA-MachXO Devices

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from PLL output, clock net, routing/external pin or internal feedback from CLKINTFB port
RST	I	"1" to reset the input clock divider
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (No phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
LOCK	0	"1" indicates PLL LOCK to CLKI
CLKINTFB	0	Internal feedback source, CLKOP divider output before CLOCKTREE
DDAMODE	I	Dynamic Delay Enable. "1": Pin control (dynamic), "0": Fuse Control (static)
DDAIZR	I	Dynamic Delay Zero. "1": delay = 0, "0": delay = on
DDAILAG	1	Dynamic Delay Lag/Lead. "1": Lag, "0": Lead
DDAIDEL[2:0]		Dynamic Delay Input

Table 2-5. PLL Signal Descriptions

For more information on the PLL, please see details of additional technical documentation at the end of this data sheet.

sysMEM Memory

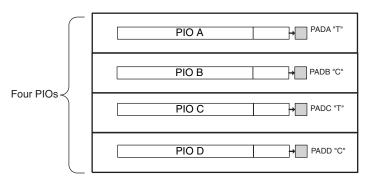
The LA-MachXO1200 and LA-MachXO2280 devices contain sysMEM Embedded Block RAMs (EBRs). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers.

sysMEM Memory Block

The sysMEM block can implement single port, dual port, pseudo dual port, or FIFO memories. Each block can be used in a variety of depths and widths as shown in Table 2-6.

Table 2-6. sysMEM Block Configurations

Memory Mode	Configurations			
	8,192 x 1			
	4,096 x 2			
Single Port	2,048 x 4			
	1,024 x 9			
	512 x 18			
	256 x 36			
	8,192 x 1			
True Dual Port	4,096 x 2			
	2,048 x 4			
	1,024 x 9			
	512 x 18			
	8,192 x 1			
	4,096 x 2			
Pseudo Dual Port	2,048 x 4			
	1,024 x 9			
	512 x 18			
	256 x 36			
	8,192 x 1			
	4,096 x 2			
FIFO	2,048 x 4			
	1,024 x 9			
	512 x 18			
	256 x 36			


PIO Groups

On the LA-MachXO devices, PIO cells are assembled into two different types of PIO groups, those with four PIO cells and those with six PIO cells. PIO groups with four IOs are placed on the left and right sides of the device while PIO groups with six IOs are placed on the top and bottom. The individual PIO cells are connected to their respective sysIO buffers and PADs.

On all LA-MachXO devices, two adjacent PIOs can be joined to provide a complementary Output driver pair. The I/ O pin pairs are labeled as "T" and "C" to distinguish between the true and complement pins.

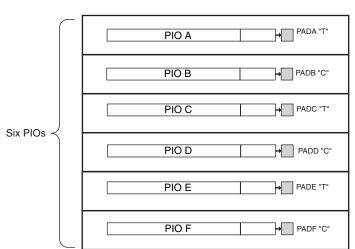

The LA-MachXO1200 and LA-MachXO2280 devices contain enhanced I/O capability. All PIO pairs on these larger devices can implement differential receivers. In addition, half of the PIO pairs on the left and right sides of these devices can be configured as LVDS transmit/receive pairs. PIOs on the top of these larger devices also provide PCI support.

Figure 2-15. Group of Four Programmable I/O Cells

This structure is used on the left and right of MachXO devices

Figure 2-16. Group of Six Programmable I/O Cells

This structure is used on the top and bottom of MachXO devices

PIO

The PIO blocks provide the interface between the sysIO buffers and the internal PFU array blocks. These blocks receive output data from the PFU array and a fast output data signal from adjacent PFUs. The output data and fast

Table 2-8. I/O Support Device by Device

	LA-MachXO256	LA-MachXO640	LA-MachXO1200	LA-MachXO2280
Number of I/O Banks	2	4	8	8
Type of Input Buffers	Single-ended (all I/O Banks)	Single-ended (all I/O Banks)	Single-ended (all I/O Banks)	Single-ended (all I/O Banks)
			Differential Receivers (all I/O Banks)	Differential Receivers (all I/O Banks)
Types of Output Buffers	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)	Single-ended buffers with complementary outputs (all I/O Banks)
			Differential buffers with true LVDS outputs (50% on left and right side)	Differential buffers with true LVDS outputs (50% on left and right side)
Differential Output Emulation Capability	All I/O Banks	All I/O Banks	All I/O Banks	All I/O Banks
PCI Support	No	No	Top side only	Top side only

Table 2-9. Supported Input Standards

	VCCIO (Typ.)					
Input Standard	3.3V	2.5V	1.8V	1.5V	1.2V	
Single Ended Interfaces		•		•		
LVTTL	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
LVCMOS33	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
LVCMOS25	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
LVCMOS18			\checkmark			
LVCMOS15				\checkmark		
LVCMOS12	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
PCI ¹	\checkmark					
Differential Interfaces						
BLVDS ² , LVDS ² , LVPECL ² , RSDS ²	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

1. Top Banks of LA-MachXO1200 and LA-MachXO2280 devices only.

2. LA-MachXO1200 and LA-MachXO2280 devices only.

Figure 2-18. LA-MachXO2280 Banks

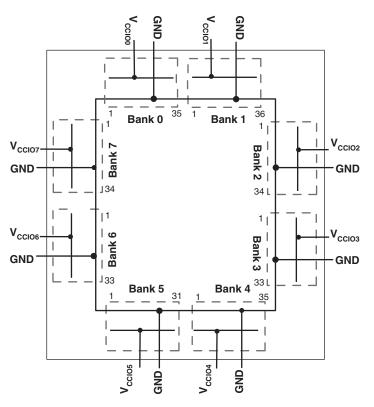
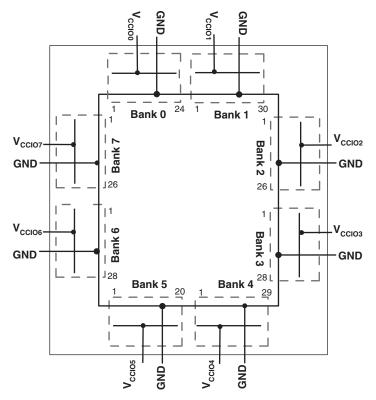



Figure 2-19. LA-MachXO1200 Banks

Figure 2-20. LA-MachXO640 Banks

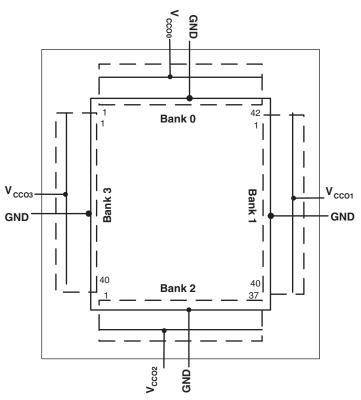
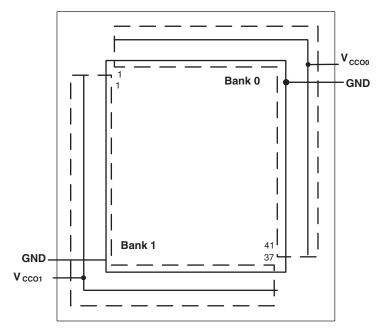



Figure 2-21. LA-MachXO256 Banks

Hot Socketing

The LA-MachXO automotive devices have been carefully designed to ensure predictable behavior during powerup and power-down. Leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the LA-MachXO ideal for many multiple power supply and hot-swap applications.

Sleep Mode

The LA-MachXO "C" devices ($V_{CC} = 1.8/2.5/3.3V$) have a sleep mode that allows standby current to be reduced dramatically during periods of system inactivity. Entry and exit to Sleep mode is controlled by the SLEEPN pin.

During Sleep mode, the logic is non-operational, registers and EBR contents are not maintained, and I/Os are tristated. Do not enter Sleep mode during device programming or configuration operation. In Sleep mode, power supplies are in their normal operating range, eliminating the need for external switching of power supplies. Table 2-11 compares the characteristics of Normal, Off and Sleep modes.

Characteristic	Normal	Off	Sleep
SLEEPN Pin	High	—	Low
Static Icc	Typical <10mA	0	Typical <100uA
I/O Leakage	<10µA	<1mA	<10µA
Power Supplies VCC/VCCIO/VCCAUX	Normal Range	0	Normal Range
Logic Operation	User Defined	Non Operational	Non operational
I/O Operation	User Defined	Tri-state	Tri-state
JTAG and Programming circuitry	Operational	Non-operational	Non-operational
EBR Contents and Registers	Maintained	Non-maintained	Non-maintained

Table 2-11. Characteristics of Normal, Off and Sleep Modes

SLEEPN Pin Characteristics

The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the device. This pin also has a weak pull-up, along with a Schmidt trigger and glitch filter to prevent false triggering. An external pull-up to VCC is recommended when Sleep Mode is not used to ensure the device stays in normal operation mode. Typically, the device enters sleep mode several hundred nanoseconds after SLEEPN is held at a valid low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC specifications portion of this data sheet shows a detailed timing diagram.

Oscillator

Every LA-MachXO device has an internal CMOS oscillator. The oscillator can be routed as an input clock to the clock tree or to general routing resources. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit to enable/disable the oscillator. The oscillator frequency ranges from 16MHz to 26MHz.

Configuration and Testing

The following section describes the configuration and testing features of the LA-MachXO automotive family of devices.

IEEE 1149.1-Compliant Boundary Scan Testability

All LA-MachXO devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with one of the VCCIO Banks (LA-MachXO256: V_{CCIO1} ; LA-MachXO640: V_{CCIO2} ; LA-MachXO1200 and LA-MachXO2280: V_{CCIO5}) and can operate with LVCMOS3.3, 2.5, 1.8, 1.5, and 1.2 standards.

For more details on boundary scan test, please see information regarding additional technical documentation at the end of this data sheet.

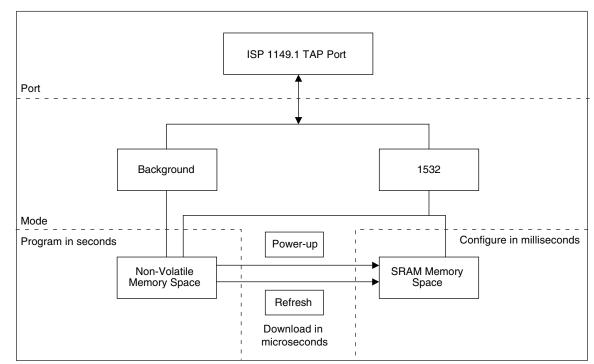


Figure 2-22. LA-MachXO Configuration and Programming

Density Shifting

The LA-MachXO family has been designed to enable density migration in the same package. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

sysIO Recommended Operating Conditions

	V _{CCIO} (V)				
Standard	Min.	Тур.	Max.		
LVCMOS 3.3	3.135	3.3	3.465		
LVCMOS 2.5	2.375	2.5	2.625		
LVCMOS 1.8	1.71	1.8	1.89		
LVCMOS 1.5	1.425	1.5	1.575		
LVCMOS 1.2	1.14	1.2	1.26		
LVTTL	3.135	3.3	3.465		
PCl ³	3.135	3.3	3.465		
LVDS ^{1, 2}	2.375	2.5	2.625		
LVPECL ¹	3.135	3.3	3.465		
BLVDS ¹	2.375	2.5	2.625		
RSDS ¹	2.375	2.5	2.625		

1. Inputs on chip. Outputs are implemented with the addition of external resistors.

2. MachXO1200 and MachXO2280 devices have dedicated LVDS buffers

3. Input on the top bank of the MachXO1200 and MachXO2280 only.

Typical Building Block Function Performance¹

Pin-to-Pin Performance (LVCMOS25 12mA Drive)

Function	-3 Timing	Units
Basic Functions		
16-bit decoder	9.4	ns
4:1 MUX	6.3	ns
16:1 MUX	7.1	ns

Register-to-Register Performance

Function	-3 Timing	Units
Basic Functions		
16:1 MUX	348	MHz
16-bit adder	209	MHz
16-bit counter	277	MHz
64-bit counter	143	MHz
Embedded Memory Functions (1200	and 2280 Devices Only)	
256x36 Single Port RAM	203	MHz
512x18 True-Dual Port RAM	203	MHz
Distributed Memory Functions	•	
16x2 Single Port RAM	310	MHz
64x2 Single Port RAM	229	MHz
128x4 Single Port RAM	186	MHz
32x2 Pseudo-Dual Port RAM	224	MHz
64x4 Pseudo-Dual Port RAM	194	MHz

 The above timing numbers are generated using the ispLEVER design tool. Exact performance may vary with device and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.
 Rev. A 0.19

Derating Logic Timing

Logic Timing provided in the following sections of the data sheet and the ispLEVER design tools are worst case numbers in the operating range. Actual delays may be much faster. The ispLEVER design tool from Lattice can provide logic timing numbers at a particular temperature and voltage.

LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 100 TQFP

			LAMXO1200	D1200 LAMXO2280			LAMXO2280		
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	
1	PL2A	7		Т	PL2A	7	LUM0_PLLT_FB_A	Т	
2	PL2B	7		С	PL2B	7	LUM0_PLLC_FB_A	С	
3	PL3C	7		Т	PL3C	7	LUM0_PLLT_IN_A	Т	
4	PL3D	7		С	PL3D	7	LUM0_PLLC_IN_A	С	
5	PL4B	7			PL4B	7			
6	VCCI07	7			VCCI07	7			
7	PL6A	7		Τ*	PL7A	7		T*	
8	PL6B	7	GSRN	C*	PL7B	7	GSRN	C*	
9	GND	-			GND	-			
10	PL7C	7		Т	PL9C	7		Т	
11	PL7D	7		С	PL9D	7		С	
12	PL8C	7		Т	PL10C	7		Т	
13	PL8D	7		С	PL10D	7		С	
14	PL9C	6			PL11C	6			
15	PL10A	6		T*	PL13A	6		T*	
16	PL10B	6		C*	PL13B	6		C*	
17	VCC	-			VCC	-			
18	PL11B	6			PL14D	6		С	
19	PL11C	6	TSALL		PL14C	6	TSALL	Т	
20	VCCIO6	6			VCCIO6	6			
21	PL13C	6			PL16C	6			
22	PL14A	6	LLM0_PLLT_FB_A	T*	PL17A	6	LLM0_PLLT_FB_A	T*	
23	PL14B	6	LLM0_PLLC_FB_A	C*	PL17B	6	LLM0_PLLC_FB_A	C*	
24	PL15A	6	LLM0_PLLT_IN_A	T*	PL18A	6	LLM0_PLLT_IN_A	T*	
25	PL15B	6	LLM0_PLLC_IN_A	C*	PL18B	6	LLM0_PLLC_IN_A	C*	
26**	GNDIO6 GNDIO5	-			GNDIO6 GNDIO5	-			
27	VCCIO5	5			VCCIO5	5			
28	TMS	5	TMS		TMS	5	TMS		
29	TCK	5	ТСК		TCK	5	ТСК		
30	PB3B	5			PB3B	5			
31	PB4A	5		Т	PB4A	5		Т	
32	PB4B	5		С	PB4B	5		С	
33	TDO	5	TDO		TDO	5	TDO		
34	TDI	5	TDI		TDI	5	TDI		
35	VCC	-			VCC	-			
36	VCCAUX	-			VCCAUX	-			
37	PB6E	5		Т	PB8E	5		Т	
38	PB6F	5		С	PB8F	5		С	
39	PB7B	4	PCLK4_1***		PB10F	4	PCLK4_1***		
40	PB7F	4	PCLK4_0***		PB10B	4	PCLK4_0***		

LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 100 TQFP (Cont.)

		l	AMXO1200		LAMXO2280				
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	
80	VCCIO1	1			VCCIO1	1			
81	PT9E	1			PT12D	1		С	
82	PT9A	1			PT12C	1		Т	
83	GND	-			GND	-			
84	PT8B	1		С	PT11B	1		С	
85	PT8A	1		Т	PT11A	1		Т	
86	PT7D	1	PCLK1_1***		PT10B	1	PCLK1_1***		
87	PT6F	0	PCLK1_0***		PT9B	1	PCLK1_0***		
88	PT6D	0		С	PT8F	0		С	
89	PT6C	0		Т	PT8E	0		Т	
90	VCCAUX	-			VCCAUX	-			
91	VCC	-			VCC	-			
92	PT5B	0			PT6D	0			
93	PT4B	0			PT6F	0			
94	VCCIO0	0			VCCIO0	0			
95	PT3D	0		С	PT4B	0		С	
96	PT3C	0		Т	PT4A	0		Т	
97	PT3B	0			PT3B	0			
98	PT2B	0		С	PT2B	0		С	
99	PT2A	0		Т	PT2A	0		Т	
100**	GNDIO0 GNDIO7	-			GNDIO0 GNDIO7	-			

*Supports true LVDS outputs.

**Double bonded to the pin.

*** Primary clock inputs are single-ended.

LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 144 TQFP (Cont.)

		L	AMXO640		LAMXO1200				LAMXO2280			
Pin Number	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential	Ball Function	Bank	Dual Function	Differential
101	PR3D	1		С	PR4B	2		C*	PR5B	2		C*
102	PR3C	1		Т	PR4A	2		T*	PR5A	2		T*
103	PR3B	1		С	PR3D	2		C	PR4D	2		С
104	PR2D	1		С	PR3C	2		Т	PR4C	2		Т
105	PR3A	1		Т	PR3B	2		C*	PR4B	2		C*
106	PR2B	1		С	PR3A	2		T*	PR4A	2		T*
107	PR2C	1		Т	PR2B	2		С	PR3B	2		C*
108	PR2A	1		Т	PR2A	2		Т	PR3A	2		T*
109	PT9F	0		С	PT11D	1		C	PT16D	1		С
110	PT9D	0		С	PT11C	1		Т	PT16C	1		Т
111	PT9E	0		Т	PT11B	1		C	PT16B	1		С
112	PT9B	0		С	PT11A	1		Т	PT16A	1		Т
113	PT9C	0		Т	PT10F	1		С	PT15D	1		С
114	PT9A	0		Т	PT10E	1		Т	PT15C	1		Т
115	PT8C	0			PT10D	1		C	PT14B	1		С
116	PT8B	0		С	PT10C	1		Т	PT14A	1		Т
117	VCCIO0	0			VCCIO1	1			VCCIO1	1		
118	GNDIO0	0			GNDIO1	1			GNDIO1	1		
119	PT8A	0		Т	PT9F	1		C	PT12F	1		С
120	PT7E	0			PT9E	1		Т	PT12E	1		Т
121	PT7C	0			PT9B	1		С	PT12D	1		С
122	PT7A	0			PT9A	1		Т	PT12C	1		Т
123	GND	-			GND	-			GND	-		
124	PT6B	0	PCLK0_1***	С	PT7D	1	PCLK1_1***		PT10B	1	PCLK1_1***	
125	PT6A	0		Т	PT7B	1		C	PT9D	1		С
126	PT5C	0			PT7A	1		Т	PT9C	1		Т
127	PT5B	0	PCLK0_0***		PT6F	0	PCLK1_0***		PT9B	1	PCLK1_0***	
128	VCCAUX	-			VCCAUX	-			VCCAUX	-		
129	VCC	-			VCC	-			VCC	-		
130	PT4D	0			PT5D	0		C	PT7B	0		С
131	PT4B	0		С	PT5C	0		Т	PT7A	0		Т
132	PT4A	0		Т	PT5B	0		C	PT6D	0		
133	PT3F	0			PT5A	0		Т	PT6E	0		Т
134	PT3D	0			PT4B	0			PT6F	0		С
135	VCCIO0	0			VCCIO0	0			VCCIO0	0		
136	GNDIO0	0			GNDIO0	0			GNDIO0	0		
137	PT3B	0		С	PT3D	0		С	PT4B	0		Т
138	PT2F	0		С	PT3C	0		Т	PT4A	0		С
139	PT3A	0		Т	PT3B	0		C	PT3B	0		С
140	PT2D	0		С	PT3A	0		Т	PT3A	0		Т
141	PT2E	0		Т	PT2D	0		С	PT2D	0		С
142	PT2B	0		С	PT2C	0		Т	PT2C	0		Т
143	PT2C	0		Т	PT2B	0		C	PT2B	0		С
144	PT2A	0		Т	PT2A	0		Т	PT2A	0		Т

*Supports true LVDS outputs.

NC for "E" devices. *Primary clock inputs arer single-ended.

LA-MachXO640, LA-MachXO1200 and LA-MachXO2280 Logic Signal Connections: 256 ftBGA (Cont.)

		LAMX	0640		LAMXO1200					LAMXO2280				
Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential	Ball Number	Ball Function	Bank	Dual Function	Differential
A3	PT2B	0		С	A3	PT3B	0		С	A3	PT3B	0		С
A2	PT2A	0		т	A2	PT3A	0		Т	A2	PT3A	0		Т
B3	NC				B3	PT2B	0		С	B3	PT2D	0		С
B2	NC				B2	PT2A	0		Т	B2	PT2C	0		т
VCCIO0	VCCIO0	0			VCCIO0	VCCIO0	0			VCCI00	VCCIO0	0		
GND	GNDIO0	0			GND	GNDIO0	0			GND	GNDIO0	0		
A1	GND	-			A1	GND	-			A1	GND	-		
A16	GND	-			A16	GND	-			A16	GND	-		
F11	GND	-			F11	GND	-			F11	GND	-		
G8	GND	-			G8	GND	-			G8	GND	-		
G9	GND	-			G9	GND	-			G9	GND	-		
H7	GND	-			H7	GND	-			H7	GND	-		
H8	GND	-			H8	GND	-			H8	GND	-		
H9	GND	-			H9	GND	-			H9	GND	-		
H10	GND	-			H10	GND	-			H10	GND	-		
J7	GND	-			J7	GND	-			J7	GND	-		
J8	GND	-			J8	GND	-			J8	GND	-		
J9	GND	-			J9	GND	-			J9	GND	-		
J10	GND	-			J10	GND	-			J10	GND	-		
K8	GND	-			K8	GND	-			K8	GND	-		
K9	GND	-			K9	GND	-			K9	GND	-		
L6	GND	-			L6	GND	-			L6	GND	-		
T1	GND	-			T1	GND	-			T1	GND	-		
T16	GND	-			T16	GND	-			T16	GND	-		
G7	VCC	-			G7	VCC	-			G7	VCC	-		
G10	VCC	-			G10	VCC	-			G10	VCC	-		
K7	VCC	-			K7	VCC	-			K7	VCC	-		
K10	VCC	-			K10	VCC	-			K10	VCC	-		
H6	VCCIO3	3			H6	VCCI07	7			H6	VCCI07	7		
G6	VCCIO3	3			G6	VCCI07	7			G6	VCCI07	7		
K6	VCCIO3	3			K6	VCCIO6	6			K6	VCCIO6	6		
J6	VCCIO3	3			J6	VCCIO6	6			J6	VCCIO6	6		
L8	VCCIO2	2			L8	VCCIO5	5			L8	VCCIO5	5		
L7	VCCIO2	2			L7	VCCIO5	5			L7	VCCI05	5		
L9	VCCIO2	2			L9	VCCIO4	4			L9	VCCIO4	4		
L10	VCCIO2	2			L10	VCCIO4	4			L10	VCCIO4	4		
K11	VCCIO1	1			K11	VCCIO3	3			K11	VCCIO3	3		
J11	VCCIO1	1			J11	VCCIO3	3			J11	VCCIO3	3		
H11	VCCIO1	1			H11	VCCIO2	2			H11	VCCIO2	2		
G11	VCCIO1	1			G11	VCCIO2	2			G11	VCCIO2	2		
F9	VCCIO0	0			F9	VCCIO1	1			F9	VCCIO1	1		
F10	VCCIO0	0			F10	VCCIO1	1			F10	VCCIO1	1		
F8	VCCIO0	0			F8	VCCIO0	0			F8	VCCIO0	0		
F7	VCCIO0	0			F7	VCCIO0	0			F7	VCCIO0	0		

* LCMXO640 only. ** Supports true LVDS outputs. *** NC for "E" devices. **** Primary clock inputs are single-ended.

LA-MachXO2280 Logic Signal Connections: 324 ftBGA

LAMXO2280 Roll Eurotion Ronk Dual Eurotion Differential							
Ball Number	Ball Function	Bank	Dual Function	Differentia			
GND	GNDIO7	7					
VCCIO7	VCCI07	7					
D4	PL2A	7	LUM0_PLLT_FB_A	Т			
F5	PL2B	7	LUM0_PLLC_FB_A	С			
B3	PL3A	7		Τ*			
C3	PL3B	7		C*			
E4	PL3C	7	LUM0_PLLT_IN_A	Т			
G6	PL3D	7	LUM0_PLLC_IN_A	С			
A1	PL4A	7		T*			
B1	PL4B	7		C*			
F4	PL4C	7		Т			
VCC	VCC	-					
E3	PL4D	7		С			
D2	PL5A	7		T*			
D3	PL5B	7		C*			
G5	PL5C	7		Т			
F3	PL5D	7		С			
C2	PL6A	7		T*			
VCCIO7	VCCIO7	7					
GND	GNDIO7	7					
C1	PL6B	7		C*			
H5	PL6C	7		Т			
G4	PL6D	7		С			
E2	PL7A	7		T*			
D1	PL7B	7	GSRN	C*			
J6	PL7C	7		Т			
H4	PL7D	7		С			
F2	PL8A	7		T*			
E1	PL8B	7		C*			
GND	GND	-					
J3	PL8C	7		Т			
J5	PL8D	7		С			
G3	PL9A	7		T*			
H3	PL9B	7		C*			
K3	PL9C	7		Т			
K5	PL9D	7		С			
F1	PL10A	7		T*			
VCCIO7	VCCIO7	7		-			
GND	GNDIO7	7					
G1	PL10B	7		C*			
K4	PL10C	7		т			
K6	PL10D	7		С			

LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

		LAMXO2280		B 144
Ball Number	Ball Function	Bank	Dual Function	Differential
J13	PR10C	2		Т
M18	PR10B	2		C*
L18	PR10A	2		T*
GND	GNDIO2	2		
VCCIO2	VCCIO2	2		
H16	PR9D	2		С
H14	PR9C	2		Т
K18	PR9B	2		C*
J18	PR9A	2		Τ*
J17	PR8D	2		С
VCC	VCC	-		
H18	PR8C	2		Т
H17	PR8B	2		C*
G17	PR8A	2		T*
H13	PR7D	2		С
H15	PR7C	2		Т
G18	PR7B	2		C*
F18	PR7A	2		Τ*
G14	PR6D	2		С
G16	PR6C	2		Т
VCCIO2	VCCIO2	2		
GND	GNDIO2	2		
E18	PR6B	2		C*
F17	PR6A	2		T*
G13	PR5D	2		С
G15	PR5C	2		Т
E17	PR5B	2		C*
E16	PR5A	2		T*
GND	GND	-		
F15	PR4D	2		С
E15	PR4C	2		Т
D17	PR4B	2		C*
D18	PR4A	2		T*
B18	PR3D	2		С
C18	PR3C	2		Т
C16	PR3B	2		C*
D16	PR3A	2		T*
C17	PR2B	2		C
D15	PR2A	2		
VCCIO2	VCCIO2	2		•
GND	GNDIO2	2		
GND	GNDIO1	1		
VCCIO1	VCCIO1	i		

LA-MachXO2280 Logic Signal Connections: 324 ftBGA (Cont.)

	LAMXO2280						
Ball Number	Ball Function	Bank	Dual Function	Differential			
G8	VCCIO0	0					
G7	VCCIO0	0					

* Supports true LVDS outputs.

** Primary clock inputs are single-ended.

LA-MachXO Automotive Family Data Sheet Revision History **Revision History**

November 2007

Data Sheet DS1003

Revision History

Date	Version	Section	Change Summary
April 2006	01.0	—	Initial release.
May 2006	01.1	Pinout Information	Removed [LOC][0]_PLL_RST from Signal Descriptions table.
			PCLK footnote added to appropriate pins in Logic Signal Connections tables.
November 2006	01.2	DC and Switching Characteristics	Corrections to MachXO "C" Sleep Mode Timing table - value for t _{WSLEEPN} (400ns) changed from max. to min. Value for t _{WAWAKE} (100ns) changed from min. to max.
			Added Flash Download Time table.
December 2006	01.3	Architecture	EBR Asynchronous Reset section added.
		Pinout Information	Power Supply and NC table: Pin/Ball orientation footnotes added.
February 2007	01.4	Architecture	Updated EBR Asynchronous Reset section.
November 2007	01.5	DC and Switching Characteristics	Updated sysIO Single-Ended DC Electrical Characteristics table.
			Added JTAG Port Timing Waveforms diagram.
		Pinout Information	Added Thermal Management text section.
		Supplemental Information	Updated title list.

© 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.